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I thank the Editor for the opportunity to contribute to the discussion of this
valuable paper.
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All the discussants make informed and penetrating comments. I am most
grateful for the time they have devoted to this project. It is very interesting to
see the lively debate among discussants—some of them strongly favor non-
pivotal methods, others definitely like a pivotal approach. If I had to make
predictions, I would say that in many years’ time, when most of the dust has
settled, pivotal methods (e.g., percentile-£) will tend to be favored for simple
problems such as estimation of a mean, particularly when computational re-
sources are limited, and often after appropriate transformations to stablize
variance or to put the parameter space into a more useful form. Bootstrap
iteration and coverage correction (e.g., the double bootstrap) may find favor as a
robust, utilitarian tool, suitable for complex problems provided adequate compu-
tational resources are available. See my reply to Beran’s comments. The non-
pivotal methods which are presently most favored by practitioners, will be
largely confined to exploratory studies, highly complex problems, and certain
parametric problems. I wonder how kindly time will judge these predictions!

I appreciate Bai and Olshen’s point that my results cannot be expected to go
over automatically to random parameter models. I am fascinated by their
comments following their equation (6), and look forward to seeing their forth-
coming note with Bickel. Concerning their remarks about regularity conditions
in their second paragraph, I must admit that things like moment assumptions
did not weigh heavily on my mind while preparing my paper. I feel sure that a

Institute of Mathematical Statistics is collaborating with JSTOR to digitize, preserve, and extend access to
The Annals of Statistics. BIEORS ®

5 ()

v

e 2

WWw.jstor.org



982 DISCUSSION

smoothness condition and moments of order j + 2 are sufficient for an expansion
of coverage error to order n~7/2 in the case of the mean, say, but readily concede
that our present technology is insufficient to allow verification of this suggestion!

Beran argues that both accelerated bias correction and percentile-¢ “do not
generalize readily to confidence sets for a multidimensional parameter.” While
this is fine for accelerated bias correction, I believe it is false in the case of
percentile-¢. In fact, percentile-¢ generalizes immediately and straightforwardly
to a higher (ﬁmte) dimensional setting. If § and § are p-dimensional, § with
asymptotlc variance matrix n~!2 (2 nonsingular), construct a Vn consistent
estimator 3 of =, and base inference on the asymptotically normal N(0, I)
statistic nl/28-V/ 2(0 9). Estimate the distribution of this quantity using

n'/28*-1/2(§* — §), where §* and $* are versions of § and $ computed for a
resample rather than the sample. Results for this multivariate problem, includ-
ing second-order correctness of confidence region boundaries, generalize easily
from the univariate case discussed in my paper; see for example Hall (1987).

In small-sample high-dimensional problems there may be difficulties with
percentile-t due to the determinant of £ or £* being close to zero. However,
there are rarely problems in the case of estimating a two-dimensional mean, for
example, and any difficulties which do arise are not due to failure of the
percentile-t argument to generalize to higher dimensions.

Beran argues that certain bootstrap methods may be used in infinite dimen-
sional (nonparametric) circumstances. That may be the case, but careful atten-
tion should be paid to bias in such problems. It is not clear to me that the
bootstrap adequately estimates bias in nonparametric confidence interval prob-
lems.

I agree with Beran that the double bootstrap is a useful tool, provided
sufficient computational resources are available. However, I now view the double
bootstrap somewhat differently from the way it was portrayed in the articles
where it was first discussed [Hall (1986a), Beran (1987)]. In both these places,
emphasis was on double bootstrapping to correct even further a confidence
interval (or testing) procedure which was already rather accurate. It may be
better to start with a procedure which has somewhat inferior coverage accuracy
at the expense of greater stability —examples include “backwards” and “hybrid”
methods discussed in the present paper. These methods produce meaningful
confidence regions even in awkward problems, such as intervals for mean ratios
or correlation coefficients. Use the double bootstrap to coverage-correct the basic
regions, thereby producing new regions which have at once good coverage
accuracy and high stability. This approach is both robust and utilitarian, and
could conceivably form part of a software package for high-powered pc’s.

As a final comment on Beran’s discussion, I should point out that there is a
pivotal, percentile-¢ approach to the confidence cone problem discussed by
Ducharme, Jhun, Romano and Truong (1985); see Fisher and Hall (1988).

I find Bickel’s argument appealing and attractive. It would be good to have
some idea of when this sort of argument fails. I suspect that the answer is, when
key quantities such as variances and coefficients of n=/2 and n~! terms in
Edgeworth expansions depend on quantities which cannot be estimated vn
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consistently. Thus, there might be difficulties when working with quantiles,
where variances involve densities evaluated at isolated points.

Of course, one of the important results to flow the Bickel’s discussion is that
the acceleration constant quite generally admits the formula “one-sixth skew-
ness,” which I proved only under rather restrictive conditions.

The objections which Buckland, Garthwaite and Lovell have to the per-
centile-t and accelerated bias correction methods are often easily overcome by
transformation. Since a smooth transformation of the smooth function model
produces another smooth function model, and since most statisticians are ex-
tremely familiar with the use of transformations in the context of constructing
range-preserving confidence intervals, I did not say much about transformations
on the paper. However, the correlation coefficient affords an excellent example.
Do not apply percentile-¢ directly to the sample correlation coefficient, but to
Fisher’s z-transformed coefficient. Having constructed the confidence interval,
transform it back by untransforming its endpoints. Not only does this procedure
construct intervals which do not violate the range of the parameter space, but
the variance-stablizing effect of Fisher’s transformation enhances the perfor-
mance of percentile-£, even in a nonparametric context.

