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EDGEWORTH CORRECTION BY BOOTSTRAP
IN AUTOREGRESSIONS

BY ARuP BoseE
Indian Statistical Institute and Purdue University

We prove that the distribution of least-squares estimates in autoregres-
sions can be bootstrapped with accuracy o(n~'/2) a.s., thereby improving the
normal approximation error of O(n~ /%),

1. Introduction. Since the introduction of the bootstrap procedure by Efron
(1979, 1982), there has been a fast-growing literature on the topic. Empirical
evidence has suggested that the bootstrap performs usually very well. See, e.g.,
Efron (1979, 1982), Bickel and Freedman (1983), Daggett and Freedman (1985)
and Freedman and Peters (1984a,b, 1985). Simultaneously, there have been
attempts to provide theoretical justification as to why this method performs
well. These results provide an insight into the working of the bootstrap proce-
dure. We would like to mention the papers by Bickel and Freedman (1980, 1981),
Singh (1981), Beran (1982) and Babu and Singh (1984). They deal with the
accuracy of the bootstrap approximation in various senses (e.g., asymptotic
normality, Edgeworth expansions, etc.) mainly for sample mean type statistics
(or their functionals), quantiles etc., in the i.i.d. situation.

The bootstrap cannot, in general, work for dependent processes; Singh (1981)
provides an example. However, it was anticipated that it would work if the
dependence is taken care of while resampling. Freedman (1984) confirms this by
showing that it does work for certain linear dynamic models (e.g., for two-stage
least-squares estimates in linear autoregressions with possible exogeneous vari-
ables orthogonal to errors). To the author’s knowledge, this is the only theoreti-
cal work available for bootstrap in dependent models.

In the absence of distributional assumptions on the errors, the autoregressive
parameters are estimated by the least-squares method. The structure of the
process enables us to resample the errors and then pseudodata can be generated.
We show that the distribution of the parameter estimates can be bootstrapped
with accuracy o(n~'/?) as., thereby improving the normal approximation. The
idea is to develop one-term Edgeworth expansions for the distribution of the
parameter estimates and its bootstrapped version and then compare these two.

2. Preliminaries. Let Y, be a stationary autoregressive process satisfying

p
(2-1) Y, = Z 0,Y,_; + &,

i=1
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1710 A. BOSE

where we assume that:

(A1) (e)areiid. ~ Fy, Ee,= 0, Ec} = 1, E¢?**D < oo for some s > 3.
(A.2) (g, &) satisfies Cramér’s condition, i.e., for every d > 0, there exists § > 0
such that sup,, . 4/ E exp(it'(,, &}))| < exp(—9).
(A.3) Roots of X2_y0:2777/ = 0 lie within the unit circle. Here 6, = 1.
REMARKS ON THE ASSUMPTIONS.

1. The stationarity of the autoregression is assumed at this stage to keep the
computations simple. This assumption can be dropped. See Remark 3.11.

2. The assumption that (¢,) have mean 0 and variance 1 seems too rigid. It is
possible to drop this assumption and allow arbitrary unknown mean and
variance. The resulting proofs shall be more messy since we have to tackle the
estimates of these parameters too. However, the results do go through, since
these estimates are nice functions of the observations (Y;). See Remark 3.10.

3. The minimum moment assumption we need is E¢® < oo, which at first glance
might seem too strong. However, note that the ls.e. involve quadratic func-
tions of ¢; (Y,Y,_, involves £?) and we need (s + 1)th moment of these with s
at least 3. This is in contrast to the i.i.d. situation, where the existence of sth
moment suffices. The (s + 1)th moment is needed because Y,’s are dependent
[see Go6tze and Hipp (1983)]. We have stated our assumption in terms of s > 3
since under this assumption we can obtain an Edgeworth expansion for the
distribution of the Ls.e. up to the order o(n~¢~?/2) which is of independent
interest. However, there seems to be a problem in obtaining such an expansion
for the bootstrapped distribution.

4. Our results are stated and proved for real-valued processes. The results
continue to hold for vector-valued processes. The proofs are similar with
added complexity in the notation.

