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ROBUST FIXED SIZE CONFIDENCE PROCEDURES FOR A
RESTRICTED PARAMETER SPACE

By MEHMET ZEYTINOGLU! AND Max MINTZ?
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Robust fixed size confidence procedures are derived for the location
parameter 0 of a sample of N i.i.d. observations of a scalar random variable Z
with CDF F(z — @). Here, 0 is restricted to a closed interval Q@ and the
uncertainty in F is modeled by an uncertainty class #. These robust
confidence procedures are, in turn, based on the solution of a related robust
minimax decision problem that is characterized by a zero-one loss function,
the parameter space € and the uncertainty class #. Sufficient conditions for
the existence of robust minimax and robust median-minimax estimators are
delineated. Sufficient conditions on % are obtained such that (i) both types
of rules are minimax within the class of nonrandomized odd monotone
procedures and (ii) subject to additional conditions, both types of rules are
globally minimax admissible Bayes procedures. The paper concludes with an
examination of the asymptotic behavior of the robust median-minimax esti-
mators and their extensions to the robust a-minimax rules, which are based
on the a-trimmed mean.

1. Introduction. The standard statement of a minimax location parameter
estimation problem includes as given: a parameter space £, a space of actions &7,
a loss function L defined on &/X © and a CDF F. If the underlying CDF
is imprecisely known, then this standard minimax decision model must be
reformulated to account for this additional uncertainty. Statistical decision rules
which are applicable in this more general problem setting are referred to as
robust procedures.

This paper considers robust fixed size confidence procedures for a restricted
parameter space. These robust confidence procedures are based, in turn, on the
solution of a related robust minimax decision problem.

Let Z denote a vector of N i.i.d. observations of a scalar random variable with
CDF F(z — 0), where F € #, a given uncertainty class. Let @ = &/=[—d, d]
and define a zero-one loss function L on &/ X £,

_ [0, Ja—10| <e,
(1.1) L(a,8) = {1’ s
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1242 M. ZEYTINOGLU AND M. MINTZ

where e > 0 is given. Further, let R(8, 0, F') = E[L(4, 6)|6, F] denote the risk
function of the decision rule 8§ given § € @ and F € #.

DEFINITION 1.1. An estimator 6* is said to be a robust minimax estimator
for 8, if for all 6,

sup R(8*,0, F) < supR(8,0, F).

feQ eQ
Fe# Fe#

Based on these definitions and assumptions, we seek a robust minimax
estimator 8* for #. For brevity, we restrict our consideration to the case when
d/e is an integer greater than or equal to 2.

OBSERVATION 1.1. The connection between the robust minimax rule §*(Z)
and a robust fixed size confidence procedure is obtained by noting that

C*(Z) = [6*(Z) — e, 8*(Z) + e]

can be interpreted as a robust confidence procedure of size 2e which has the
highest confidence coefficient inf, B, ;[0 € C*(Z)].

The remainder of this paper is organized as follows.

Section 2 reviews the solution to the related minimax estimation problem
where F = #7(0,02) and ¢ is given. These results provide the basis for the
solution to the robust minimax estimation problem where #= {F = A4°(0, 6®):
¢ <o,}.

Section 3 extends these robust minimax results to uncertainty classes which
contain non-Gaussian, asymmetric and discontinuous CDF’s. Robust median-
minimax rules are introduced and evaluated. Section 3 concludes with an
examination of the asymptotic behavior of robust median-minimax rules and
their extensions to robust a-minimax rules, which are based on the a-trimmed
mean.

Appendix 1 contains proofs or sketches of proofs for the main results in
Sections 2 and 3.

2. Robust minimax rules and Gaussian uncertainty classes.

2.1. Preliminary minimax results. Zeytinoglu and Mintz (1984) addresses
the related minimax estimation problem where F = 4°(0, 062) and o is given. The
main result requires Definition 2.1 and is summarized by Theorem 2.1.

