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ESTIMATION OF THE MIXING DISTRIBUTION FOR A
NORMAL MEAN WITH APPLICATIONS TO THE COMPOUND
DECISION PROBLEM!

By Davip EDELMAN
Columbia University

A procedure for estimating the mixing distribution for a normal mean is
presented. The estimator is shown to be consistent regardless of the mixing
distribution, and it is suggested that the estimation techniques may be
applied in a similar manner to estimate mixing distributions for a wide class
of location parameter families. Implied marginal density and derivative
estimates for the normal case are shown to be consistent, converging at
near-optimal rates. In addition, empirical Bayes rules for the quadratic loss
mean estimation problem which are derived from the estimated mixing
distributions are shown to be asymptotically optimal in average compound
risk and Bayes risk (if it is defined), provided the means are assumed to lie
within a fixed range. A brief discussion of computational issues related to this
estimation procedure is also included, along with some small-sample simula-
tion results for the compound decision problem.

1. Introduction. In his original paper on empirical Bayes, Robbins (1956)
presented an open problem [see also Robbins (1950)]:

For (X, 0,),...,(X,, 6,) independent, indentically distributed 2-vectors, with
the conditional distribution of X; given §; normal with mean 6, and variance 1,
and (6,,...,0,) being regarded as a random sample from some mixing distribu-
tion with distribution function G(8), is it possible to estimate G(0) in general?

Following the results of Kiefer and Wolfowitz (1956), Laird (1978), Lindsay
(1983a, b) and others have explored the properties of maximum likelihood
estimators for the general problem of estimating a mixing distribution, but the
complicated nature of the resulting likelihood function renders this approach
somewhat involved numerically for problems of large sample size. Robbins (1964)
proposed estimation of a mixing distribution by finding the mixture which is
closest to the empirical distribution function in the sense of supreme distance
and established strong convergence of the resulting estimator, but did not
establish any convergence rate for it. Convergence rates for various estimation
methods have been established recently by Ritov (1987) and others.

For the related mean estimation problem, Singh (1979) has proposed estima-
tors based on kernel techniques which have asymptotically optimal mean-squared
error for the Bayes problem (which therefore should be asymptotically optimal
for the compound decision problem as well), though (aside from being compli-
cated) no one of these estimators can have convergence rate which is arbitrarily
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close to the optimal. George (1986) has presented multiple shrinkage estimators
having minimax compound squared-error loss, but these cannot be asymptoti-
cally optimal for the Bayes problem unless the prior distribution is a mixture of
a (prespecified) finite number of normal distributions with a particular config-
uration.

In what follows, a simple procedure will be presented for estimating the
empirical distribution function of a set of normal means which will be shown to
be consistent for any sequence of parameters, with a uniform bound given (in
terms of the sample size) for the convergence of the integrated mean-squared
error of estimation. While the proof of consistency will not rely on the assump-
tion of an underlying distribution generating the means, the estimator will be
shown to converge to a fixed mixing distribution if one exists. It will be argued
that it is possible to use the same methods to estimate mixing distributions for a
wide class of location families, and that the convergence proofs are virtually
identical to those for the normal case. Next, it will be shown that, for normal
mixtures, consistent estimation of a mixing distribution leads to marginal den-
sity and derivative estimates which are consistent (converging at near-optimal
rates), and to empirical Bayes rules which are asymptotically optimal in average
compound risk in some cases.

2. Some convergence theorems. The results of this section pertain to an
estimator of an empirical distribution function of normal means, and the com-
parison of functionals of the estimator to the corresponding functionals of the
true empirical distribution function.

The estimation procedure to be explored is based on the minimization of the
integral-squared distance between the empirical distribution function of observa-
tions of n normal variables and a generic n-mixture of normal cumulative
distribution functions. While all of the results of this section pertain to this
particular estimation procedure, several possible variations will be discussed
subsequently.

Let X,, X,,..., X, be independent random variables with cumulative distri-
bution functions ®(x, — ,), ®(x, — 6,),..., ®(x, — 0,), with ®(z) =
/2 e 72 dt/ V2, and let E,(x) and G,(6) denote the empirical distribution
functions of X, X,,..., X, and 8,,0,,..., 8,, respectively.

