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OPTIMUM TESTS IN UNBALANCED TWO-WAY MODELS
WITHOUT INTERACTION

BY THOMAS MATHEW AND BiMaL KUMAR SINHA!
University of Maryland Baltimore County

It is an open problem in the literature to derive optimum tests for the
equality of treatment effects in an unbalanced two-way classification model.
For such models without interaction, optimum tests are derived in the
following cases: (i) the locally best invariant unbiased test for the random
effects model corresponding to an equiblock and equireplicate design, (ii) the
locally best invariant unbiased test for the mixed effects model with mixed
treatment effects corresponding to a balanced incomplete block design and
(iii) the uniformly most powerful invariant test or the locally best invariant
test for the mixed effects model with random treatment effects.

Robustness of the optimum invariant tests against suitable deviations
from normality is also indicated.

1. Introduction and summary. For ANOVA models with fixed effects, it is
well known that the appropriate F-tests for testing the significance of fixed
effects are optimum invariant tests under the assumption of normality and
independence of the errors, see Lehmann [(1959), Chapter 7, Section 1]. Earlier
work on similar optimality properties in the mixed and random effects models
mainly dealt with the one-way classification model and the two-way classifica-
tion model with or without interaction [see Thompson (1955a), Herbach (1959)
and Spjetvoll (1967)]. For a general ANOVA model with mixed effects, optimal-
ity properties of tests (for fixed effects or variance components) have been
investigated only recently. For such models with balanced data, Seifert (1978,
1979) has shown that the usual F-tests for fixed effects are optimal (UMPU,
UMPI). For variance components, however, only some exact tests are obtained in
Seifert (1981, 1985) and no optimality is claimed or established. In a recent paper
by Mathew and Sinha (1988), the UMPU and UMPIU character of the standard
F-tests (for fixed effects as well as variance components) have been settled
completely for a general balanced ANOVA model with mixed effects.

For a mixed effects ANOVA model with unbalanced data, the picture is
entirely different. Even though exact tests are available in some cases
[see Thompson (1955a, 1955b), Thomsen (1975), Pincus (1977), Seely and
El-Bassiouni (1983) and Kleffe and Siefert (1988)], little is known by way of
optimality of such tests, except for the one-way unbalanced random effects
model [see Das and Sinha (1987) and Spjetvoll (1967)]. Unlike in balanced
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1728 T. MATHEW AND B. K. SINHA

models, the derivation of an optimum invariant test in unbalanced models
presents considerable difficulty due to one or both of the following reasons: (i)
the family of sufficient statistics under the null hypothesis is not complete and
(ii) the group which leaves the underlying testing problem invariant is not large
enough to guarantee a sufficiently small class of invariant tests. While it is
impossible to do away with the above difficulties for a general unbalanced model,
it is quite plausible to establish optimality results for some specific models by
imposing suitable restrictions on the underlying designs in order to overcome the
above hurdles. This is precisely what we accomplish here and in the sequel
provide a solution to some open problems in this area.

In the present paper, we take up the problem of deriving optimum tests in the
unbalanced two-way classification model without interaction. The model consid-
ered is the following:

yijl I3 + T + B + etjl’

(1-1) I=1,2,..,n,,i=1,2...,0,j=12,...,b.
Here p is an unknown constant while 7, (the treatment effect) and B; (the block
effect) are unknown parameters or random variables depending on whether these
effects are fixed or random. Whenever 7, and B; are random variables we shall
assume that 7, ~ N(0, 6?), 62> 0, and ,B N(O 07), of > 0. It is further as-
sumed that all these random varlables are independent and also independent of

e;; which are ii.d. N(0, 6%), 02 > 0. We have considered both the random effects
model and the mixed effects model. In each case an optimum test is derived for
testing the significance of the treatment effects (either fixed or random) by
imposing suitable restrictions on the underlying block design.

