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LOSS FUNCTIONS FOR LOSS ESTIMATION!

By ANDREW L. RUKHIN

Purdue University

A class of proper scoring functions which combine the error in a decision
problem and the precision of the statistical decision rule is introduced. The
Bayesian procedures with respect to these loss functions are pairs formed by
the usual Bayes decision and by the expected posterior loss. A necessary and
sufficient condition for admissibility under the corresponding risk is given.

1. Introduction. Consider general statistical decision problems as described
by possible states of nature 8, decisions d and a loss function W(#8, d). Classical
decision theory advocates making some decision d = §(x), where x is the
observation, with frequentist risk %(8, ). There are important situations where
one would like to accompany the decision § with an estimate, say y = y(x), of its
inaccuracy or of the loss W(6, 6(x)). In many examples the procedure é has
constant risk #(4, §) = E;W(6, 6(x)) = %, but a constant estimator y(x) = Z is
unreasonable. In fact one would expect y to take smaller values for “lucky”
observations x.

The idea of estimated inaccuracy of a point estimator is behind the concept of
a confidence interval [cf. Savage (1954), Chapter 17]. Indeed while the midpoint
of such intervals typically may serve as a point estimator, its width indicates the
inaccuracy of this estimator.

The problem of estimating the risk function has been considered by Lehmann
(1959) who mentioned estimated power of a test and by Sandved (1968) who
found unbiased estimators of risk corresponding to quadratic loss in several
estimation situations. A lot of attention was brought to this problem by Kiefer
who in a series of papers (1975, 1976, 1977) developed conditional and estimated
confidence theories which, in particular, provide estimates of confidence or
accuracy admitting frequentist interpretability. Berger (1985a, b, ¢) compares the
subjective Bayesian approach to this problem with the frequentist one. In
particular he discussed the desirable properties of valid measures of performance
of a statistical decision rule § from the frequentist point of view. We also note
that estimated standard errors and other characteristics of statistical accuracy
may be of interest in nonparametric and bootstrap methods [Efron (1982) and
Efron and Tibshirani (1986)]. '

To be able to compare two estimators of the loss, one must specify an
appropriate utility function. In fact a variety of loss functions in interval
estimation has been considered [see Aitchison and Dunsmore (1968), Pratt
(1961), Winkler (1972) and Cohen and Strawderman (1973)].
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In this paper for a general decision problem we give a class of loss functions
which combine the decision problem error with the error of inaccuracy estimate.
These loss functions are very convenient in the problem of simultaneous “deci-
sion-precision” reporting. The corresponding risk, as any risk function, has
frequentist interpretability in terms of long-run frequencies. The Bayes
decision-precision pairs turn out to be the usual Bayes decision 85 for § and the
posterior loss vz = E{W(0, 85)|x}. Since admissible pairs in statistical decision
theory are typically Bayes or generalized Bayes procedures, a frequentist may
accept posterior loss as an estimate of risk because of the admissibility argument.

2. Loss functions combining decision error and estimated loss error.
Denote by y an estimator of the nonnegative loss W(#, §) and assume that a loss
function #(6; 8,y) which combines the decision error W(#, §) and the error in
estimating W(6, 8) by vy is desired. We develop here an axiomatic approach to
determine such a loss function .# from two conditions.

The first condition is that for fixed v, i.e., in the case when one does not have
to estimate loss W(#, ), the utility function % should be equivalent to W. If
this equivalence is defined by the expected utility, then [see DeGroot (1970),
Section 7.9]

(2.1) Z(6;8,v) = a(y)W(8,8) + b(v)
with positive function a. Thus we consider loss functions .# only of the form
2.1).

According to the second condition for fixed 4, i.e., when decision 8 is specified,
Z as a function of y, y > 0, must be uniquely minimized at
(2:2) Ymin = W(0,8).

This condition just means that for a fixed §, .# is indeed a loss function for
estimating W(4, 6).

THEOREM 1. Any loss function & of the form (2.1) with differentiable
functions a and b, such that ya(y) = 0 as y — 0, and for which (2.2) holds has
the form

(2.3) Z£(6;8,v) =f'(v)W(8,8) — f'(v)y + f(v) + c.
Here c is a constant and f is an increasing concave function,

f'(v) >0, f’(v) <0, yf(y) >0 asy—0.