DEFINITION 2.1. Let € denote the class of nonrandomized odd monotone
nondecreasing decision rules §: E! — /. Let A C € denote the set of rules 8(¢)
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defined for ¢ > 0 by

d—e, cta,+2ne<t,
t— a,, cta,+2e<t<c+a,+4e,
(2.1) 8(t) =(2e+c, cta +2e<t<c+a,+2e,
t— a,, ct+a <t<c+a, + 2e,
c, c<t<c+a,
t, 0<t<e,
where0 < a, <a,< -+ <a,<o,d=(2n+ 1)e + c and c equals zero (e) if

d is an odd (even) multiple of e. [Due to the existing symmetry, all function
definitions are stated for nonnegative arguments.]

THEOREM 2.1. Let L denote the loss function (1.1). If Z € A(8, 6?), where o
is given, then for any N > 1 there exists a (globally) minimax admissible rule
8* € A which is Bayes with respect to a least favorable prior distribution \*.
Further, 6* depends on Z through the sample mean Z,,.

For the proof, see Zeytinoglu and Mintz (1984).
R(5,0, F), R(6*% 0, F) and A* have the following characteristics:

1. If 8 € A, then R(4, 6, F) is a piecewise constant function of 6 over the sets of
a finite partition of Q.

2. The minimax rules §* are “almost” equalizer rules, in the sense that the
nondegenerate piecewise constant segments of the risk function are equalized
at the minimax risk M.

3. A\* is defined by a density function which is symmetric and piecewise con-
stant.

2.2. Robust minimax rules.
DEFINITION 2.2. Let

(2.2) F={F=#(0,0%):0<0,)

denote an uncertainty class of Gaussian distributions.

DEFINITION 2.3. The CDF F, = #°(0, 62) defines the upper-envelope of #
(2.2) in the sense that F(x) < F,(x) for all F €% and x < 0.

Theorem 2.2, which is the main result of this section, extends the results of
Theorem 2.1 to the robust minimax estimation problem.

THEOREM 2.2. Let & denote the uncertainty class (2.2) with upper-envelope
F,=4(0,0?2). Let 8* denote the minimax rule obtained through Theorem 2.1
based on a sample size N and CDF F,. There exists a bound B(d/e, N, F,) such
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that if e > B, then 8* is a robust minimax admissible Bayes rule in the sense of
Definition 1.1. Further, §* depends on Z through Z,,.

For the proof, see Appendix 1.
EXAMPLE 2.1. Let d=3e,e=01, N=49,0,=2, F, = 40,02) and G =

A°(0,02/N). Applying Theorem 2.2, the minimax rule §*(Z,) and the risk
function R(8*, 6, F,) corresponding to F), are

. 2e, a, + 2e < Zy,
(2.3) 8(Zy) ={Zy — a,, a, < Zy < a, + 2e,
0, 0<Zy<a,
G(a, —e), e<0<3e,
(2.4) R(8*,0,F)={G(—a, —e), 0=e,

2G(-a, —e), 0<f<e,

where a, satisfies
(2.5) G(a, —e) =2G(—a, — e).

In this example, a;, = 0.092 and the corresponding minimax risk is 0.49. The
bound B, which is derived in Appendix 1, is

B(d/e,N,F,) = —(1/V4N)F,;}(1/4) = 0.0966.

Here, e > B, and thus §* (2.3) is a robust minimax rule.
3. Robust minimax rules and non-Gaussian uncertainty classes.

3.1. Preliminaries. This section extends the robust minimax results of Sec-
tion 2 to uncertainty classes which contain non-Gaussian, asymmetric and
discontinuous CDF’s.

DEFINITION 3.1. Let % denote an uncertainty class with upper-envelope F,,
(3.1) F={F: F(x~) < F,(x),x <0; and F(x) > F,(x), x > 0},

where F, has a density function which is unimodal and symmetric about zero.
[F(x7) denotes the left-hand limit.]

REMARK 3.1. We allow F, to be substochastic, i.e., F, can have less than unit
probability mass. Thus, the usual e-contamination models can be represented by
F (3.1). ‘

The main results of this section are based on Theorem 3.1, which addresses
the existence and construction of #minimax and minimax rules for single-sample
decision problems. [A rule is (robust) Z-minimax if it is (robust) minimax within
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the class 2. A rule is 2-Bayes if it is Bayes within the class 2. A rule is
Z-admissible if it is admissible within the class 2.]