Y,), the least-squares estimates 0,,,...,0,, of 0,,...,0, are

Given (Y,_,,..., 30

obtained by solving

01n Z Yt— IYt

(2 ’2) S, = ’
On| | XYY,

where
ZYtz—l ZYt—1Yt—2 T ZYt—lYt—p
. ZYz—zyz—l ZYt2—2 ZYt—zyz—p
S, =
ZYz—th—l Eytz_p

The bootstrap distribution of (0,,,..., §,,) is obtained as follows. The errors &,
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are “recovered” by

p
E,=Y- Y 6,Y, t=1,...,n.
i=1
Let G,(-) denote the distribution function which puts mass 1/n at each &;. Let
F*(x) = G(x +&,), &, = n'Tr 8. Let (e¥), i = 0, +1, £2,..., beiid. F*(-).
(Strictly speaking we should write &}, but we shall drop the suffix n to ease the
notation.) - :
Given (&}), generate Y;* by

P
Y*= Y 6, Y% +er, i=0,+1,+2,....
Jj=1 .

Let 6, = (0,,,-..,0,,). Pretend that 6, is unknown and obtain its Ls.e. 6,*. In
general, the presence of (*) will denote that we are dealing with the bootstrap
quantity and hence expectation etc., are taken under (¢¥) iid. E* given
Y,, Y,,..., Y, Let 6; = Cov(Y,, Y;), i = 0,..., p — 1. It is well known that

00 ol DRI op— 1
Oy te Op-2| . eps .
3= . P77 | is positive definite.
%

Let =* denote its bootstrap version, i.e.,, 0;* = Cov(Yy*, Y;*). n'/23/%(4, — )
has an asymptotic normal (0, I') distribution under our assumptions. In fact, we
will show that an Edgeworth expansion can be developed for its distribution
function. Then we will show that an analogous expansion is valid for its
bootstrapped version n'/2S*1/%(g* — §,). This will help us to study the accuracy
of the bootstrap approximation. In practice the (conditional) distribution of
nl/23*1/2(g* — @) is approximated to any desired degree of accuracy by draw-
ing repeated sets of observations and forming the histogram.

Note that the least-squares equation can be written as

6., — 6, Zy;—lst
A N I
pn ~ Up LY, e
Define
Xit=y;—i€t’ i=1""’p’
(2.3) Xpi1,6= & -1,
X, =(Xy-- Xpﬂyt), 2;=o0(g;).

3. Main results. We first obtain an asymptotic expansion for the distribu-
tion of n~1/2X" | X, by using the following results due to Gétze and Hipp (1983).
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Let (X,) be R*-valued random variables on (2, %, P) and let there be o-fields
2; [write 6(U%_,2,) = 22] and « > 0 such that :

Jj=a
(C1) EX,=0, V¢,
(C2) E||X,|**' < B,,1 < w0, V ¢t forsome s > 3,
(C.3) 1Y, € 9,27 3 E|IX, - Y, < cexp(—am),
(C4) VA€o, ,Be2,,|P(ANB)— P(A)P(B)| < cexp(—am),
n+m
(Ch) 3d,6>0oV |t =4d, E|Eexp(it’ . Y Xj)|.@j, J#n<1-38,
j=n—-m

(C6) VA€ P Y, p,m,

n—p?

E|P(A|19;, j# n) - P(A|9;,0 < |j—n| <m+p)| < cexp(—am),

(C7) lim D(n‘l/ 2y Xt) = 3 exists and is positive definite.

Define the integer s, < s by

s if s is even,
Sy = e
0 s—1 if sisodd.

Let ¢, , be the usual function associated with Edgeworth expansions [see
Gotze and Hipp (1983)]. Let @5 be the normal density with mean 0 and
dispersion matrix .

Define S, = n~ /2y X,.

The following two results are due to Gétze and Hipp (1983) (henceforth
referred to as GH).

THEOREM 3.1. Let f: R* > R denote a measurable function such that
If(x)| < M(1 + ||x||*) for every x € R*. Assume that (C.1)-(C.7) hold. Then
there exists a positive constant 8 not depending on f and M, and for arbitrary
K > 0 there exists a positive constant C depending on M but not on f such that

Ef(S,) = [fdy,,.

< Cw(f,n %) + o(n=-2+0/2),

where

w(f,n ) = fsup(f(x + ) = F(x)]: Iy] < =K )s(x) dx.

The term o(-) depends on f through M only.

“COROLLARY 3.2. Under assumptions (C.1)-(C.7) we have uniformly for con-
vex measurable C C R¥,

P(S, € C) =4, (C) + o(n™C727),
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Under our assumptions,

[oe]
Y,= Y 8¢_,, t=0x1,+2,...,
r=0
where 3 ¢, a > 0 and an integer N, such that V N > N,, ©2_,|6,| < cexp(—aN).
Conditions (C.1)~(C.4) and (C.6) can be easily checked for X,’s defined by (2.3).
We now verify (C.5) for X,’s. Let 8 denote a random variable independent of ¢,,.
Clearly,

sren—i—r + B if Jj=n,

s

0
enj—i—nsj+ﬁ ifj_‘izn,
B ifj—i<nand j>n.