Proor. Condition (2.2) implies that

a’(y)y = -¥(y).
Put a(y) = f'(y). Then

b(y) — b(0) = —foyf”(t)tdt= —vf'(v) + f(:f’(t) dt = —yf'(y) + f(v) — £(0)

and representation (2.3) obtains with ¢ = b(0) — f(0).
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The function & of the form (2.3) has minimum at W(#0, d) = w if and only if
for all v,

(w=7)f'(y) = f(w) - f(v),

which implies the concavity of f. O

Henceforth we assume that the utility function (2.3) is normalized by the
condition ¢ = 0. Rukhin (1985) studied the loss (2.3) in the particular case
fr) = v/

We give now a statistical interpretation of the function f. Assume that

EW(0,8(x)) =7,
i.e., that the risk of & is constant. If one uses an estimator y, of the loss,
n(x) =7,
then the risk %(6; 8, v,) of the pair (8, y,) is
R(0;8,7,) = Eg£(8;8,v,) = F'(¥)y — f'(¥)v + f(v) = f(v).

In other terms f(y) is the value of the combined risk of (8,v) if § has
constant risk equal to y.

Notice also that the differentiability condition in Theorem 1 can be consider-
ably relaxed. In fact it suffices to assume lower semicontinuity of the functions a
and b in (2.1).

The most important feature of loss functions (2.3) is that the Bayes procedure
(85, v5) has the following form. The rule &5 is just the Bayes decision corre-
sponding to the loss W(#8, 8) and v coincides with the posterior loss,

(24) vp(x) = E{W(6, 8)|x}.

Loss functions possessing this property are called proper scoring rules [cf.
Savage (1971) and Hogarth (1975)]. From the frequentist point of view the use of
Bayes procedures and (some of) their limits is motivated by the admissibility
argument, and the combined loss function .# allows decision-theoretical com-
parison of different pairs (8, y). In particular the corresponding risk function can
be used to define a natural notion of admissibility.

As an example let us consider the situation where 8 can be estimated correctly
with positive probability. Namely let D, = {x: 8(x) # 8} and assume that
Py(Dy) =1v,0 <y <1, for all §. Also assume that for U,D, = C, one has

P(C)=w, O<w<]l.

Under zero-one loss the risk of 8 is constant, but the constant estimator
¥,(x) = v is inadmissible under any loss function (2.3). Indeed let

Yo(x) =y/w, x€C,

=0, otherwise.
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Then as we already noticed,
2(0; 8,v1) = f(v)
and
Eqyf'(v0)W(8,8) = f'(v/w)y,
Eo[ 1(vo)v0 = 1(10)] = f'(v/w)y = f(v/w)w — £(0)(1 — w).
Therefore for all 8, because of the concavity of f,
2(6; 8,7,) = wf(v/w) + f(0)(1 — w) < f(y) = 2(6; 8, v,).

A particular case of this situation happens in an example considered by Berger
(1985a,b). Let x = (x,, x,) with independent x, and x,, such that

P(x;=0—-1)=1—Py(x;, =60+ 1) =p.
Consider the procedure
8(x) = (x, + x5)/2 if |x; — x| = 2
=x,+1 ifx, =x,.
Then
Dy={x:2;,=x,=0+1}, Po(Do)=(1_P)2,
C={x:x,=x), PB(C)=p"+(1-p)=w.

In this example constant estimator y,(x) = (1 — p)? is clearly unreasonable.
Indeed if |x;, — x,| = 2 one is certain that 8(x) = 4, while if x, = x, the exact
value of # is unknown. The inadmissibility of y, under (2.3) should be contrasted
with its admissibility under loss (y — W(4, 8))? [see Berger (1985a)], where W is
zero—one loss function and § is fixed.

The important feature of this and similar examples can be extracted as the
following simple result.

THEOREM 2. Assume that for some prior distribution the posterior loss,
Yo(x) = E{W(0, §)lx},
possesses the following property: For all 0,

(2.5) Eof'(v0)[W(8,8) — %] <0
and
(2.6) supEpy, =¥ < 0.

)

Y with y > ¥ in the sense

Then vy, improves upon any constant estimator y,(x)
of (2.3).

Proor. Under condition (2.5),
R(0;8,v,) > 2(0;8,v,)
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if
(2.7) Eyf(vo) <f(v).

Because of Jensen’s inequality,

Eyf(vo) < f(Egvo) = f(¥)

so that (2.7) follows because of the monotonicity of f.

In another example considered by Kiefer (1976) and Berger (1985b) where
conditions (2.5) and (2.6) hold, x is a normal random variable with mean 6 and
unit variance. Assume that the hypothesis H: § < —e (¢ fixed positive) has to
be tested against H;: 8 > e.

Consider the test § which rejects H, if x > 0. Under zero-one loss,

EW(0,8) = Py (x < 0) = (= [6]) < ®(~).

If, say ¢ = 2, ®(—2) = 0.0228, but it seems to be rather unreasonable to state
that H, is rejected with error probability not exceeding 0.0228 when the
observed value of x is 0.

