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WEIGHTED LEAST SQUARES ESTIMATORS ON THE
FREQUENCY DOMAIN FOR THE PARAMETERS
OF A TIME SERIES!

BY SHEAN-TsoNG CHIU

Rice University

A procedure for estimating the parameters of a time series is proposed.
_The estimate minimizes a criterion function which is the weighted sum of
squares of the distances between the periodogram and the spectrum of the
series. Under regularity conditions, the estimate is shown to be strongly
consistent. The asymptotic distribution of the estimate is also obtained. It is
shown that, for a Gaussian process, an asymptotically efficient estimate can
be obtained by using an iteratively reweighted procedure.

1. Introduction. We consider a stationary time series X(¢), t =0, +1,...,
with mean zero and autocovariance function c¢(u) = E[ X(¢£)X(¢ + u)]. When the
autocovariance function satisfies

o0

L le(u)] < oo,

u=-—00

the spectral density function of the series X(¢) is defined by

oo

f(N) =@m)7" ¥ c(u)exp(~itu).

u=-—o0
This relation can be inverted to obtain the representation

e(u) = /W"exp(iu)\)f()\)d)\.

In this paper, we are interested in the situations in which the spectrum of the
series depends on some unknown parameters. Here are some examples:
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(15) 0 = Srem( - 53

o2 i\ igh
|1+ be™ + -+ +be'?

27 |1+ ae? + - +aePM?

(1.4) f(A) = Bzexp(

(1.6) f(A) =

Models (1.1) and (1.2) were used in Aki (1967) to model the spectra of far field
body-wave displacements of earthquakes. The parameter A, is the corner
frequency and @, is proportional to seismic moment. Seismologists are very
interested in estimating the parameters A, and §,, which are important in the
study of the source properties of earthquakes [cf. Aki and Richards (1980), pages
819-825]. Slutsky (1937) used model (1.3) in studies of economic time series.
Model (1.4) has been used by Lumley and Panofsky (1964) for atomospheric
turbulence and by Whittle (1962) for agricultural spatial series. Pierson and
Moskowitz (1964) proposed (1.5) as the spectrum of ocean waves caused by
winds. The last example (1.6) is the spectrum of an autoregressive moving-
average process of order (p,q) [ARMA(p, q)]. We assume the equation
1+az+ -+ +a,z? =0 has all its roots outside the unit circle, otherwise
the series will not be stationary. However, we do not assume the equation
1+bz+ -+ +b,27=0 has all its roots outside the unit circle. The latter
condition is required in many papers. In the following discussion, we let f(A, 6,)
[or f(A)] represent the spectrum of the series X(¢) and we are interested in
estimating the parameter @,.

The criterion function used in this paper is based on the periodogram. The
periodogram at frequency A of a series X(¢) is defined as

1
I(\) = mdg)(’\)dg)(—}\),

where d{f(\) is the finite Fourier transform of the series X(¢),

AP0 = T X(t)exp(~iAe).

The motivation of the frequency domain approach is from the observation that
under some mild conditions, the periodogram ordinates of a series X(¢) on the
Fourier frequencies 0 <A; = 27j/T < 7 are asymptotically independently dis-
tributed according to an exponential distribution with mean f(A ;) [cf. Brillinger
(1975)]. Therefore, an “approximate maximum likelihood estimator” can be
obtained by finding the 8 that maximizes the function

(1.7) L(6) = —ZA:log[f()\,")] - {:I(X)/f()\,ﬁ),

where the summation is over the Fourier frequencies in (—, 7) — {0}. Unless
indicated otherwise, we use this convention throughout this paper. The esti-
mates which maximize L(0) were studied in Bloomfield (1973), Hannan (1973),
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Whittle (1961), Dzhaparidze (1974), Davies (1973), Robinson (1978) and
Ibragimov (1967). The estimates based on the periodogram in a finite union of
intervals were considered in Rice (1979). Under various conditions, the estimates
were shown to be consistent and asymptotically normal. For Gaussian processes,
the estimates were also shown to be asymptotically efficient. A similar estima-
tion procedure was proposed by Taniguchi (1981), who considered the estimates
which minimize the distance between the spectrum and the smoothed periodo-
grams.

In the following sections, we study the properties of the weighted least
squares estimate which minimizes the criterion function

(1.8) Qr(0) = ;Mx)lf(x,e) - IV~

We also show that, by using an iteratively reweighted procedure [cf. Green
(1984)], we can obtain an estimate which has the same asymptotic covariance
matrix as that for the approximate maximum likelihood estimate.