THEOREM 3.1. Let N = 1. If the CDF F has a density function which is
unimodal and symmetric about zero, then there exists a ¥-minimax rule 8* € A.
Further, if F possesses a (strictly) monotone likelihood ratio, then 8* is a
minimax (admissible) Bayes rule.

For the proof, see Zeytinoglu and Mintz (1984).

3.2. The single-sample case. Theorem 3.2 extends the results of Theorem 3.1
to the single-sample robust %minimax estimation problem.

THEOREM 3.2. Let N =1, & denote the uncertainty class (3.1) with upper-
envelope F,, and 8* denote the $-minimax rule obtained through Theorem 3.1
based on CDF F,. There exists a bound B(d/e, N = 1, F,) such that if e > B,
then 8* is a robust $minimax rule. Further, if F, possesses a (strictly)
monotone likelihood ratio, then 8* is a robust minimax (admissible) Bayes rule.

For the proof, see the sketch in Appendix 1.

ExXAMPLE 3.1 (An e-contamination model). Let d = 3e and % denote the
uncertainty class

(3.2) F={(F:F=(1-¢)®+eH},

where ® = A47(0,1), the CDF H is symmetric about zero and 0 < &¢ < 1/2. The
corresponding (substochastic) upper-envelope is

(3.3) F,=(1-¢)®+¢/2.

In this example, B(d/e, N =1, F,) is

(3.4) B(d/e,N=1,F,) = —(1/2)F;'(1/4)
= —(1/2)07X((1 - 26)/(4 - 48)).
[See Appendix 1.]

Applying Theorem 3.2, the %minimax rule 6*(Z) and the risk function
R(8%, 0, F,) corresponding to F, are

2e, a, +2e<2Z,
(3.5) 8*(2)=(Z - a,, a, <Z<a, +2e,
0, 0<Z<a,,
Fu(al_e)’ e<053e1
(3.6) R(8*,6,F,)=(F(—a, —e), 0=e,

2F(-a, —e), 0<f<e,
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where a, satisfies

(3’7) Fu(al - e) = 21‘;'u(_al - e)
or, equivalently,
(3.8) ®(a, —e) =2®(—a, —e) +¢/(2 — 2¢).

Thus, if e > B, then §* (3.5) is a robust %minimax rule for this e-contamination
model.

This solution is easily extended to other values of d/e and nominal distribu-
tions. The required calculations include the computation of the vector a which
parametrizes the underlying #minimax rule 6* and the computation of the
bound B(d/e, N =1, F,)—which are each readily obtained by means of a
Newton-Raphson algorithm.

3.3. The multisample case. This section extends the robust #minimax re-
sults of Theorem 3.2 to the multisample problem by restricting the class of
estimators to rules of the form 8(T(Z)), where 6 € ¢, T: EN - E! and T(Z)
possesses a density function which is unimodal and symmetric about §. Exam-
ples of candidate T statistics include the sample mean, the sample median and
other symmetric linear combinations of order statistics. In the remainder of this
section, we consider the sample median. Since the sample median or other
symmetric linear combinations of order statistics have no global optimality
properties, we compare, by example, the performance of these restricted decision
rules to an alternative—the highest posterior density (HPD) credible set [Berger
(1985)].

DEFINITION 3.2. Let Z,, denote the median of the N observations Z. [If N is
even, Zy = (Zn/5 *+ Zyn/2+11)/2-] The decision rule §*(Z,,), defined by the
compos1t10n 8% Z,,, is said to be a median-minimax estimator for 4, if §* is a
minimax rule in the usual sense. The respective definitions of robust median-
minimax rules, ¥median-minimax rules and robust %median-minimax rules are
obtained as before.