THEOREM:1. There exists § = (,,0,,...,48,) satisfying

— o0

n

n ‘ 2 o n 2
(5 Eole-6) - 5] ars "2 L 06-0) - B @) &
J=1 -~ M oy
for all 8’ € R" and

n—oo

lim Ef_°° (G(0) - G,(6))"db =0,

where G.(-) is the empirical distribution function of b,...,0,
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Proor. Let (x,, x,,...,x,) be a realization of (X, X,,..., X,,), with order
statistics x 3, Xg),- - > X(n)» and let 6, 0),---, 0., denote the order statistics of
0., 0,,...,0,. Then since

I {iéd»(x -6, - En(x)}2dx

—wl\ P

increases without bound as §,) —» —oo or as §,, — oo, the problem may be
reduced to finding the minimum of a continuous function over a compact set,
and therefore the integral must assume a minimum.

Henceforth it will be assumed that § minimizes the integral. By Plancherel’s
identity [Seeley (1966)]

f:o{d"(”) ~G,(6))°d6 = % f_wwltlfdn(t) - xba,,(t)l2%dt,

where y;(-) and Yg(-) denote the characteristic functions of G,(-) and G,(-),
respectively.
Next,

© 1 . T 1 e o 4
S e l®) — va (00 it < e [ 10a(t) ~yo(OF e dt+ 2 5,

which is less than or equal to

1 8
™ (0 () — 2 ¢ e
e[ Wa(t) ~va (BN ze " dt+ 7,

which [setting F,(x;a) = (1/n)L7®(x — a,)] is equal to

o . 8
271eT2f {Fn(x; 0) — F(x; 0)}2dx + T

the latter following from the fact that x]/dn(t)e"z/ 2 and szn(t)e_’z/ 2 are the
characteristic functions of F,(x; 0) and F,(x;0), respectively. Next, since
(a + b)? < 2a? + 202,

[ (B 0) - F(x; )" s
<2f” (F(x:8) - B(x)) dx + 2[" {F(x;0) - E,(x))’ dr,
which is less tha°:1 or equal to )
4[00 (F(x;8) — E (%)} dx
(from the definition of 8). He:ce
Ef:o{Fn(x; 8) — F(x; 0)}2dx < 4Ef°°°o{Fn(x; 0) — E,(x))° dx,

the latter equaling

4 Lo 4/2
;f—w(l)(x){l - 0(x)}dr < —=,
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and if T = \/alog n for some a < 1,

© . 2 42 4
E/_oo{Gn(a) - Gn(o)} df < nl—a‘/; + 'ﬂ\/&logn »

which tends to 0 as n = 0. O

It should be noted that this proof establishes convergence of the integral at a
rate of 1/y/logn as n — oo. '

COROLLARY 1 (Convergence in measure).
E{G,(8) - G,(6))" > 4 0

[ for any e > O the Lebesgue measure of {8: E{G(8) — G(8))* > ¢} tends to 0
as n - 00.]

COROLLARY 2. If 0,,...,0, may be regarded as a random sample from a
distribution G(6) with density g(0), bounded and continuous on (— 0, ), and
[1601g(60) d8 < M, some M < o, then ‘

lim E[sup (G.(8) - G(0)}2] =0.

n—oo ]

ProoF. First note that
[°° E{G(0) - G(6))" db

< 2[_°° E{G,(6) - G,(6))"d6 + 2f_°° E{G,(6) - G(8)}*d8

- 2[_°° E{G,(6) - G,(6))" d6 + %f_w G(6){1 - G(0)} db.

Integration by parts yields
f:’G(a)u ~ G(8)) db < f0°°{1 ~ G(6)}db = j0°°ag(0) do
and )
j_"wa(o)u ~G(8))db < j_"wa(a) do = f_"w(—o)g(a) de,
f_°° G(6){1 - G(8)) db < f_°° 101g(8) d6 < M,
_ implying that
1 1

f:oE{G’,,(G) ~G(0)) dd = o( Torn

logn
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Next, let y = sup g(8). If G,(8,) > G(8,), then for 6 > 6,

(G.(8) - G(8)) " = {G(8) — G(8,) — v(6 - 6)}”
[where (a)*= a if @ > 0 and (a)*= 0 otherwise] and