The frequency domain approach has several advantages:

1. Since the power spectrum of a series is usually a simple function of the
parameters, it is natural to work with the spectrum directly. In general, the
criterion functions defined on frequency domain are much easier to handle,
both numerically and theoretically, than the objective functions defined on
time domain.

2. A parametric model is often used as an approximation, and the approximation
is usually good only in certain frequency bands. If we are only interested in
the properties of the processes in these bands, we might not want to include
the information contained in the other bands to estimate the parameter. This
can be done easily by excluding the periodogram in some bands [cf. Rice
(1979)].

In addition, the weighted least squares estimate has some other advantages:

1. Due to the availability of various least squares algorithms, it is easy to
implement the procedure [see Green (1984)].

2. Sometimes, it might be desirable to just weight some periodogram ordinates
less instead of excluding them completely.

3. The approximate maximum likelihood procedure cannot deal with the cases
where f(A,8,) vanishes at some A (for example, moving-average processes
with some roots on the unit circle, or in the case that the energy in some
frequency bands is filtered out). The weighted least squares procedure does
not have this difficulty.

4. Analogous to the robust procedures for independent observations [see Green
(1984) and references therein], we could get an estimate resistant to the
presence of peaks (corresponding to periodic components, such as seasonal
effect) in the series. Therefore, it is possible to estimate the spectrum of the
deseasoned series without removing the seasonal trend from the series.

The last point needs more detailed study which will appear in future research.
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2. Strong consistency. We are interested in the series X(¢), ¢ = 0, +1
which satisfies Assumption 1.

goeeey

ASSUMPTION 1(k). X(t) is a stationary series with cumulants
cnlty, Ugy ooy uy_y) = cam{X(t + uy),..., X(¢ + u,_y), X(2)).

The cumulants satisfy

oo

Z (1 + lujl)lch(ul’“" uh—l)l <

Upyeooy Up_1=—00

for j=1,...,h—1and h=2,3,..., k.

Under Assumption 1, X(¢) has Ath order spectrum f(A,,...,A,_,) with
bounded and uniformly continuous derivatives [cf. Brillinger (1975), page 27].

Since the second-order properties of the series are often expressed in terms of
its spectrum, it is more convenient to check whether X[1 + |u|]|c(u)| < o or not
by inspecting the spectrum. A sufficient condition is given in Theorem 1. The
proofs of this and other theorems are given in Section 5. Theorem 1 is a rather
direct consequence of results from trigonometric series [cf. Zygmund (1959), page
241].

THEOREM 1. Suppose X(t) is stationary and has spectrum f(\) with a
bounded and uniformly continuous derivative f'(\) which satisfies a Lipschitz
condition of order a > 0. Then ¥[1 + |u|]lc(u)| < oo, where c(u) = c,(u) is the
autocovariance function of the series.

All of the examples except (1.4) given in Section 1 satisfy the conditions of
Theorem 1. The spectrum of example (1.4) is not differentiable at A = 0, and the
autocovariance function is of order u~2 [see Robinson (1978) and Whittle
(1962)]; thus, Assumption 1 is not satisfied either. For situations similar to (1.4),
we could filter the series to make the spectrum of the filtered series satisfy the
conditions in Theorem 1. That is, we can use the filter to smooth the singular
points of the spectrum. Of course, we are not able to do this when the singular
points depend on unknown parameters.

We now establish two theorems which are of some independent interest and
are more general than the results required to prove the asymptotic properties of
the weighted least squares estimates.

THEOREM 2. Let {(\) be a continuous function on [ —m, w]. If X(t) satisfies
Assumption 1(4k), then

(2.1) Tli_{r;o%;zp(k)lk(k) = %ﬁp(x);k(x)dx almost surely,

for k > 1. Here f(\) is the (second order cumulant) spectrum of X(t).
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The integral in (2.1) is from —# to 7. Unless indicated otherwise, we use this
convention throughout this paper. Theorem 2 can be easily extended to the
following results.

COROLLARY 1. Suppose () and X(t) satisfy the conditions in Theorem 2,
and let ¢(A) = 1,(A)Y(A), where 1,(N) is the indicator function of a set
A C (—m, w), with A a finite union of intervals. Then, for k > 1,

1 k!
P B(N) = — k
‘ 7!1m T E}\ o(A)I*(N) o fq)()\)f (A) d\  almost surely.