<<
)
]

~

I

Hence
n+m p p
tiy}—isj = snzti(Ain + Binm) + B,
J=n i=1 i=1
where
00 m—i
Ain = Zosren—i—r’ Binm = 208r€r+i+n’ i= 1,...,p.
r= r=

Note that for all i, = 1,..., p, A,, and B;,,, are independent and
Z,=(An+Bip,i=1,...,p) >4 (Z, + Z,,i=1,...,p),

inm?

where Z,, and Z;, are independent and
Cov(Z,,Z;,) = o,_; = Cov(Z, Z,).
Hence the limiting dispersion matrix of Z,,, is positive definite. Thus

n+m
E'|E'exp(it’ Yy Xt)|9j, J#n|

Jj=n—-m

(3.1)
= EIEexp(i(ty,..., t,)enZum + itpirel)le;, J # 1l
(32) < exp(=8)P(||t,mll = d) + P(|it,.]l < d),

where ¢, = (8-, £,)Zpm, tpi1)-

Suppose that ||#|> = ZF,¢7 + ¢2,, > d = d*/1% where 0 <l <1 is to be
chosen. Then P(|t,,|l = d) = P(a'Z,,)? = %), where |ja||=1. Let b;, i=
L,...,(p + 1), be points in R? and r > 0 be such that P(Z;, + Z;, € B(b;, r), V
J=1...,p)>0, V i=1,...,(p+1) and B(b,r) are such that not all
(by, ..., b,,,) lie in any given hyperplane of dimension (p — 1). This is possible
since the dispersion matrix of (Z; + Z,, i = 1,..., p) is positive definite. Choose
! sufficiently small. Then for any a with |la|| =1, {x: (a’x)? < %} does not
intersect at least one of the balls B(b;, r). Hence P((a'Z,,)* = I?) >
min,_,  ,.1P(Z,, € B(b,r)) and liminf of the right side is positive. Thus

.....
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there exist n,, m, large enough and & > 0 such that
P(lltymll = d?) 2 e>0, V|t)|?=d2 n=ny mzm,.
Combining this with (3.2) verifies condition (C.5) for X,’s defined in (2.3).
Further,
" ) 0
lim D|n"12 ) X,| =
o[ £x)= (5 viy)

is positive definite verifying (C.7). Thus Theorem 3.1 and Corollary 3.2 are valid
for ’

n
(3.3) n~Y%2 Y X,, with X,’s as defined in (2.3).

t=1 .

REMARK 3.3. The preceding arguments also show that if conditions (A.1)
and (A.3) hold and ¢, satisfies Cramér’s condition, then the distribution of
n~'%5 (6, — 0) admits an Edgeworth expansion of order o(n~(*~2/2),

Our next task is to derive an Edgeworth expansion for the bootstrapped
version of X,’s. We will derive this expansion only for the case p = 1 to avoid
notational complexity.

Let H*(-) denote the characteristic function of n™'/?L"_,Z*, where Z* is a
certain truncation (as in GH) of X* = (Y;*e*, e — 0,*?). Here 0,** = E*(¢}?).
We omit the explicit definition of Z* since this shall not be used in subsequent
calculations.

LEMMA 34. V |7 < Cn® we have
IDA(Hx(t) — §24(2))l < CQ + B)(1 + [|#15*1)exp(— C||t]|2)n=¢~1/2,

for some e® < 1, and C depends on the bounds of B, (= fourth moment of X )

X i(t) denotes the Fourier transform of Y} ,, the signed measure associated
with the Edgeworth expansion of X *. D* is the usual differential operator with
la] < 6.

This same lemma is proved in GH and hence we skip the proof.
Let

I = {t: Cn® < |t < C\n?%},
L= {t: C\n*? < ||t|| < e~ 'n'/2},

where C| is to be chosen later and 0 < ¢ < 1 is fixed.