J”[(6.00) - a(0)) [ a0 = [7[(6.(0) - 6(8) ~ (6 - )} "] a0

1 . 3
= g{Gn(ﬂo) - G(6,)}".
Similarly, if G,(6,) < G(8,), then for 8 < 6,
~ ~ +
(G(8) - G(8)) = {G(6,) — G.(8,) — Y16 — 6]}

and

[” [{e@) - é o)) as= [ [{6(a) —G6) — 6 -6)) "] a0

1 . 3
= 3—Y{G(00) - Gn(ao)} .
Therefore,
sup|G,(6) = G(O)° < 3 [ (Gi(0) - G(0)) " as

so that

o a] _ 1
E|suplC,(0) - G(0) ] - o(m).

This completes the proof of the corollary. O

The previous theorem may be generalized to include a broad class of location
mixtures by replacing the function ®(-) by any distribution function H(-) which
is strictly increasing on (— oo, 0c0), has finite first moment, and which has
characteristic function with strictly positive modulus, via a virtually identical
proof. Since the results to follow are more difficult to extend, this generalization
will not be pursued further here.

In what follows, it will be shown that the estimation procedure proposed in
Theorem 1 may be used to produce estimators of the distribution function
F(x; 8) and its derivatives with respect to x, F{™(x;0), with near-optimal
convergence rates.

THEOREM 2. For any nonnegative integer m and constant a € (0,1) (a €
(0,1] for m = 0) there exists constants C,, , and D, , such that for any sequence
0,,0,,...,

a

o " C
Ef {F{m™(x; 8) — F™ (x5 0)}2dx < ’":

’
a

" and

m,a
ne/

E|F{™(x; 8) — F™(x; 8)| <
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Proor. By Plancherel’s identity,

*® m a m 2 1 et m—

Ef {Fm(x:8) - F(x;0)) de = —E f_wwﬂ(t) — ¥, (D)2 2 dt,

which is less than
0 4 0
2m .8 _ F . 2 _ 2m—2,—t2
T E[_w{p;,(x,e) (x;0)) " dx + wa t2m=%e~#

[noting that |yz(¢) — x,b,—,.n(t)|2 < 4e 7], Ihtegration by parts shows this to be
equal to

% - 2 2 2
T“"”Ef {F(x;8) — F,(x; 0)}2dx + —W—T2'”‘3e”T + O(T?m %~ T")

(as T — o0) and, setting T' = y/log n and remembering\that
% N 9 42
E/_M{Fn(x; 0) — F(x;0)} dx < p

(which was established in the proof of Theorem 1), the relation

(log n)m_3/2}

Efio{F;f"')(x; §) — F™(x;0)) dx = b{(l—og:—)i} + o{ .

follows. This completes the proof of the first result.
The second result may be arrived at in a similar fashion. First, the Fourier
inversion formula implies that

- 1 P
E|F™ (2 8) = F™(x; 0) < o—E [ W (¢) = s ()] 167" at,
which is less than or equal to
1 T 1 2 o
—_—Tm . — —_ _ m—1,—t*/2
an T"E[ e (&) = gr (D1 51de + = [“1mte= 12,
which (by Schwarz’s inequality and integration by parts) is less than or equal to

1 1 2
2l '"“[sz C B () —ve (02) dt] + 0(Tm2%-T/2),

which (again by Schwarz’s inequality) in turn is less than or equal to

1 1 ;0 1/2
__rmpm+1] _ 9 et T2
5T {Tf_ooEItPﬁn(t) ¥r, (2] dt} + 0(Tm%"/2)

1 1 ;e - 1/2 .

= E;TMH[T/_OOE{F"(JC; 0) — F,(x; 0)}2dx] +O(T™ 2% T°/?)
Tm+1/2

_ ( -

) +0(Tm % T/2).
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Again taking T = \/logn, convergence at rate n~*/? is established for any
a€(0,1).0

COROLLARY. Under the same hypotheses as in Theorem 2 if, in ad-
dition, 0,,...,0, represents a random sample from some distribution G with
[16) dG(8) < M, some M < oo, then for any nonnegative integer m and constant
a <1 (a <1 for m = 0) there exist constants C}, , and D,, , such that

. < Cr
E[” {Fm(x;8) - F§(x))" dx < =
— 00

na

and

’

- D;, .
E|F{™(x;8) — Ff™(x)] < —05
[where Fy(x) = [®(x — 0) dG(0)]. )

The proofs for this special case are nearly identical to those of the theorem
[with F,(x; 8) replaced by Fi(x)], and will be omitted.