THEOREM 3.3. Let N > 1. If the CDF F has a density function which is
unimodal and symmetric about zero, then there exists a %median-minimax rule
6* € A. Further, if the CDF of (Z,, — 0) possesses a (strictly) monotone
likelihood ratio, then 8* is a median-minimax (median-admissible) median-
Bayes rule.

For the proof, see the sketch in Appendix 1.

ExXAMPLE 3.2. Let d = 3e, e = 0.2133, N = 3 and F denote the CDF of the
double exponential distribution

F(x) = {1 - (1/2)exp(-x),  x20,

(39) (1/2)exp(x), x <0.
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Let F’ denote the CDF of the centered sample median Z,, — § = T(Z) — 6. In
this example, F'(t) = F%(¢t)3 — 2F(t)). Applying Theorem 3.3, the %median-
minimax rule 8*(T) and risk function R(8*, 6, F) are

2e, a, +2e<T,
(3.10) *(T)=(T- a,, a, <T<a,+2e,

0, 0<T<a,,

F(a, —e), e<0<3e,
(3.11) R(8*,6,F)=(F(—a,—e), 6=e,

2F'(—a, —e), 0<f<e,

where a, satisfies
(3.12) F'(a,—e) =2F(—a, —e).

In this example, a, = e = 0.2133, and the corresponding %#median-minimax risk
is 0.50.

It is illustrative to compare the %median-minimax risk of 6* with the
maximum risk of the decision rule §, defined by the midpoint of the HPD
credible set of size 2e with respect to the uniform prior distribution on
Q. The decision rule §, is readily expressed in terms of the order
statistics {Z;): i = 1,2,3} and sample mean Z; of Z, in conjunction with vy, =
(Zyyy + Ziyy + e)/2 and v, = (Zpy) + Zp3) — €)/2. Let 5 denote the midpoint of
the HPD credible set of size 2e with respect to the uniform prior distribution on
E'. There are two cases to consider.

CaSE 1 (Zyy < Zy).

Zs, 23 <Y,
(3.13) X(Z) = Yl’ Z[Q] < Yl < Z3,
AL Y1 < Zpy-

CASE 2 (Zyy, > Zy).

Z31 ‘ Y2 < Z31
(3.14) %(Z) =4 Yo, Z3 <Y =< Z[Z]’

Further, let ¥ € A denote the truncation function

2e, 2e <y,
(3.15) Y(y)=<{v —2e<y<2e,
—2e, y < —2e.
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TABLE 1
d=3e 8%(T) V() 3*(H#)
d e a, Rmax anx a, Rmax
0.6399 0.2133 0.2133 0.50 0.71 0.2133 0.50
1.5000 0.5000 0.1988 0.31 0.43 0.1885 0.30
3.0000 1.0000 0.1864 0.13 0.16 0.1668 0.12
4.5000 1.5000 0.1806 0.05 0.05 0.1565 0.04
6.0000 2.0000 0.1775 0.02 0.02 0.1451 0.01
Then
(3.16) 8,(Z) = ¥(#(Z)).

In this example, the corresponding maximum risk of §,, obtained by a Monte
Carlo calculation, is 0.71. However, since the CDF of 5#(Z) possesses a density
function which is unimodal and symmetric about @, the risk performance of
Y(5£) can be improved considerably by replacing ¥ with some alternative
8 € A. Specifically, the decision rule 6*(5¢), where 6* is (3.10) and a,; = 0.2133,
is an “almost” equalizer rule with a maximum risk which is very closely
approximated by 0.50. This latter risk evaluation is obtained by a Monte Carlo
calculation.

Table 1 displays the maximum risk values of these decision rules for several
values of d.

THEOREM 34. Let N > 1, & denote the uncertainty class (3.1) with upper-
envelope F,, and §* denote the %-median-minimax rule obtained through Theo-
rem 3.3 based on CDF F,. There exists a bound B(d/e, N, F,) such that if
e > B, then 6* is a robust ¢-median-minimax rule. Further, if the upper-en-
velope CDF of (Z,; — 0) possesses a (strictly) monotone likelihood ratio, then
8* is a robust median-minimax (median-admissible) median-Bayes rule.