LEMMA 3.5. Under (A.1) and (A.2) we have, for almost every sequence
Yy, Yy,... and |a] < 6,

f IDH*(¢)| dt = o(n~12).
tel

2
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PrOOF. A careful look at the proof of Lemma 3.43 of GH shows that it
suffices to show that

E*|E*AX|2¥, j#Jj,/ <1 uniformlyint€ I, and p=1,...,1,

where A% = exp(it'n™'/ 22;;;;;"_,,,2; ). For the definitions of  and j, one can
consult GH. We omit these definitions since they are not used explicitly in our
calculation. But note that the effect of truncation is negligible and it suffices to
deal with ‘

jp+m
itnV2 Y X

J=jp—m

8, = E*|E*exp lef, J * Jpl-

If F* is the distribution of L2 flek ,_,+ X721 m 67 ~17"¢¥, then writing
t] = tin~ V2, t; = t,n~'/2, we have [see (3.1)]

8um= |

Note that as. F* = F, where F is the distribution of Z, + Z,, Z,, Z, iid.
Z, =, T2 0%, and by Lévy’s theorem F'is continuous. Further, F* = F; as.
Since the convergence of F* to F is uniform we have

bum > 8= [

uniformly on compact sets of (¢/, ¢3), i.e., uniformly over ¢ € I,, and by Cramér’s
condition 8 < 1. This proves the lemma. O

dFx(y).

/ exp(itjxy + ityx?) dF*(x)

dF(y) as.

f exp(it{xy + ityx?) dFy(x)

LEMMA 3.6. Assume (A.1) and (A.2) hold. For sufficiently small C,, we have
for almost every sequence Y, Y,,...,

f \D°H*(¢)| dt = o(n"1/2).
tel

1

PROOF. As in Lemma 3.5, it is sufficient to deal with the original variables
instead of truncations. We proceed as in Lemma 3.5 following GH but use a
different estimate for E*|E*AZ|9*, J # Jp| (see Lemma 3.5 for the definition of
A%). We have to deal with

8* = E*|E*exp(it,n 2eX(Ax + BR,) + it,n ™ %e}2)|e¥, j # nl,

where
(<] n+m .
Ar= Y 6ler,, and Br, = Y 6/7'7"%f,
t=0 J=n+1
t, YA LAk
— 2 n 23
8%, = E*|1 - ﬁD(s,’f, eX?)t, + Az E*|(eX, eX?)1I),
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where t;, = (t,(A¥ + B},), t,) and |y| < 1. Thus
E*(JIt.°)

L
&% <E*1——D( e, en )tn +—6nT[.L3n,

nm —

where
pd, = E*|I(ef, ex2)I® = E|(ey, €2)I° as.,

311/2
E*(It)1°) < | E*(e2(Aax + Bo)* + )]

< C[#E*(A} + By,)® + t§] 2

Note that E*(A* + BX,)® - E(Z, + Z,)® as., where Z, and Z, are iid. Z, =,
T ,0%,. Hence, for some constant C, .
EX(It?) e
6n/2 B3p = Cna/z

141>
< CC,— as.
n

’

t,
1- —D( 8*2)tn

1/2
E*{l R CR o (tw(e:,e:z)t,,)z}]

n 2n

E*

Let A(A) and A(A) denote the maximum and minimum eigenvalues of a matrix
A. Note that A(Z,) = AM(Z) > 0 as. and A(Z,) = A(Z) > 0 as.

t:D(e*, ex?)t, |\ E* t,,
( ( ) ) < R(3,) (u I1*)
2n
and arguing as before, the preceding quantity
t 2
CCﬁ a.s.
t,D(e¥, eX)’t, ([
E¥Y—| = A E*
S
It
)\(En)C— a.s.

Combining these estimates and choosing C, sufficiently small,

2
litll

8, <1- y———, for some y > 0 a.s.

( Y||t||2)
< exp| — a.s.
n

A look at the proof of Lemma 3.43 of GH shows that this proves Lemma 3.6. O



BOOTSTRAP IN AUTOREGRESSIONS 1717

Our next lemma is stated in Babu and Singh (1984) and is a modified version
of a lemma in Sweeting (1977).

LEMMA 3.7. Let P and K be probability measures and € be a signed measure
on R*. Let f be a measurable function such that M(f) < oo for some s > 2.
Further, let « = K(x: ||x|| < 1) > L and B = [||x||**?K(dx) < . Then for any
O0<ex<l,

—1/4

Iffd(P— Q)l <(2a-1)"[BQ - a)/a] """ " + BeB

+B[(1 + |%I°)K *(P - Q)| dx

+ sup fw(f’2£,x_y5|Qdy,

[lf| < /4

where
K(dx) = K(e7'dx) and B=9"M,(f)[(1+x|*)(P +|QI) dx,

M,(f) = sup (1 + flall*) I (x)l.
x
Further, we have forany 0 <||x|| < 1,0 <8 <1,

Jw(£,8,% = y)o(y)dy <3 [w(f,8, y)e(y) dy
+CoM,( f )l ~*~** exp( — x| 2).