The results to follow establish the asymptotic optimality (in the sense of
minimum average compound risk) of a sequence of decision functions Z,(-) (for
estimation of a collection of normal means) which are Bayes rules with respect to
G, the estimator of G, (the empirical distribution function of the population of
true means), and the quadratic loss function, under the assumption that the
means lie within a fixed interval. Before proceeding, it should be emphasized
that the function G, is of paramount importance in the mean estimation
problem, even if the sequence of means is a random sample from a distribution
G, since knowledge of G,, reduces the problem to one of matching a population of
n observations x,,..., x, with the n mass points of G,. [The author (1983) refers
to this as the permutation Bayes problem, since, in the absence of any other
information, all n! matchings may be taken as equally likely.] In this case, G
furnishes no additional information, and hence may be disregarded. It is for this
reason that the results presented in this paper relate primarily to G, instead of
G, although statements about G do appear in the corollaries.

Let t(X) = (¢,X), ..., t,(X)) be a decision rule for estimation of § = (6,,...,6,)
from X = (X,,..., X,), define the average quadratic compound risk for estimat-
ing 0 by t to be

17 9
R(t,G,) = — Y E{t;(X) -6},
j=1
and let % be the class of decision rules for estimation of 8 from X which are of
the form
(8(X), to(X), ..., t,(X)) = (X)), U X5), ..., (X,)),

some {(-). Then for any t(-) € &, the average (quadratic) compound risk for
estimating 8 = (4,,...,0,) is given by

R(G,) = éE{tj(X) —g) = % [T (olx) - 6) 0(x - 6) .

1
n j=1"—0
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which may be written as

J7 [T {tx) - 8)°6(x - 6) dxdG,(8),
where G, () is the empirical distribution function of 8. The optimal ¢(-) for this
risk function is given by

L [286(x—0)dG(0) | EO(x;0)
)= T o0y do0) C T B 0)”

The following theorem pertains to the decision function
%n(x) = (fn( Xl)’ T Zn( Xn))’
where
. F2(x; )
W) =5 ()

(§ as defined in Theorem 1), and establishes that it may be used as an
approximation to t*(X), with the result that the net increase in risk R(t; G,,) for
using t,(-) instead of t*(-) tends to 0 as n — 0, assuming the sequence of means
to be bounded.

THEOREM 3. For all sequences 0,,0,,... with |6, < M, all j, some M < oo,
and 0 constrained to lie within [ — M, M 1", every j,

lim {R(t,; G,) — R(t};G,)} = 0.

Proor. First,

R, G,) = ‘,1; i E{i,(X;) - 6}’
- % é(E{f,,(Xj) - t¥(x,))"
+2E[{7(X)) - ex(X)}{ex(X,) - 0] + B{ex(X;) - 01'}2)
< % f [E|t"n(Xj) —tX(X;)I(2M + 2 - 2M) + E{t*(X,) — oj}“’]

Jj=1

1z .
5 £ o () - (%) |+ Rz )

Next, for any a € (0,3) let c(a) = —M + /2alogn and let AP(a) =
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{IX;| < c,(@)}. Then

~ 3 BIE(X,) - £2(X)

= -’1; Z:: [ E|t (X;) —tx(X; )IIAw(a)} {Elfn(Xj) - t:(Xj)VZs.f’(a)}]
<> 3|k [ up 1) ~ 1,2} + 2 (AP
nj=11 ‘lis=e@

<E sw [7,(x) — ) + 4M[1 - 0{c,(a) - M)])