The Robbins—Monro procedure proposed by Buckland, Garthwaite and Lovell
holds out promise for the special case where it is designed to work: parametric
problems with a single unknown parameter and no nuisance parameters.

I hope my paper does not convey the impression that I claim to have “a
complete theory of confidence intervals,” as suggested by DiCiccio and Romano,
for I do not. One has to draw the line somewhere and I chose to direct attention
at the smooth function model, which does include many very important exam-
ples—means, variances, F-ratios, correlation coefficients, etc. I think the paper
constructs the outline of an asymptotic theory for the smooth function model,
but it does not claim to discuss cases outside the model which do not share key
properties of the model. I had thought this was clear. Such cases include a
bootstrap—Studentized quantile, in which circumstance the polynomial in the
n~12 term of an Edgeworth expansion is not necessarily even.

It is easy to see that in terms of estimator variance, smoothing can yield no
first-order asymptotic improvement under the smooth function model, and so I
believe I am justified in neglecting the issue of smoothing in my article. However,
smoothing can be beneficial in other examples—variance estimation for the
sample quantile is a case in point. It is impossible to treat all these cases in a
single paper! '

The TILT method discussed by DiCiccio and Romano promises to offer the
performance of percentile-t and accelerated bias correction, without the need for
algebraic calculation. This is certainly a bonus.

Efron’s comments on position of critical point seem to be more a criticism of
equal-tailed intervals than of percentile-¢ or of “looking up tables the right way.”
He is correct in suggesting that critical points of equal-tailed intervals are often
placed in a manner which is suboptimal if minimization of interval length is
important. I would argue that the right way of solving this problem is to employ
a bootstrap method designed to minimize interval length; the “shortest interval”
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method is but one example. A technique such as accelerated bias-correction is
surely susceptible to the problems which Efron ascribes to methods such as
percentile-¢, for like these methods, ABC is second-order correct relative to a
theoretical equal-tailed interval.

I am particularly grateful for Wei-Yin Loh’s contribution, which points out
that coverage accuracy of general confidence intervals may be improved by
application of the bootstrap. If the initial interval were a bootstrap interval,
than the result of Wei-Yin Loh’s argument is a double bootstrap interval of the
type discussed by Hall (1986a) and Beran (1987); but of course the nice thing
about the “calibration method” is that it is applicable quite generally, starting
from an arbitrary interval.

I'm afraid I disagree with Robinson that “much greater emphasis should be
placed on the accuracy of the approximation of the bootstrap critical points to
the theoretical points.” The present paper devotes considerable attention to
second-order correctness, which (it points out) is equivalent to O(n~') coverage
accuracy of one-sided intervals when endpoints of those intervals admit the
usual Cornish-Fisher expansion. However, it would be very misleading to delve
more deeply into the subject of critical point accuracy. In particular, third-order
correctness is usually an unattainable goal and so there is little reason for
discussing it.

To appreciate why second-order correctness usually cannot be bettered, ob-
serve that coefficients in the term of order n /2 in an Edgeworth or
Cornish—Fisher expansion are usually unknowns, such as parameters describing
skewness. We know from Cramér-Rao theory that those quantities cannot be
estimated with any more than n~'/2 accuracy. Hence there is an unavoidable
error term, of precise size n=/2n~1/2 = n~1, in our estimate of the true quantile
used to construct a confidence interval. Since that quantile is multiplied by
n~'2 when constructing the critical point, the unavoidable error is of size
n~! = n=32 This clearly prevents third-order correctness from being at-
tained. Only in very special cases, such as parametric problems with known
skewness, will third-order correctness be possible.

I do agree with Robinson that, when discussing the influence of a finite
number of simulations, the selection of B can have a significant effect on
accuracy of critical point (as distinct from coverage). In an earlier study [Hall
(1986b)] of the effect of simulation order on coverage accuracy, I pointed out
that my theoretical conclusions applied only to coverage. I stressed that those
results “do not amount to a suggestion that B can be taken relatively small
without penalty.”

I wish I could respond to Singh and Liu’s request for an intuitive explanation
of why “short” confidence intervals simultaneously reduce interval length and
increase coverage probability. It is not true in all circumstances, and why it
should hold in the important case of the mean I do not really know. °

I do agree with the tenor of Singh and Liu’s comments concerning percentile-¢
and accelerated bias correction. However, it is worth reiterating comments made
in my paper on the extent to which practical conclusions can be drawn from a
theoretical comparison: Theoretical arguments “comprise only part of the infor-
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mation needed for complete evaluation of bootstrap methods,” and indeed “in
some situations there are practical reasons for using ‘suboptimal’ procedures.”

Veall and some other contributors point to difficulties with percentile-¢ when
either it is not feasible to estimate the variance or when the only variance
estimate available fluctuates erratically (e.g., has large variance itself). A solution
to both problems is bootstrap iteration, provided one can afford the numerical
cost. That is, construct a “bad” bootstrap confidence interval, such as backwards
or hybrid, use the bootstrap to estimate the true coverage of this interval for a
variety of nominal coverages and then coverage-correct, selecting a nominal
coverage level which makes the estimated true coverage close to the desired true
coverage. Simulations with the correlation coefficient example, a notoriously bad
performer using percentile-¢ without a transformation, show that this technique
works well. It is none other than the bootstrap iteration idea discussed by Hall
(1986a) and Beran (1987).

A solution to the second problem noted by Veall is to apply a variance
stabilizing transformation, then use percentile-t and then untransform. See the
previous reply to Buckland, Garthwaite and Lovell.

My thanks again to all the discussants.
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