For the proof, see the sketch in Appendix 1.

ExaMPLE 3.3 (Example 3.2 revisited and extended). Let d = 3e, e > 0.2133,
N = 3, F, denote the CDF of the double exponential distribution (3.9) and %
denote (3.1). In this example, B(d/e, N, F)) is

(3.17) B(d/e, N, F,) = —(1/2)G~*(1/4) = 0.2133,

where G = F2(3 — 2F,). [See Appendix 1.] Since e > B, it follows from Theorem
3.4 that §* (3.10) is a robust %#median-minimax rule with maximum risk R_,,.
See columns 1-4 of Table 1 for the corresponding values of d, e, @, and R_,,,.

3.4. Large sample approximations. This section examines the asymptotic
behavior of robust median-minimax rules and their extensions to robust a-
minimax rules, which are based on the a-trimmed mean T(«, Z).
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OBSERVATION 3.1 [Bickel (1965)]. If Z,,..., Z, arei.i.d. with CDF F(z — @),
where F is continuous, symmetric about zero, strictly increasing and possesses a
density f which is continuous and strictly positive on its convex support
{x: 0 < F(x) <1},thenif 0 < a <1/2,

Tim 2(NVA(T(a,2) - 0)) = #(0,0%a),
where
o%(a)=(1- 2a)—2[2_/;)x(1_a)t2 dF(t) + 2ax*(1 — a)

and

lim_o(a) = 1/(2/(0))"

DEFINITION 3.3. Let % denote the uncertainty class (3.1), where each
F € %, also satisfies the conditions of Observation 3.1.

OBSERVATION 3.2. Let %, denote an uncertainty class with upper-envelope
F, (with corresponding density f,) subject to Definition 3.3. Then, for suitably
large N, an approximation to the robust median-minimax rule 8*, obtained
through Theorem 3.4, can be achieved by substituting /#°(0, 1/(4Nf,2(0))) for the
upper-envelope CDF of (Z,, — 6). [Since (Z,, — ) is asymptotically normal, the
% can be omitted in the designation of §*.]

OBSERVATION 3.3. Observation 3.2 can be extended by replacing Z,, with
T(a, Z). The corresponding upper-envelope asymptotic approximation is
N(0,06% a)/N). The resulting rules, which are obtained in this way through
Theorem 3.4, are referred to as robust a-minimax rules. Further, since « offers a
degree of freedom in selecting the decision rule, we can optimize the choice of a
by solving the following minimax problem. Let V(a, F') denote the asymptotic
variance of T(a,Z) based on F € %, Determine o* € [0,1/2] such that for all
a €[0,1/2],

sup V(a*, F) < sup V(a, F).
FeZ, ) Fe%,

An existence theorem for the minimax solution to this problem appears in
Gastwirth and Rubin (1969).

ExAMPLE 3.4. Huber (1981) considers the e-contaminated .47(0,1) distribu-
tion and obtains the value of a* as well as the corresponding least informative
CDF F* for a given level of contamination e. For example, if ¢ = 0.3, then
a* = 0323 and o%(a*) = 2.822; whereas, lim,_,, ;0% a) = 3.206. Further, if
X= (K =AN(0,V(a* F)): F,€ %)}, then the least informative distribution
F* € %, corresponds to the upper-envelope A47(0, V(aF, F,*)) of X
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3.5. Two special cases. There are two limiting cases which are worthy of
special mention.

CASE 1 (d = 2e). If d = 2e, then Theorems 2.2, 3.2 and 3.4 apply for all
e > 0, i.e, in each instance B is zero. The robust rules obtained in Theorems 2.2,
3.2 and 3.4 are, respectively, Zy, Z and Z,, truncated to [ —e, e] with respective
minimax risks F,(— VNe), F(—e) and G,(—e), where G, denotes the CDF of
the median based on F,.