Jx| < cp(e@)
[since Pr(|X;| > x) < 2(1 — ®(x — M)}, each j], so"
1 2 N N
— Y BIf(X,) - 2(X) < B{ sup 1E,(x) - t,(x)l} + o(1).
noia %< (@)
Henceforth, it will be assumed that n is large enough that —M + {/2alogn > 0.
Then for |x| < —M + 2alogn
1 2
W < V2w exp{%(\/2alogn) } = 0(n*)
as n — oo, and by Theorem 2, for |x| < —M + \/2alogn,
FP(x;0) + (F(x;8) - F(; 0))
FO(x; 8) — FV(x;6) }

£n(x) =

O x+
oo+

_ EP(x;8) + 0,(n7%)
- EO(x;0){1 + o (n")}’

any a; < 3 and a, < } — @, implying
| E(x0) |
since | =——~———| < ¢, (@)

FD(x; 0)
that for0 <, < land0<ay,< i —a,

sup [,(x) ~ t3(x)] = o,{n"™")(log n)'*} = 0,(1)

] < (@)

as n — 0. Since convergence in probability implies L,-convergence for bounded
_random variables [remembering that sup,|f,(x) — t¥(x)| < 2M] we have that

B sup [£,(x) = t2(x)} = o(1)

] < cp(a)
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as n = oo. The net result is that

S|~

n

L Ef(X;) - tX(X;)| = o(1)
Jj=1
as n — oo, which completes the proof. O

COROLLARY. If, in addition to the assumptions to the previous theorem, the
sequence may be regarded as a random sample from a distribution function G
with finite absolute first moment, and t¥(-) denotes the Bayes rule for estimation
of 8 with respect to G, then

lim {R(f,;G) — R(¢4;G)} = 0.

This result follows from the corollary of Theorem 2 in the same manner that
Theorem 3 follows from Theorem 2.

Thus, it has been established that the expected difference between the risk for
f, and the optimal tends to 0, provided that the sequence 6, 6,,... remains
bounded by some number M. Edelman (1983) has established a lower bound of
essentially 1/ yn for the rate of convergence of a similar risk function under
these same conditions (where n is the number of problems compounded), al-
though Theorem 2 implies that for any fixed x, E{f,(x) — t}(x)}* = o(n™®),
every a < 1, suggesting that the actual rate of convergence of the risk function
might be closer to 1/n. The simulation results seem to be consistent with this
conjecture.

3. Computation and performance of G. As in nearly all minimization
problems, the computation procedure to be presented here for evaluation of 0
involves choice of an initial estimate, followed by iteration to a local minimum.
In this case, the Newton—-Raphson algorithm is particularly simple to employ,
the derivatives being simple to calculate and the data set being a sensible and
convenient starting point. Uniqueness may be checked by verifying that various
starting values lead to the same local minimum. (It should be mentioned,
however, that it is not possible to determine with certainty whether or not a
particular local minimum is truly a global minimum in this manner.) Simulation
examples seem to suggest that a local minimum may generally be attained in this
fashion within three steps, but for problems of sample size n > 50, other search
methods not requiring inversion of an n X n matrix (such as gradient search)
might be expected to be more efficient computationally. Also, the author has yet
to encounter an example in which iteration from different starting points has led
to distinct local minima.

The following tables summarize the results of several simulation studies
performed in order to investigate the small-sample properties of the estimator
£-), which the author (1983) refers to as the empirical permutation Bayes
estimator, as compared to the properties of the permutation Bayes estimator
t*(+) (so named because it is Bayes with respect to the prior distribution
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TABLE 1
Simulated mean-squared error for estimation of normal means

Normal prior, n = 10

Og 0 1 2

t* 0.00(0.00) 0.42(0.02) 0.64(0.03)
¢ 0.20(0.02) 0.62(0.02) 0.84(0.03)
£ 0.24(0.02) -~ 0.75(0.03) 1.0(0.03)

resulting from knowledge of the population of means without the knowledge of
the correspondence between means and observations), and the linear empirical
Bayes estimator .

_ 1)" _ _ 1z
4x) =X+ (1- | (x-X)., x-1ix,
Sx n,
= — ¥ (x,-X)
X n—-15""

[(-)* again denoting the positive part of its argument]. [For a discussion of this
estimator see Robbins (1983) and James and Stein (1958).]