In Section 2, for the completely random effects model, under a suitable group
of transformatlons, we have derived the locally best invariant unbiased (LBIU)
test for testing o2 = 0, assuming the design to be equiblock and equireplicate.
The mixed effects model with 7; fixed and B; random is taken up in Section 3. By
invoking invariance under a sultable group of transformations, we have derived
the LBIU test for testing the equality of the 7,’s, assuming the design to be a
balanced incomplete block design (BIBD). Section 4 deals with the mixed effects
model with 7.’s random and B;’s fixed. For testing ¢? = 0, the uniformly most
powerful invariant (UMPI) test under a suitable group of transformations is
derived for a variance balanced design. For a design that is not variance
balanced, we have obtained the LBI test. The optimum tests in Sections 2 and 3
depend on the magnitude of the block variance oﬂ2 in relation to the error
variance o2 The test comes out in terms of the adjusted or unadjusted treat-
ment sum of squares (defined in Section 2), depending on whether o5 ? /02 is large
or small. It is interesting to observe that our tests do not always coincide with
the standard F-tests. The optimum tests in Sections 2 and 3 coincide with the
standard F-test only when oﬁz/o is large and the optimum test in Section 4
coincides with the F-test only for a variance balanced design. We have also
indicated the robustness of the optimum invariant tests against suitable devia-
tions from normality.
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For a two-way model with interaction (with mixed or random effects), deriva-
tion of an optimum test for testing the significance of interaction presents
considerable difficulties even with further restrictions, unless the design is
balanced. This is because under the null hypothesis of no interaction, the family
of sufficient statistics is not complete if the design is not balanced [this can be
easily verified by checking the necessary and sufficient conditions in Seely
(1977)]. It may be noted that for the two-way random effects model with
interaction, an exact and simple test for interaction, based on an F-statistic, is
given in Thomsen (1975). Moreover, for the same model, a simple test for the
main effects variance (namely, for 62 =0 and of = 0) appears in Thomsen
(1975), assuming that the interaction term is absent, and in Khuri and Littel
(1987) without this assumption. However, as noted before, the local optimality of
Thomsen’s test for 62 = 0 can be established only when the underlying design is
both equireplicate and equiblock.

In conclusion, we emphasize that for a two-way unbalanced model without
interaction with mixed or random effects, the results we have obtained (under
suitable restrictions on the block design) appear to be the best that can be
established toward deriving optimum tests for the significance of treatment
effects.

2. The random effects model. The hypothesis of interest is Hy: 62 =0
against the alternative H: o? > 0, when the 7,’s and B;’s are both random
variables in the model (1.1). To derive an optimum test, we assume that
Xy_in,;; =k for each j and £%_,n,; = r for each i. In other words, the block
design is taken to be equiblock and equireplicate. It will be clear from what
follows that this assumption is indeed necessary to derive an optimum test for

the random effects model. Let
(2'1) y_] = (yljl’ y1j2”" yljn]j""’ yvjl"“’ yvjn,,j),
be the & X 1 vector of observations from the jth block and write

(2.2) y =5 ¥5)-

If 1, denotes the k-component vector of 1’s and E, = 1,1/, (we will denote these
quantities by 1 and E when the dimension is clear), then (1.1) can be written as

where F is the bk X v design matrix for the treatments, 7 and 8 are vectors
consisting of 7,’s and B;’s, respectively, and e is the vector of e;;’s. Thus

(2.4) E(y) = pl,,, cov(y) = oI + o4E, + o2FF,

where E, = diag(E,..., E), E =1,1},. We shall write B = (B, B,,..., By),
T = (T,,..., T,) the vectors of block totals and treatment totals, respectively. N
will denote the v X b incidence matrix whose ijth element is n,;. Under Hy:
02 =0, the model reduces to a balanced one-way classification model with

random block effects and hence, the grand mean y = ZLly,’jl /bk, the sum of
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squares between blocks

( SSp= % (y/A/k - y..)2)

j=1
and the sum of squares within blocks

b o M
’ 2
(SSW= Z Z E (yijl - y.jl/k) )
Jj=1li=11=1
jointly form a set of complete sufficient statistics (the reader may note that the
assumption of equiblock design is used here to ensure this). Writing 6, = oﬁ,2 /o2

and 6, = 02/0?, the density of y is given by
f(y; I'l" 01, 02’ 02)

(2.5) = (270%) " "|I + 6,E, + 6,FF|'/*

1 -
XeXP{ ~ 552y —m)(I + 6,E, + 6,FF)"\(y - ul)}-

It turns out that there is no locally best or locally best unbiased test for testing
H,. Hence, in order to derive an optimum test, we reduce the problem through
invariance.