Motivated by the fact that 8 is a Bayes test against the prior distribution
assigning equal mass to § = —¢ and 6§ = ¢, we put

Yo(x) = E{W(0,8)|x} = 1/(1 + e2e|x|)'
An easy calculation shows that
Eyf'(v)(W(8,8) — v,)

= @) [TF ()6 - e i < 0
0

and
Egvo < Eyo = @(—¢).

Thus (2.5) and (2.6) are met and any “silly” constant estimator y(x) =y,
y = ®(—¢), is inadmissible. O

3. Admissibility criterion. In this section it is assumed that the sample
space £ is Euclidean space, = R", the decision space & is an open convex
subset of R™ and the parameter space © is a separable locally compact metric
space. We make the measurability and regularity assumptions of (i)—(v) of
Theorem 1 of Farrell (1968). We suppose that W is a continuous loss function
over © X 2 which is strictly convex in d and that there exist positive densities
Dy(x) with respect to some measure p.

THEOREM 3. Under assumptions (i)-(v) of Farrell (1968) the pair (8, v,) is
an admissible procedure under loss (2.3) if and only if there exists a sequence
G, k=1,2,..., of finite measures over © such that for any compact subset E
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of ©®, G(E)=1, k=1,2,..., sup,G,(C) < oo for compact C and

(3.1) Ue [W(8,8,) — W(8,8,)] (o) Ps(x) du(x) dG,4(8) — 0,

(32) [ [ [#(x0) = (%) = (Yo = 1) F'(%0)] Po(x) di(x) dG4(6) ~ 0,

where &, v, are Bayes rules against G,,.

In particular if (8,,7v,) is admissible under the loss (2.3), then §, is ad-
missible under the loss W(0,8)f'(v,) and vy, is admissible under the loss
F(VEW(, 8) = f'(v)y + f(¥)-

ProOF. Define for any integrable function h(x, 0), &,h(x, 0) =
[fh(x, 0)pg(x) dp(x) dG4(8). According to Theorem 1 of Farrell (1968), (8, v,) is
admissible if and only if

(3.3) pr = Ei{L(6; 8o(x), vo(x)) — L(6; 8,(x), va(x))} — 0.
Because of the property of iterated expected value,
Pr = @@k{f'(Yo)[W(o’ao) - W(a’sk)] + [f’(Yo) - fl(Yk)]W(e?sk)
Yol '(¥0) + Yef () + f(¥0) = f(W2)}
= ‘g)k{f,(YO)[W(o’sO) - W(a’sk)] + [f'(Yo) = ")l
~Yof '(¥o) + Y& f'(v) + (%) — f(va)}
= 6wlef'(Yo)[w'(o’‘So) - W(e’ak)]
+&,[F(v) = F(v) = (vo = %) F'(%)]-

Since both terms in the right-hand side of (3.4) are nonnegative, (3.3) holds if
and only if (3.1) and (3.2) are valid, which completes the proof. O

(3.4)

Clearly (3.1) means the admissibility of §, as an estimator of § under rescaled
loss function L8, 8) = W(8,8)f'(v,) (which involves the observation x).

Formula (3.2) means that y, is an admissible estimator of the parametric
function ¢(6) = E,W(4, §,) under loss function L,(8,v) = ¢(8)f'(y) — vf'(y) +
f(v). Indeed an easy calculation shows that

&{L(8,7) - Li(0,v)) = &{F(v) — F (%) + F (V) (v = 1)},

and the conclusion follows from Farrell’s theorem.

Notice that separate admissibility of 8, under L,(6,8) and of y, under
L (6, v) does not imply the admissibility of (8,, y,) under L(4, §, v).

It is known [cf. Berger and Srinivasan (1978)] that if p,(x) = B(8)exp{6'x}
and W(6, d) = ||0 — d||?, then any admissible estimator has the form

8(x) = v log G(x),

where G is a o-finite measure with support in the closure of the natural
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parameter space and

(3.5) G(x) = j exp{6x} dG(8)

is the Laplace transform of G.
It is easy to see that the corresponding loss estimator has the form,

2

(3.6) v(x) = v2og G(x) = }:%log(ﬁ(x).

A modification of the proof of Theorem 2.1 of Berger and Srinivasan (1978)
shows that any admissible pair 8, y under (2.3) has the form (3.5) and (3.6) for
some o-finite measure supported by the closure of the natural parameter space.
Formula (3.6) is convenient for the calculation of admissible loss estimators in an
exponential family.

Notice that the admissibility notion associated with the loss (2.3) is more
conventional and convenient to work with than the admissibility definitions
owing to Kiefer (1975) and Brown (1978) in the problems of conditional con-
fidence estimators.

Our concluding remark is that in the case of randomized procedures § = §,,
the loss W(6, d) over ® X 2 should be replaced by a new loss,

W(e,8) = [@W(l?,t) ds(t),

which is defined over ® X #(2), where #(2) is the collection of all probability
measures over 2.
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