For each column in Table 1 the means 6,,...,6,, have been simulated as
normal variables with standard deviation oy, and then normal errors (indepen-
dent with mean 0 and variance 1) were added to the means to produce the
observations x,,..., x,,. [For a discussion of generation methods and seed num-
bers, see Edelman (1983).] In each case, the average squared error for estimation
of the mean is given, along with one standard error in parentheses. Table 2 is of
the same format, with sample size n = 20.

Tables 3 and 4 are of the same format as Tables 1 and 2, but refer to the
example in which the means are generated according to a symmetric two-point
mixing distribution with standard deviation o.

The most important features to note are the fact that for a normal mixing
distribution #, does not appear to perform too much worse than the linear
empirical Bayes estimator (which is obviously the most desirable if the mixing

1.

TABLE 2
Simulated mean-squared error for estimation of normal means

Normal prior, n = 20

[N 0 : 1 2
ty 0.00(0.00) 0.48(0.02) 0.71(0.03)
t, 0.09(0.01) 0.60(0.02) 0.82(0.03)

H 0.15(0.02) 0.65(0.02) 0.93(0.03)
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TABLE 3
Simulated mean-squared error for estimation of normal means

Two-point prior, n = 10

Oy 0 1 2

tx 0.00(0.00) 0.42(0.02) 0.23(0.04)

t, 0.20(0.02) 0.68(0.02) 0.88(0.03)

t, 0.24(0.02) . 0.80(0.03) 0.65(0.04)
TABLE 4

Simulated mean-squared error for estimation of normal means

Two-point prior, n = 20

Oy 0 1 2

tx 0.00(0.00) 0.43(0.02) 0.25(0.04)
¢ 0.09(0.01) 0.57(0.02) 0.83(0.03)
£ 0.15(0.02) 065(0.02) 0.55(0.04)

distribution is known to be normal), but outperforms this estimator as n
increases if the mixing distribution is two-point (particularly if the two modes
are far apart). This suggests that unless there is particular reason to suspect a
normal mixing distribution (or the sample size is very small), the empirical
permutation Bayes estimator £, might be preferable in practice.

4. Discussion. Edelman (1983) has explored the possibility of estimating
G,(0) by minimizing the weighted integral-squared distance between the empiri-
cal distribution of observations and a normal mixture, for a variety of weight
functions, but it appears that changing the weight function does not noticeably
improve the convergence properties. For this reason, and in light of the particu-
larly simple form of the minimization problem for the unweighted case, the
results for the weighted case are not presented here.

It is also worth noting that all of the previous results for this problem rely on
the assumption that the sequence of means be a random sample (so that G,
converges), whereas the main results presented here do not require this assump-
tion.

For the quadratjc loss estimation problem, the solution presented here will be
asymptotically subminimax [in the sense of Robbins (1951)] for bounded se-
quences 6,,0,,.... Specifically, if t, is any sequence of decision rules for
estimating the mean of a multivariate normal distribution, then

1 n 1 n
im  sup —YE(Z(X)-6)'< lm sup —YE(¢,(X)-6)
n—oo {{6): 161<M} Tt 1 n—oo {{6):16;<M} 0 1
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and for some sequence 6., 6,,...,

12 12
im — Y E(,(X;) - 0i)2 < lim — ZE(tn,i(X) - 0i)2~
n—oo N 1 n—oo N 1
While simulation results seem to suggest that the average mean-squared error of
f, is never much greater than 1, this point has not been investigated thoroughly,
and deserves further study.
Also, simulation results seem to suggest that the conclusion of Theorem 3 may

hold under a much broader class of mean sequences 8., 6,,..., such as those in
which
;Z(Gi -8) <M, someM < o0,all n,
1

and that the rate of convergence of the average compound risk to the optimal
may be inversely proportional to the sample size.

At any rate, the estimator presented here [aside from being much simpler
than those of Singh (1979), George (1986) and others] has been shown to be
asymptotically optimal for both the compound decision problem and the Bayes
problem [see Edelman (1983)], with risk which appears to converge at a near-
optimal rate, so that there might be some reason to prefer it in practice.

It is hoped that the estimation methods discussed here may be applicable to a
wide variety of problems involving mixing distributions and that, in particular,
these methods may lead to an advance in the general theory of empirical Bayes
estimation.
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