Clearly the above testing problem remains invariant under the group G of
transformations y — c(y + al) for ¢ > 0 and « real. Noting that da - dc/c is a
left invariant measure on G, applying the representation theorem due to
Wijsman (1967), the ratio R of the nonnull and null distributions of a maximal
invariant (induced by the group G) is given by

_ Jof(gy/H,)J ' da - de/c
Jof(gy/Hy)J 'da-dc/c’

Here g = (¢, a) is an element in G, gy = c(y + al), f(y/H,) denotes the normal
density of y under the hypothesis H; (i = 0,1), and ¢ is the Jacobian of the
transformation y — gy. We have simplified R in the Appendix. From (A.2) in
the Appendix, it follows that there is no UMPI or UMPIU test for testing H,,.
To derive a locally best invariant test, following Lehmann (1959) or Ferguson
(1967), we expand R locally around 6, = 0. It is proved in the Appendix [see
(A4) and (A.6)] that under the further assumption of equireplicate design,

(2.6)

(2.7) R=1+ bk2 loz[Q;?‘* + h(yl;sal)] + 0(6,),
where
1 k6,
(28) Q=T-8NB, &= Trag D= SSw+ (1 - 8)SS;,

h(y.,0,) is a function of #, and ¥. only, and o(8,) is uniformly so in y. From
(2.7), it follows that an invariant unbiased test for H, with maximum local power
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rejects H, for large values of Q;Q;, conditional on the complete sufficient
statistic (3., SSg, SSy,). The dependence of the resultant test statistic Q;Q; on 8
is rather unpleasant. However, meaningful tests can be derived in two special
cases when & approaches 1 or 0 according as o;/0® becomes large or small.
Clearly, Q; » Q = T — (1/k)NB, the vector of adjusted treatment totals as
8 —» 1 and Q; — T, the vector of unadjusted treatment totals as 6 — 0. More-
over, in the present setup, it is easy to verify that, under H,, Q and B are
independent and F, = (Q'Q/u)/(SSg/(b — 1)) has central F-distribution with
degrees of freedom (u, b — 1). Here u is the rank of the C-matrix. An application
of Basu’s theorem [Lehmann (1959), page 162] shows that under H,, F, is
independent of the complete sufficient statistic (¥., SSg, SSy,). Thus we have
proved

THEOREM 2.1. Suppose (1.1) is a random effects model corresponding to an
equiblock and equireplicate block design. Let T and F,, be as defined above. For
testing H,: o? = 0, (i) the locally best invariant unbiased test rejects H, for large
values of F, if o /o is large and (ii) the locally best invariant unbiased test
rejects H, for large value of T'T, conditional on (¥., SSg, SSy) if 032/0 is
small.

REMARK 2.1. In order to apply Theorem 2.1(ii), one needs to derive the
conditional null distribution of T'T given (¥., SSg, SSy). Although this is
difficult, it is easy to compute the first few conditional moments of T'T given
(¥.,SSg, SSy,). However, this is not reported here. The same remark also applies
to Theorem 3.1(ii) in the next section.

REMARK 2.2. From Kariya and Sinha [(1985), Section 2] we conclude that
the above invariant tests are null, nonnull and optimality robust when the
normal distribution is replaced by any spherically symmetric distribution and
invariance is invoked.

3. The mixed effects model with ; fixed. Throughout this section it is
assumed that B;’s in (1.1) are random variables and 7,’s are fixed unknown
parameters satlsfylng T2 ,m, = 0. Itis decided to test Hy: T = 0. Here, due to the
inherent nature of the multiparameter hypothesis H,, reduction through invari-
ance is essential in order to derive an optimum test. The problem is clearly
invariant under the group of transformations which transform y to c(y + al),
where a and c are scalars with ¢ > 0. However, reducing the class of tests using
this group alone appears to be inadequate to derive an optimum test. If we
assume that the model (1.1) corresponds to a BIBD, then it is possible to have a
subgroup of the permutation group leaving the problem invariant. It turns out
that this further reduction is enough to guarantee the existence of an optimum
test. Hence, in this section, we consider the model (1.1) only for a BIBD with
parameters v, b, r, k, \. We now proceed to describe the group of permutations
which leaves the problem invariant. Following the notations in the previous
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section, we have
(3.1) E(y) =pl,, + Fr,  cov(y) = o’ + ofE,

[recall that y' = (y4,¥%,...,¥/), Where y.; is the vector of observations from
the jth block, F is the bk X v design matrix for the treatments and E, =
diag(E,..., E)]. Let ¢ be the group of bk X bk permutation matrices which,
when applied to the bk plots of the BIBD, permutes the blocks and the plots
within the blocks in such a way that for ' € ¢, I'F = FP for some v X v
permutation matrix P. Note that I' does not permute the plots from two
different blocks. It is easy to check that ¢ is a group with k!b elements (using
the symmetry of the BIBD). For such a T,

E(Ty) =T(pl,, + Fr) = p1,, + Fr*, where 7* = Pr,
cov(Ty) = I‘(o2I + o,?EO)l'" = oI + ofE,.