Combining Lemmas 3.4-3.7, we can say that Theorem 3.1 and Corollary 3.2
hold a.s. for

(3.4) S,=n"Y2Yy X*, fors=3.

To study the accuracy of the bootstrap approximation, we need to compare
two Edgeworth expansions and for which the following lemma is needed. This
lemma is due to Babu and Singh and is essentially a modified version of a lemma
of Bhattacharya and Ghosh (1978). A natural extension of this result to the
multidimensional case is true and will also be used.

LeEmMA 3.8.. Letl=(l,...,1;,) be a vector L = (L;;) be a k X k matrix and
Q be a polynomial in k variables. Let M > max(|V, |, |u; 1, ||, |L; )\, |a,|), where
V)=V, (u;)=V"! and a, are coefficients of Q. Let {l,|>1,>0 and
b, = ([,n*’?)"L. Then there exists a polynomial p in one variable, whose coeffi-

cients are continuous functions of l;, L;;, V,

.j» Ui; and a, such that

ij

1+ n"Y2%Q(z 2)dz
: '/;2:lz+n_l/2z'Lz<u(l'Vl)1/2}( Q( ))(pV( )

= f_uw(l +b,p(7))9(y) dy + o(n™'?).

The o(-) term depends on M and l,.
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We now state and prove our main result.

THEOREM 3.9. Under assumptions (A.1)-(A.3) for a.e. (Y;),
sup|P*(n'/2ZX/%(8x - 6,) < x) — P(n'/23/%(6, - 6) < x)| = o(n"1?2).

ProoF. We first give the proof for the case p = 1. We have an Edgeworth
expansion of n~/A(L7_\Y;* e*,T"_ (e*? — 0*?)) [see (3.4)]. Hence, for a.e. (Y}),

J=17j-1%)>
X
P8y <x) = [T (1407 (3, m)) dOry(5)| = o(n~),
— 00
where p(x, n) denotes a polynomial in x whose coefficients are continuous
functions of the moments of Y* e* and (¢}* — 0,*?) of order 3 or less and

* 2 2: .
Tx = D*(Y* et e12) = 0 V(ex*))

(3.5) sup
x

Also note that by (3.3),
P(S,<x) = [* (1+n7p() d0r(y)| = o(n7),

sup
X
where

I b 0
0 v(e)
and p(y) denotes a polynomial of the same form as p(y, n). Note that for
p=1,2=(1-60)"L3x=1-6>"",
_ Xl*(]‘ _ 0:)_1/2
T 1+ nT%(20X* + X)) + A

/(1 - 62)7V%(8x - 6,)

where
n
FenT Y Y,
t=1
n
X =n"2Y (e} - o}?),
t=1
Az =gt - v2)
Let

B* = {|X*| = clogn}, i=1,2,
By = {n**A¥| > clogn}.

By (34), P(B*) =o(n"'?), i=1,2, as. Also P(B}) = o(n"'/?) as.
On By Bp° N By,

(1-62)7*n'2(6F - 6,) = (VX* + n~V2XVA*X*) (VT 1)~ ?

oo +o(n"12),
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where
—26 -1/2
[ */ * * * n
I'=(1,0), X (X*, X*), A (_1/2 0 )
and

r*=((1—0,3)“ 0

0 V(er?) |

Analogous representation holds for (1 — 82)~/2n'/%(g, — @). Now note that the
moments of (X*,eF, €¥® — 6,*?) (under F,*) converge almost surely to those of
(X;_,¢j, & — 1) by the ergodic theorem and the fact that 6, — 8 a.s. The proof
now follows from this observation and Lemma 3.8.

For p > 1, we need a representation of the form (3.6) and then we can apply
(3.3), (3.4) and the multidimensional version of Lemma 3.8.