CASE 2 (d = ). If @ = E!, then Theorems 2.2, 3.2 and 3.4 apply for all
e > 0, i.e,, in each instance B is again zero. However, in this case the resulting
robust rules are extended Bayes. The robust rules obtained in Theorems 2.2, 3.2
and 3.4 are, respectively, Zy, Z and Z,, with respective minimax risks
2F(— VNe), 2F(—e) and 2G(—e), where G, again denotes the CDF of the
median based on F,.

These limiting cases provide useful upper and lower bounds for the minimax
risk for intermediate values of d. Further discussion of these limiting cases
appears in Appendix 1.

APPENDIX 1

This appendix contains a proof for Theorem 2.2, the derivation of the bound
B(d/e, N, F,) which appears in Example 2.1, sketches of proofs for Theorems
3.2, 3.3 and 3.4 and a remark pertaining to Section 3.5. We begin with the
following observations.

OBSERVATION A.l [Zeytinoglu and Mintz (1984)]. If N=1,8€ A and F is
any continuous CDF which is symmetric about zero, then

F(a, —e), d—-2e<0<d,
F(a,_,—e), 0=d- 2e,
F(-a,-e)+ F(a,_, - e), d—4e<0<d- 2e,

F(—a,—e) + F(a, — e), c+e<f<c+3e,

(A1) R(8,6,F) = F(-a,—e) + (c/e)F(—e)
+(1—c/e)F(—a, —e), b=cte,
F(-a, —e) + (c/e)F(—e)
+(1 - c/e)F(—a, - e), O<f<c+H+e,

2F(-a, —e), 6 =0.
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OBSERVATION A.2. The risk expression (A.l1) can be readily modified to
include CDF’s F which are both asymmetric and discontinuous. The generalized
(asymmetric) risk function R(8, 0, F') is again a piecewise constant function of ¢
over the sets of the finite partition of  expressed in (A.1).

OBSERVATION A3. Let N=1, §€ A and % denote (3.1) with upper-
envelope F,. If a, < e, then

(A2) R(5,6,F) < R(5,0,F,)

forall Fe % and 0 € Q.

If F is symmetric about zero, then (A.2) is a consequence of the nonpositivity
of the argument of each F on the right-hand side of (A.1). When F is asymmet-
ric, (A.2) is established from the functional form of the generalized (asymmetric)
risk function R(4, 8, F') by similar means.

OBSERVATION A4. Let N > 1and F € % (3.1) with upper-envelope F,. If G
and G, denote, respectively, the CDF’s of the medians based on F and F,, then
G(x7) < G(x), x <0, and G(x) = G,(x), x > 0. Further, G, possesses a den-
sity function which is unimodal and symmetric about zero.

PROOF OoF THEOREM 2.2. There are two cases.

Case1 (N =1). If § € A and F € ¥ (2.2), then R(J, 0, F) is obtained from
(A.1) by replacing F(-) with ®(:-/6). The minimax rule 8* based on the
upper-envelope A4°(0, 62) and obtained through Theorem 2.1, is constructed by
determining the parameter vector a* € E” which equalizes the piecewise con-
stant segments of R(8* 8, F,) over the n + 1 nondegenerate subintervals of
[0,d]. If a} < e, then

(A.3) R(8*,0,F) < R(8*,0,F,) < supR(8*,0,F))

feQ
for all Fe.% (2.2) and 6 € Q. The left-hand inequality in (A.3) follows from
Observation A.3. Thus, if a* < e, then 8* is a robust minimax rule.

We next obtain a bound B(d/e, N = 1, F,) such that if e > B, then a} < e.
Let M denote the minimax risk of 8* based on F,. Here, M depends on d/e.
Observe that for fixed d/e, the minimax risk M is a nonincreasing function of e.
Let B(d/e, N =1, F,) denote the smallest value of e such that M(e) = 05.
Thus, the determination of B is equivalent to determining the values of e and a
which equalize the right-hand side of (A.1) to 0.5 over the nondegenerate
subintervals of [0, d]. It is shown in Zeytinoglu and Mintz (1984) that these
equations can always be solved whenever F, possesses a density function which
is unimodal and symmetric about zero. Thus, if e > B, then §* is a robust
minimax rule. h

Further, we observe that the rule §* is Bayes with respect to the product
measure u = A* X » on @ X%, where A\* denotes the least favorable prior
distribution on £ associated with the solution to the minimax estimation
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problem based on F,, and » denotes the distribution on % which assigns
probability 1 to F,. Since §* is unique up to equivalence, it is admissible.