[Such a group has been considered earlier by Sinha (1982) for the fixed effects
model in connection with invariant estimation of treatment contrasts.]

We are now ready to derive an optimum invariant test. Clearly the testing
problem is invariant under the group G of transformations

(3.3) y—>c(ly +al,), ¢>0,Te9,

(3.2)

a equal to an arbitrary scalar. Then dT - da - dc/c is a left invariant measure on
G, where dT denotes the discrete uniform probability measure with mass 1/k!b
at each point in ¢. Applying the representation theorem due to Wijsman (1967),
the ratio R of the nonnull and null distributions of a maximal invariant (induced
by the group G) is given by

_ Jof(gy/H,)d*dT dadc/c
Jof(gy/H,)Jd 'dTdadc/c’

Here g = (¢, T, a) is an element in G, gy = ¢(T'y + al,,), f(y/H;) denotes the
normal density of y under the hypothesis H; (i = 0,1) and ¢/ is the Jacobian of
the transformation y — gy. We have simplified R in the Appendix. From (A.12)
in the Appendix it follows that there is no UMPI or UMPIU test for testing H,,.
To derive a locally best invariant unbiased test, we need to expand R locally
around 7 = 0. This is done in (A.21) which reads

R=1+ 75(QiQs + h(3.))'r

(3.4)

(3.5)

e

bk—1 1
5

rl — ;8N'N)'r + o(7'T),
where a, is a positive constant and Q; and D, are as defined in the previous
section. It is clear from (3.5) and the fact that (7., SSg, SSW) is complete
sufficient under H, that an invariant unbiased test with maximum local power
rejects H,, for large value of Q;Q;, conditional on (., SS, SSy,). Noting that
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F, = [QQ/(v — 1)]/[SSg/(b — 1)] is distributed as central F with
(v — 1, b — 1) d.f. under H,, and arguing as in the previous section, we establish

THEOREM 3.1. Suppose (1.1) is a mixed effects model corresponding to a
BIBD with 1; fixed. Let F, be as defined above. For testing Hy: v =0, (i) the
locally best invariant unbiased test rejects H,, for large values of F, if oﬂz/ o is
large and (ii) the locally best invariant unbiased test rejects H, for large values
of T'T, conditional on (5., SSg, SSy) if o5 /0” is small.

REMARK 3.1. It is clear from the preceding analysis and Kariya and Sinha
[(1985), Section 3] that the above locally best invariant unbiased tests as 6 — 1
and 0 are optimality robust when normality is replaced by appropriate spherical
symmetry. The tests are not nonnull robust although they are null robust under
any spherically symmetric distribution [Kariya (1981)].

4. The mixed effects model with 1, random. Here we assume the model
(1.1) with B;’s fixed and 7;’s random. It is decided to test H;: o2 = 0. To derive
an optimum test, we shall use some of the results from Thompson (1955a, b), who
considered the above set up for a binary design. Let C denote the associated
C-matrix defined as C = diag(r,, ..., r,) — Ndiag(1/k,,...,1/k,) N’, where r, is
the replication of the ith treatment, k; is the jth block size and N is the
incidence matrix and suppose rank(C) = u (¢ < v — 1). Let the matrix M: v X v
be such that M’M = I, and M'CM = diag(D,0), where the diagonal elements
dy,...,d, of the u X u diagonal matrix D are the nonzero eigenvalues of C. Let
M'Q=127Z = (Z{,Z}), where Z, is u X 1. Recall that Q is the vector of adjusted
treatment totals defined in Section 2. Following the arguments in Thompson
(1955a, b), we conclude that

(i) the statistics B, Z, and SSy;, jointly form a sufficient statistic for the
normal family of distributions of y;

(ii) the testing problem above is invariant under the group G of transforma-
tions B; - ¢B; + k;c;, Z; > cZ, and SSy, — c’SSy,, where the c;’s are real
numbers, ¢ > 0 and k; is the jth block size. A maximal invariant under G is
easily seen to be 8 = (1//SS;,)D~'/*Z,, whose density is given by [see Thomp-
son (1955a), page 327]

b

u 32 —(n+u)/2
. ‘ tant|1 + -
(4.1) cons ( igl T diﬁ)
where S = (S,,...,S,) and 8 = 02/52 Hence for testing H,: § = 0, the ratio R
of the nonnull to null densities of the maximal invariant boils down to
1+X%,S?/(1+d0)
1+ L8 ,8?