COROLLARY 2. Suppose ¢(X, 0) = 1,(A\)¥(X, 0), where (X, 8) is uniformly
continuous on (\,0) € [—m, 7] X ©. Also suppose X(t) satisfies Assumption 1
(2k). Then, fork > 1,

1 k!
s k _ k
1]1_1,130 T§¢()\,0)I A) or fcp()\,ﬂ)f (X)) d\  almost surely,
and the convergence is uniform over 0.

For the case k = 1, results similar to Corollaries 1 and 2 (also allowing, in
effect, for omission of frequencies) are in Theorem 1 of Robinson (1976). The
results of Theorem 5.10.1 of Brillinger (1975) are also of interest.

The asymptotic distributions of the variables in Corollary 1 are given in
Theorem 3.

THEOREM 3. Suppose ¢(\) satisfies the condition in Corollary 1 and X(t)
satisfies Assumption 1(0). Then, as T — o,

1 X k! X ,
\/T[T§¢()\)I (\) - Equ()\)f ()\)d)\] - N(0,07),
where
20} = [(20)1 = (R]{ [[#0) + (V) e(~N)] () A}

(2.2) +k2(k!)2ff¢(>‘1)¢(>‘2)f4()\1’ —AnA,)

XFEHA) FA7HR,) dA, d,.

REMARK 1. For series with f(A;, Ay, A3) =0, such as in the case of
Gaussian processes, the second term of (2.2) vanishes, and the asymptotic
distribution is the same as the one in which I(A ;) are true independent variables.

REMARK 2. For Gaussian processes, Taniguchi (1980) studied functions of a
form more general than the power functions we consider here and obtained
results similar to Theorems 2 and 3.
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In proving the theorem concerning the strong consistency of the weighted
least squares estimates, we need assumptions about ®, f(A,#) and the weighting
function ¢(A).

ASSUMPTION 2. f(A,0) is continuous on (A,0) €[—7,7] X © and O is a
compact set in R

AssuMPTION 3. The weighting function ¢(A) = 1,(A)¢(A) is symmetric,
where ¢(A) is a positive continuous function on [—, 7], and for all  + @,

Jo ML F(A, 8) = f(A, 8)]>dA > 0.

Assumption 3 requires that, on the support of ¢(A), f(A,8,) is different from
f(A,0), 8 # 6. From Corollaries 1 and 2, the strong consistency of the weighted
estimate can be established.

THEOREM 4. Under Assumptions 1(4) to 3, the estimate § which minimizes
Qr(0) of (1.8) converges to 0, almost surely.

3. Asymptotic distribution. We now derive the asymptotic distribution of
the weighted least squares estimate. In addition to the assumptions in the last
section, we need some more assumptions.

ASSUMPTION 4. 6, is an interior point of ©.

AsSUMPTION 5. In a neighborhood of 6, f(A,0) is twice differentiable with
respect to 0 and the derivatives are continuous in A and 6.

The asymptotic covariance matrix of the estimate depends on the matrix
A(6y). The jkth element of A(8) is

(3.1) a;(8) = 27) 7" [6(M)g, (X, 0)g,(,0) dA,
where g;(X,0) = (3/36,)f(A, 0).
AssSUMPTION 6. The matrix A = A(6,) is positive definite.

The asymptotic distribution of the weighted least squares estimate is given in
Theorem 5.

THEOREM 5. Under Assumptions 1(o0) to 6, let § be the estimate which
minimizes Qr(0) of (1.8). Then VT (8 — 6,) is asymptotically normal with mean
zero and covariance matrix 2A"'BA™' + A"'DA~'. Here A is given in As-
sumption 6. The jkth elements of B and D are, respectively,

1
b = 5= [SN)FE(N, 8)g,(A, 8)gu(, 8) dA
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and

1
djk = Eff‘ﬁ()\)‘f’(l*)ﬁi()\’ —-A, ,"')gj(”’ 8))&8x(A, 8) dA dp.

The covariance matrix in Theorem 5 depends on the matrices A, B and D. A
and B can be estimated by A(0) and B(8), respectively. An estimate for the
matrix D is suggested by Theorem 6.

THEOREM 6. Let ¢(\) satisfy Assumption 3 and suppose X(t) satisfies
Assumption 1(8). Then

1
(3:2) 72 £ Zo(M)s(0IA)I()
A p
converges, in mean square, to

[ J6O)8 ()N, =\, ) dh
(3.3)

.