Case 2 (N > 1). Since the proof of the Theorem 2.2 for the multisample case
is quite similar to the single sample case, it suffices to observe that we follow the
previous approach, but replace Z with Z, and o with ¢/ VN. The bound
B(d/e, N, F,) is again obtained by equalizing R(8* 6, F,) to 0.5 over the
nondegenerate subintervals of [0, d].

THE BOUND IN EXaMPLE 2.1. Let d=3e, e=0.1, N=49, o,=2, F, =
A°(0,02) and G = A0, 02/N). The risk equalization condition becomes

(A.4) G(a,—e) =2G(-a,—e) =1/2.
The solution to (A.4) is
(A5) a,=e= —(1/V4N)F;(1/4) = B(d/e, N, F,) = 0.0966.

PROOF OF THEOREM 3.2: A SKETCH. The #minimax rule 8*, based on the
upper-envelope F, and obtained through Theorem 3.1, is an “almost” equalizer
rule parametrized by a*. The bound B(d/e, N = 1, F,) is established by follow-
ing the technique in the proof of Case 1 of Theorem 2.2. If e > B, then a* < e.
Thus, by Observation A.3, 8* satisfies (A.3) for all F € # (3.1) and 6 € Q. Based
on Theorem 3.1, it can be shown that if F, possesses a (strictly) monotone
likelihood ratio, then 6* is an (admissible) Bayes rule with respect to a product
measure g, which is identical in structure to the measure obtained in the proof of
Case 1 of Theorem 2.2.

PROOF OF THEOREM 3.3: A SKETCH. A proof of Theorem 3.3 can be based on
Theorem 3.1 and the second part of Observation A.4, i.e., if F possesses a density
function which is unimodal and symmetric about zero, then the CDF of the
median based on F possesses a density function which is unimodal and symmet-
ric about zero. The following alterations are required in the application of
Theorem 3.1: Replace Z with Z,, and replace F with the CDF of (Z,, — 6).

PROOF OF THEOREM 3.4: A SKETCH. A proof of Theorem 3.4 can be based on
Theorems 3.2, 3.3 and the first part of Observation A.4. The following alterations
are required in the application of Theorem 3.2: Replace Z with Z,, and replace %
with ¢, the set of CDF’s of the medians based on %.

A REMARK PERTAINING TO SECTION 3.5. The appropriate bound B in the
limiting cases presented in Section 3.5 is zero in each case, since the arguments of
the risk functions for the individual rules obtained in each instance are nonposi-
tive for all e > 0.

Acknowledgments. The authors wish to thank the referees and Associate
Editor for their thoughtful suggestions which have enhanced this paper.



ROBUST FIXED SIZE CONFIDENCE PROCEDURES 1253

REFERENCES

BERGER, J. 0. (1985). Statistical Decision Theory and Bayesian Analysis, 2nd ed. Springer, New
York.

BICKEL, P. J. (1965). On some robust estimates of location. Ann. Math. Statist. 36 847-858.

GASTWIRTH, J. L. and RUBIN, H. (1969). On robust linear estimates. Ann. Math. Statist. 40 24-39.

HUBER, P. J. (1981). Robust Statistics. Wiley, New York.

ZEYTINOGLU, M. and MiINTz, M. (1984). Optimal fixed size confidence procedures for a restricted
parameter space. Ann. Statist. 12 945-957.

DEPARTMENT OF SYSTEMS ENGINEERING DEPARTMENT OF COMPUTER AND
UNIVERSITY OF PENNSYLVANIA INFORMATION SCIENCE
PHILADELPHIA, PENNSYLVANIA 19104-6389 UNIVERSITY OF PENNSYLVANIA

PHILADELPHIA, PENNSYLVANIA 19104-6389