If the d;’s are all equal (if u = v — 1, such a design is said to be variance-
balanced), then R in (4.2) is monotonically increasing in Y% ,;S? Hence the

—~(n+u)/2

(4.2) R-=
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test which rejects H, for large values of ©*_,S? is UMPIL. Note that
u
Y S} =d'2{Z,/SSy, = d7'QQ/SSy,
i=1

where d is the common value of the d;’s. Hence, the UMPI test rejects H,, for
large values of F, = (Q'Q/u)/(SSy/(n — b — u)) which is distributed as central
F (under H,) with degrees of freedom (u, n — b — u). Here n is the total number
of observations. If the d;’s are not all equal, then a UMPI test does not exist
while an LBI test is easily derived by expanding R around 8 = 0. This im-
mediately gives

(n+

5 u) i d,.s,?/(l + fs,?) + o(9).

i=1 i=l

(4.3) R=1+4

It now follows that the LBI test rejects H, for large values of

5 ds? /

(4.4) i=1

1+ Y s}’) =Z2{Z,/(SSy + Z{D"'Z,)

i=1

= QQ/(SSy + QCQ),

where C~ is a generalized inverse of C. Thus we have proved

THEOREM 4.1. Suppose (1.1) is a mixed effects model with =,’s random and
B,’s fixed. For testing Hy: o? = 0 against H,: o? > 0, (i) if the nonzero eigenval-
ues of the C-matrix are all equal, then the UMPI test rejects H, for large values
of Fy = (QQ/u)/(SSy/(n — b — u)) and (ii) if the nonzero eigenvalues of the
C-matrix are not all equal, then the LBI test rejects H, for large values of
QQ/(SSy + QCQ).

It is interesting to observe that Theorem 4.1 is valid without any restrictions
on the model whatsoever.

REMARK 4.1. From Kariya and Sinha [(1985), Section 2] we conclude that
the above UMPI and LBI tests are null, nonnull and optimality robust when
normality is replaced by any spherically symmetric distribution.

REMARK 4.2. It is not difficult to check that an UMPU or an LBU test of
H,: ¢? = 0 (without invariance) exists only when the design is balanced.

5. Concluding remarks. Tests for the significance of treatment effects in a
block design without interaction are typically based on the ratio of adjusted
treatment mean squares to the error mean squares [Montgomery (1984)]. The
optimality of such a test under the fixed effects model has long been well known.
. Theorems 2.1, 3.1 and 4.1 as well as the Remarks 2.1, 3.1 and 4.1 bring out clearly
what kind of optimalities one can expect of such a test under the random and
mixed effects models and under what restrictions on the design and what
conditions on the parameters.



OPTIMUM TESTS IN UNBALANCED MODELS 1735
APPENDIX
Derivation of (2.7). In (2.6), the Jacobian of the transformation y — gy is
J = c7%. Also, for evaluatlng R in (2.6), we may assume without loss of

generality, p = 0 and o = 1, in view of invariance. Using the density of y given
in (2.5) (with p = 0, 0% = 1) and writing V, = I + 0.E, + 0,FF'| we get

Numerator of (2.6) = constant|V;|~*/2
o2
x/wfw exp{— —(y+ )V Yy + al)}cb”'ldadc
0 — o0 2

= constant|V;|~/2(1'V; 1)~ i

2 1’ —1y)2
(A1) ¢ vy || s
d
exp AL Vo) c c
= constant|V;|~/2(1'V; 1)~ *
—(bk—-1)/2

v J) ® w2, (bk—3)2
y (l’Vl‘ll) j;e u du.