2 2 2
+§f¢ (M FEA) AN +

4. Asymptotically efficient estimate. If we assume f(A,6,) > 0 for all A
and let the weighting function ¢(A) = f~%(A, 6,), we obtain the same covariance
matrix as the one in Theorem 5 of Robinson (1978), which is the asymptotic
covariance matrix of the estimate which maximizes the approximate likelihood
function L(8) of (1.7). Furthermore, for Gaussian processes, the matrix D
vanishes, and the covariance matrix is 24 ~!, which is the asymptotic covariance
matrix of the maximum likelihood estimate [see Hannan (1973)]. Therefore, the 8
which minimizes @,(8) of (1.8) with ¢(A) = f~2(A, 6,) is asymptotically efficient.
However, 0, is unknown in advance, and so the preceding 8 is not an estimate.

Though 6, is unknown, a YT consistent estimate 0 could be obtained by using
the suggested procedure with some arbitrary weighting. We can approximate
f~2(X, 8,) by f2(A,8) and expect to obtain an asymptotically efficient estimate
by using the weighting function ¢(A) = f~%(X, §).

We redefine the sum of squares,

Qr(8,7) = ;wx)[f(‘x,e) — I /F2(X,m).

Theorem 7 describes the asymptotic properties of the sequence of estimates
0; = 8;(np) which minimize @,(0, n;), where n; is a convergent sequence of
random variables in ©.

THEOREM 7. Let ¢(A) = ¢(N)/f %(A, m,); also suppose ny converges to n,
almost surely, and VT (v, — m,) converges in law. Then, under Assumptions
1-6, @T is strongly consistent and VT (éT — 0,) is asymptotically normal with
mean zero and covariance matrix as indicated in Theorem 5.
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If we assume f(A,6,) > O for all A and let 0 be the unweighted least squares
estimate, then Theorem 7 implies that the estimate 02 obtained by using the
weighting function ¢(A) = f~2(A, 61) has the same asymptotic distribution as
that for the “estunate” with ¢(A) = f~2(A, 8,). Therefore, for Gaussian processes,
the estimate 92 is asymptotically efficient. In practice, the iteration is repeated a
few times or until the estimates converge.

Finally, we remark that the iterative procedure previously discussed is similar
to the procedure in Green (1984). Green pointed out that if the iterative
procedure converges to a point 0, then 8 is a solution of the likelihood equation.

5. Proofs. We now give proofs of the results.

PRrROOF OF THEOREM 1. From integration by parts, we have

iuc(u) = iufjﬂf(x)exp(iu}\) d\

(5.1) w
= f(w)[exp(ium) — exp(—ium)] — f_nf'(k)exp(iu}\) dA.

Since the first term in (5.1) is equal to zero, then

i |uc(u)| = f f (A)exp(iu)\)dxl < o0

u=—00 u=-0o0

from Zygmund [(1959), Theorem (3.6), page 241]. The theorem is finished by
noting that ¢(0) is bounded. O

ProOOF OF THEOREM 2. Let

? L
vi(M) = X q(u)exp(iud)
u=-L
be the Cesaro sum of the Fourier series of y(\) and let S; = X,y (A)I*(M).
From Theorem 4.3.2 of Brillinger (1975), we find that the expected value of I*(\)
is equal to &!f*%(\) + o(1), so

(5.2) Tim —E[Z%(A)f’*(x ] 2 [5,00140) an.

In the proof of Theorem 3, we will show that the variance of T7!S;, is
of order T~1. This implies that N~2Sy. converges almost surely to the right-
hand side of (5.2). Also, it can be shown by straight calculation that
E{max y2 _ 5 - (v+12l NSy — N7Sy:]%} is of order N'~2* for k > 2 and is of
order N~2 for k = 1. Applying Chebyshev’s inequality and the Borel-Cantelli
lemma gives

fm 7 = = [4,()FH0) A

Toow T

almost surely. The theorem now follows from the uniform convergence of ¥, (A)
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to Y(A) [cf. Edwards (1979), page 87] and the almost sure convergence of
T I5N)/T. O

PROOF OF COROLLARY 1. The corollary follows immediately from the fact
that for any § > 0, we can find a continuous function ¢(A) on [—, ], such that
the set W= {A: ¢(A) = 50\)} is contained in a finite union of intervals with a
total length less than 8. O

PrROOF OF COROLLARY 2. From the argument in Corollary 1, we see that it is
sufficient to prove the result for continuous (A, 0). Let