Define
Y, e,
- Y, . . 0 0 -0
t = N ’ Zt = : ) B = ( ! p)
I pPXp
Yt—p+1 pXx1 0 pXx1
Clearly, (2.1) is equivalent to
(8.7) Y,=BY,_, +2Z,.
Let
n o~ n . .
A,=n"' LYY, B,=n"' Y Y, Y,
t=1 t=1
This gives
n -~ n . .
(3.8) A —-BB,B =n"'Y 7272/ +2Bn"' Y Y, Z/

Note that 3 = EY,Y,’ and satisfies = = BZB + I*, where I* = ((1) 0'(’)'0). Equa-
tion (3.8) yields

B,-X-B(B,-2)B' =n"t'Y(ZZ;-I*)+2Bn"* ¥ Y,_,Z; + O,(n7"),
t=1 t=1
which gives

Bn—2=G1[ f(z"";— I*) + 2Bn~! 2 ]Gz+0(n‘1)

where G,, G, are independent of n but depend o 0 0,
Let

= (tzzjlxlt,..., Z‘,Xm)-

t=1
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Then
Z?— IY;— IY}: 1

-1
-1/2
n ] n,

n/2(6, - 8) = [
=371+ (B,-3)="!] a2y,

= 2-1[1+ Gl( é (Z2Z; - 1*)

-1
+2Bn' Y 17,_1“;)G32-1] n~2y .

(3.9)

Let
B { m12 E it

Since we have an asymptotic expansion for the distribution of n~1/2%? | X, it
easily follows that

P(B)=o(n""?), i=1,...,p+1.
On ntp= lBic: by (3'9):

chogn} i=1,...,p+ 1.

22X,
nl%(6, - 9) = n-12r7Y
2‘Yp+l,t
(3.10)
ViLV,
+n%2 + o(n~?).
V/LY,

An analogous representation holds for the bootstrapped version. This completes
the proof of Theorem 3.9. O

REMARK 3.10. The assumptions Ee, = 0, Ee? =1 may seem to be too
restrictive. Actually these restrictions were imposed to keep the proofs simpler.
We will sketch how the case Ee, = p, Ee? = 62 can be tackled. We illustrate the

case p = lionly.
The model in this case are
Y,=0Y,_,+e+p,
where (¢,) satisfies (A.1)-(A.3) but Ee? = 62 > 0 and p and o2 are unknown.
Under assumptions (A.1)-(A.3), Edgeworth expansion is valid for the distribu-
tion of

6w L - w), X0 - ), X (7 ),

where a; = EY,, a, = EYYt ) and ay; = EY2.
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Estimates 6, and p, of @ and p are obtained by solving

Z (Y;_ 0ny;—1 _P'n) =0

t=1
and

n
Z Y;—I(Y; - 0ny;—1 - "'n) =0.

t=1

An estimate o2 of ¢” is given by

n
or=n"t YL (Y, -6, ,— P‘n)2~
t=1

Thus the estimates 6,, 1, and o, are all smooth funections of X7_,Y,, ¥7_,Y,Y,
and X7 ,Y;? except for terms which can be neglected.

Thus for a suitable normalizing factor B8, the distribution of n'/28(6, — )
admits an Edgeworth expansion up to o(n~'/2), with the leading term as ®(x),
and the coefficients involved in the polynomial in the second term [which is
O(n~1/2)] are smooth functions of 8, p and o® and of moments of Y, V;Y,_, and
Y;? of order less or equal to 3. B can be explicitly calculated and depends on 6
and p and moments of &,.

The empirical distribution is computed by putting mass 1/n at each ¢, = Y, —
0,Y, , — p, i=1,..., n. Proceeding as in the case p = 0, > = 1, an asymptotic
expansion is valid for the bootstrapped version of (3.11), which yields an
expansion of order o(n~'/2) for the distribution of n'/?8,(6;* — 6,), where B, is
the variance-normalizing factor, the bootstrap equivalent of 8. The leading term
of this expansion is also ®(x) and the polynomial involved in the second term is
of the same form as that in the expansion of n!/?8(6, — 6). By the ergodic
theorem, the empirical moments of Y, Y,Y,_, and Y? converge to the true
moments a.s., and hence 6, p, and o, are all strongly consistent estimators of 4,
i and o, respectively. Thus, the difference between the two Edgeworth expan-
sions is o(n~1?) as.

REMARK 3.11. The assumption of stationarity of (Y;) was made since the
calculations (e.g., of =) in this case are simpler. The results hold even if this
assumption is dropped. This is fairly obvious, since the asymptotic structure
does not change and the results of GH go through.

It would be interesting to see how the bootstrap performs in small samples.
The accuracy is expected to decrease as the parameter values move toward the
boundary. The absence of stationarity will also decrease the accuracy in small
samples. See Chatterjee (1985) for some simulation studies.

It will also be interesting to study the bootstrap in other complicated
time-series models.
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