X [y'V_l (viy)’
1

Noting that the denominator of (2.6) is the above expression with 6, = 0 and
writing V, = I + 0, E,, we get

_ _ —(bk—-1)/2

Wi\~ (v (1vyly)’
3 YWY —

Vol 1V, 1 ! (1'vy1)

1-(bk—1)/2

(A.2) .
oy 0%
e

We now simplify R when 6, is near 0. We first show that the denominator in

(A.2) is a function of the complete sufficient statistic, namely, y.., SSg and SSy;.
Recalling that E, = diag(E, E,..., E), we get

1
Vil=(I+60,E) '=1- 79Eo

[where & =k6,/(1 + k6,)] and 1'(I + 6,E,)"* = (1 — §)1’. Hence, the de-
nominator D of (A.2) simplifies to
—(bk—1)/2

D= [y'([ - %an)y — bk(1 — 8)5'.2.]

2

b b —(bk—-1)/2
- [y'y —EY i+ (1- )k L 75— bk(1 - a)y%]
J=1

Jj=1
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where . ; denotes the average of the observations in the jth block. Hence,
(A3) D = [SSy + (1 — §)SS;] —(bk=1/2 _ Dy (k=172

where Dy = SSy, + (1 — §)SSg. Thus D is a function of SS; and SSy; only.
Using (A.3) and assuming the design to be equireplicate, R in (A.2) is easily
expanded as

bk —1 'V 'FF'V; ! h(y.,6
(Ad) R=1+ PAEAL o ¥, (5.6) o(8,),
D; D

2
uniformly in y, around 6, = 0. Here A(¥.,6,) is a function of y. and 6, only.
This follows from the assumption that the design is equireplicate along with the
following observations (A.5).
If N, T, B and r, respectively, denote the incidence matrix, vector of
treatment totals, vector of block totals and the replication number for the
treatments, then

F'diag(1,1,...,1) =N, F1=rl,
Fy=T and diag(1,1,...,1')y = B.
Using (A.5) and the fact that V; ! = I — (1/k) 8E,, we also get

(A5)

2 1
YV, 'FFV; 'y =TT - —8T'NB + —8?B'N'NB
0 0 k

k2
= Q:SQS:
where Q; = T — (1/k) 8NB. (A.4) along with (A.6) gives (2.7).

(A.6)

Derivation of (3.5). We note that, in (3.4), the Jacobian of the transforma-
tion y —» gy is J = ¢~ %. To evaluate R in (3.4), we may assume, in view of
invariance, u = 0 and o2 = 1. Following the derivation of (A.1) above, integrat-
ing out a and ¢ immediately gives

numerator of (3.4)

2
C

~ constant ¥ [~ [~ exp{— —(Ty — a1 — Fr)(I + 6,E,)""
r-o 2

— o0
X(Ty —al — Fr)}cbk‘ldadc

(A‘7) = constant Z [(FY - FT)'(I + 01EO)_1(I‘y - FT)
r

- 91— (bk—1)/2
(1(I+ 6,E,)"(Ty — Fr))

1(I+6,E) "1

Xfooe—u/2u(bk—l)/2—1 du.
0
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The denominator of (3.4) is the above expression with 7= 0. Hence (3.4)
simplifies to

R=Y|(Ty — Fr)(I + 6,E,)"(Ty — Fr)
r
91— (bk—1)/2
48) (1'(1 + 6,E,) " (Ty - Fr))
' 1(I+6,E,)™"1

' 07— (bk—1)/2
(1(I+ 6,E;)"'Ty)
1(I+6,E,)™ 1

+ Zrl [(Fy)’(l +6,E,) (Ty) -

The crux of the problem now is to simplify R when-7'r is near 0. Toward this
end, note that, under H,, the grand mean y., the sum of squares between blocks
(SSg) and the sum of squares within blocks (SSyy) jointly form a set of complete
sufficient statistics. As in the derivation of (A.3), we note that the denominator
D of (A.8) simplifies to

D = E!b[SSy, + (1 — 8)SS,] ¥~ V2
= k1bDy k172

where Dy = SSy, + (1 — 8)SSg. Thus D is a function of the complete sufficient
statistic. In order to simplify the numerator of R in (A.8), we note that

(A9)

(A.10) 1(I+0,E) 'Fr=(1-8)1'"Fr=(1-8)r'r=0
(since 1'r = 0). Also
(A.11) FEF=NN and FF=rl.