L
$(A,8) = Y g(u,8)exp(iul)

u=-L

be the Cesaro sum of the Fourier series of (A, 8). Since
(e, ®)1 ={ [ {1 = Jul/(L + D}$(N, O)exp(iu) d| < 2msup [4(2, 0)],

q(u, 0) is uniformly bounded. From this and the fact that (A, 0) is a linear
combination of the 2L + 1 functions

(1— A 1)exp(t)\u), u=-L,..., L,

we establish the uniform convergence of ¥,y (X, 8)I*(\)/T. Corollary 2 follows

from the uniform convergence of (A, 0) to (A, 0), which can be shown by
slightly modifying the proof of 3.2.2 of Edwards (1979). O

PROOF OF THEOREM 3. The variance of T~/?L¢(A)I*(N) is equal to
T! Z Z‘P(}‘l)‘i’()\z)cum(lk()\l): Ik(>‘2))

A Ag

(5.3) = T-27127) L ¥ T 6(A)6(A,)

v A Ay
Xeum{d{(e,); 5 € m)) - com(d§(a,);  €3,)),

where w;; = (—1)’; and the summation in » is over all indecomposable parti-
tions of the table [cf. Brillinger (1975)]

(19 1) X (172k)
Applying Theorem 4.3.2 of Brillinger (1975) yields that (5.3) is equal to

27k?(R!)°T 2 ; §¢(Al)¢(x2)f(xl, A A FETIA) FEHY(N,)

+[@0) = ROITH{EIE0) + 6008(-N] 1) + 01,

which converges to the o7 of (2.2) in Theorem 3.
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By slightly generalizing the proof of Theorem 5.10.1 of Brillinger (1975), it can
be shown that

cmn{T—l/2 Y o(MIEN), ..., T-12 2¢(>\)1k()\)}
A An

converges to zero for A > 3. Since, for Gaussian random variables, the cumulants
of order higher than 2 are zero, we obtain the asymptotic normality and finish
the proof. O

PROOF oF THEOREM 4. From Corollaries 1 and 2, uniformly on ©,

Qr(8)
© _

o= [HOOLF70,0) = 210, 0) 10, ) + 211, 8,)] A

lim
T-

_ %fqb(x)[f(x,o) —f(A, 8)]% d\ + %f"’(")fz(""’”)dx

= Q(0).
Under Assumption 3, the minimum of @(8) is attained only at 8 = 8,. Let 67. be
a sequence of estimates which minimizes @,(8). Suppose that there exists a
subsequence 8; converging to 8’ # 6,. Then

Q(E) = lim Qr(b;,)/T < lim Qr(8)/T = Q(4),

which is a contradiction, and the proof is finished. O

PROOF OF THEOREM 5. This follows immediately from Theorem 3 and
Corollary 1 by using the classical argument in Jennrich (1969). O

PrOOF OF THEOREM 6. The expected value of (3.2) is equal to
(54)  @rT) T2 L Lo(N)e(p)E[dP(N)dP(-N)dP()].
Ap

Since
E[dP(N)dP(~N)dDPX(p)d ) (—p)]
= aam{dP(\), dP(-N), dP(w), A (~n))
+eum{dP(A), dP(~)) )eum{dP(w)dP(~u)}
+eum{dP(\), d(n) Jeum{dP(~N), dP(~u))
+eum{dP(N), d(~p) Jum{dF(~N), dP(w)},
(5.4) is equal to
20771 £ L8 A -0 ) + T ZH#O)F0)

+T7 Za(Ma(-1)f ) + [T—l;wnm "4 o),
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which converges to (3.3) in Theorem 5. Similar to the proof of Theorem 3, we can
show that the variance of (3.2) is of order T"! and finish the proof. O

PROOF OF THEOREM 7. Since ¢(A) = ¢(A)/f (A, n,) satisfies Assumption 3,
f(X, my) is bounded away from zero on A. The strong consistency of GT follows
from the uniformly and almost sure convergence of 1/f%(\, nr). To prove the
theorem, we only need to show that the vectors (d/90)T~'/2Q(6,,n,) and
(8/30)T~1/2Q(6,, nr) have the same asymptotic distribution.

Expanding (d/36,)Q@r(8,, nr) about 7, yields

d
a—afT_l/zQT(oo, nr)

J

d
= %fT_l/‘ZQT(Oo, "lo)

J

(5.5) ,
+ T (g = meo)| 7 U = 10, 8)
k=1 A

xg, (0 8)gx(A, 1%) 3(A,n*>}

for some n* which lies between n, and n,. By applying Corollary 2, it can be
seen that the term inside the braces in (5.5) converges to zero almost surely, and
the proof is finished. O
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