Using these observations and (A.9), we get

1 1
R = (k!b)™" Z[l - 52y’I"(I— ZSEO)FT
T ()
(A.12) 1 1 —(bk~1)/2
+ 'D—B'r’(rl - ;Q‘SN’N)T]

Expanding the above expression for R around 7 = 0 yields

1 bk—1 1 1
R=1+-—Y —2{y’I"(I - —8EO)FT}

Eb=| T2 D k
bk—-11 1 1 bk—-1bk+1 1
- 2 E{T’(f[— *];(SN'N)T} + 5'— 2 2 —b:g
(A.13) X4{T'F'(I— %SE’O)I‘yy’I"(I— %SEO)FT}
1 bk—10bk+1 1 , 1
R o U G

1
X {1-’(rI - ;8N'N)'r} + remainder term].
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Clearly the remainder term is o(7'r) uniformly in y. We now simplify the
various terms in (A.13). We first show that the first and the fourth terms within
the square brackets simplify to 0. This follows from the fact that X I =
(B — 111’ and hence X y'T'(I— (1/k)8Ey)Fr = (k— 1y1(1 — é)r1’'r =0,
since 1’ = 0. To simplify the most crucial third term within the square brackets
in (A.13), we denote by Y the bk X k!b matrix whose columns are I'y for T € 9.
Then

1 1
ZT’F’(I - —SEO)I‘yy'I"(I - —SEO)FT
= % %
1 1
k k

To further simplify the right-hand side (RHS) expression in (A.14), we need to
observe the following properties of the v X k!b matrix F'Y:

(A.14)

=1-’F’(I— 8E0)YY'(I— 8E0)F1-.

(i) each column of F'Y is a permutation of T, the vector of treatment totals

and

(ii) each row of F'Y has k!b elements and hence each T; occurs in a row
k!b/v times, i.e., (B — 1)!r times. Hence any diagonal element of F'YY'F
is (B — )!rXe_ T2 Similarly any off-diagonal element of F'YY'F is

(B — Dir/(v = )L,/ T;T, = (k — 2INM(E2-,T)* — L3 T
Thus

FYVF = {(k-1)r+ (k- 2)m}( ¥ T,-"')L

i=1

(A.15) —(k— 2)!)\( Y T,-)2Io

i=1

i=1

2 v
+(k - 2)!>\{( Y T,.) - 7}2}101;,.
i=1

Consequently

TF'YY'Fr={(k—1)!r+ (k- 2)A ( Y Ti2)(1"1')
(A.16) { ) i=1

—(k — 2)I\(bk)’72(7'7).
Here we have used the fact that 1’7 = 0. To simplify the other terms in the RHS
of (A.14), note that
F'E,)Y = F'diag(1,...,1)diag(1’,...,1)Y

= Ndiag(1/,...,1)Y.

‘Again, clearly each column of diag(l’,...,1)Y is a permutation of B =

(B,, B,,..., B,), the vector of block totals and each row of diag(1’,...,1)Y has
every B; repeated k!b/b = k! times. Hence using (A.17) and the observations (i)

(A.17)
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and (ii) made before, F"E,YY'F has equal diagonal elements and equal off-diag-
onal elements given, respectively, by (¢ — 1)!rT'"NB and

(E-2MY T }li n;B;

- (k—2)'x{ i
{

= (k — 2)'\{(bk)’ky?— T'NB}.

v b
E Z niij

i=1j=1

-ra|

Thus
" {F'E,YY'F + F'YY'E,F}r

(A.18) = 2{(k — DIr + (k — 2)A}(T'NB)(r'r)

—2(k — 2)I\(bk)*ky2(1'7).
A similar argument yields

TF'E,YY'E Fr = {(k—1)!r + (k — 2)\}(B'N'NB)(r'r)
(A.19) —(k — 2)!\(bk)*R272(1'T)
= (k- 2)\[o(B'N'NB)(7'r) — (bk)*k2(r'r)],

since (k — 1)!r + (k — 2)!A = (k — 2)!\o. Hence using (A.16), (A.18) and (A.19),
the RHS of (A.14) simplifies to

k k2
= (k= 2)o(QQ; + 2(5.))(r'r),
where Q; = T — (1/k)8NB Thus (A.13) can be written as
R=1+ - (Qst"‘h(y ))('7)

bk_ll I— —8N'N |7+ o(r'
5 Ds'r(r—k )1' o(7'7),

where a, is a positive constant.

1
k—2)]A{TT - 2—-86T'NB + 82B’N'NB +h }
(a0 (£ D] (3.))('r)

(A.21)
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