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NEARLY OPTIMAL SEQUENTIAL TESTS OF
COMPOSITE HYPOTHESES!

BY TzE LEUNG LAl

Stanford University

A simple class of sequential tests is proposed for testing the one-sided
composite hypotheses H,: 0 < 0, versus H,: 0 > 0, for the natural parame-
ter 0 of an exponential family of distributions under the 0-1 loss and cost ¢
per observation. Setting 0, = 6, in these tests also leads to simple sequential
tests for the hypotheses H: 0 < 0, versus K: 0> 0, without assuming an
indifference zone. Our analytic and numerical results show that these tests
have nearly optimal frequentist properties and also provide approximate
Bayes solutions with respect to a large class of priors. In addition, our
method gives a unified approach to the testing problems of H versus K and
also of H, versus H, and unifies the different asymptotic theories of Chernoff
and Schwarz for these two problems.

1. Introduction and background. Let X, X,,... be iid. random vari-
ables whose common density fy(x) (with respect to some nondegenerate measure
v) belongs to the exponential family

(1.1) fo(x) = %0,

Thus, EyX, = y’(9) is increasing in 4, and the Kullback-Leibler information
number (0, \) = E{log[ fo(X,)/fx(X,)]} is given by

(12) I(8,1) = (0= N¥(0) = (4(8) =¥ (V) = ['A - )y ()

Letting S, = X, + -+ +X, and X, = S,/n, the maximum likelihood estimate
of 0 after n observations is obtained by solving the equation y’(8) = X,,, which
may not have a solution in the natural parameter space ©. Throughout the
sequel, we shall assume that # is known to lie in an open interval A (C ©) with
end-points — o0 < @, < @, < 0o such that

inf  ¢"(8) >0, sup  ¢"(8) < o0

a —n<@<az+n a,—n<0<ayz+n

1.3
(13) ‘and ¢” is uniformly continuous on (@, — 0, a, + ) for some > 0.
For example, when the X are normal, we can take A = © = (— o0, 00). Since 8 is
known to lie in A, the maximum likelihood estimate of § based on X,..., X, is
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given by
b,= (¥)7(X,), ify'(a) <X, <y(ay),
(1.4) =a, if X, < ¢'(a,),
= a,, if X, > ¢'(a,).

Let 6,,6, € A with 6, < 6,. The problem of testing sequentially the simple
null hypothesis H,: 6 = 6, versus the simple alternative H,: § = 8, was solved
definitively by Wald and Wolfowitz (1948). They showed that among all tests for
which
(1.5) P, (reject H)} <a and Py{reject H,} < B

and which have finite expected sample sizes under both H, and H,, Wald’s
(1945) sequential probabilty ratio test, SPRT(a, ) with error probabilities «
and B under P, and Fy, respectively, minimizes the expected sample sizes both
under H, and under H,.

The theory of optimal sequential tests of composite hypotheses, however, is
much less complete, and many basic problems still remain to be settled. First
consider the problem of testing sequentially the composite null hypothesis H:
0 < 6, versus the composite alternative H,: 6 > 6, subject to the error con-
straints

Py{reject Hy} < a for b < 4,
Py{reject H} < B for 6 > 6,.

Although SPRT(a, B) also satisfies the error constraints (1.6) and has minimal
E,T at = 6, or 6,, where T denotes the sample size, its E,T may be far from
being optimal at other values of 8, as was pointed out by Kiefer and Weiss (1957)
who also suggested the minimax approach of finding a sequential test which
minimizes sup, E,T over all tests satisfying (1.6). This minimax problem has been
studied by Weiss (1962), Lai (1973) and Lorden (1976, 1980).

Instead of this frequentist minimax approach, one may adopt a Bayesian
approach putting a prior distribution 7 on A and introducing a cost of ¢ for each
observation together with a loss of 1 (if the decision is wrong) and 0 (otherwise)
—the so-called “0-1 loss.” Thus, ¢ represents the ratio of the sampling cost to
the cost due to wrong decision. The problem then is to find a stopping rule T' and
a terminal decision rule & to minimize

(1.6)

T, 8) = cfAE,,wa(o) + fosop,,{s accepts H,} dn(6)

1.7)
+ [ Py{8 accepts H,} dn(9).
06,

A well known asymptotic solution to this problem is due to Schwarz (1962).
Let #(c) denote the continuation region of the Bayes rule, i.e., the Bayes rule
continues sampling at stage n + 1 iff (n, S,) € #(c). Assuming that =(I) > 0
for every open interval I C A, Schwarz’s (1962) theory of asymptotic shapes
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leads to the following simple limiting continuation region of the Bayes rule: As
c—0,

1.8) %(c)/|logc| —» {(t,w): 1+ min [6w — ty(6,)] > sup [6w — txp(ﬂ)]}.
i=0,1 fcA

Thus, writing n = t|log ¢| and S, = w|log c|, an asymptotic approximation to the
Bayes rule is to continue sampling at stage n + 1 iff

loge™ + min [6,8, — ny(6,)] > sup [6S, - ny(8)]
i=0, fea
or, equivalently, to stop sampling at stage

N, - inf{n > 1 max[ I (%) / ITia(%), [T (X) ﬁfol(xi)]

> c‘l}.

(1.9)

The terminal decision rule &* is to accept H, (or H,) if

N, . N,
i_qfol(Xi) > (or S)Efoo(xi)-

In view of the integral representation in (1.2), the function
(1.10) J(0) = max{1(9,6,), I(9, 0,)}
is minimized at 6* (with 4, < §* < 6,) defined by
V(6%) = (4(6,) — ¥(8)}/(6, - ) o, equivalently,
1(6*, 6,) = 1(6*,9,).
As shown by Wong (1968), as ¢ — 0,

(1.11)

(1.12) N, < |log c|/J(6*),

(1.13) EyN, ~ |logc|/J(8) for every 0,

(1.14)  sup P;{8* accepts H,} = o(c|log c|) = sup P,{8* accepts H,},
0<6, 0>6,

and the Bayes risk of the test (N,, 8*) satisfies

(;‘I’lg)r(T, 3).

A basic problem with Schwarz’s theory of asymptotic shapes is whether the
simple attractive rule (1.9) provides an adequate approximation to the actual
Bayes rule. The theory assumes that ¢ — 0 while the indifference zone 0y, 0))

.remains fixed. To see how this assumption may lead to difficulties in applying
the theory, consider the simple case where 6, = A = —§, and the X, are normal
with mean # and variance 1, so that J(6) = 3(16] + A)2. Although ¢ may be very

7(0
(1.15) r(N,, 8*) ~ c|log c| fA cf](—(o)) ~
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small (say ¢ = 10-%) and A appears much larger to justify its being considered
as “fixed” (say A = 0.1), |log ¢| may turn out to be smaller than 1/J(8) for
|6] < A. Since the asymptotic formula for the Bayes risk (1.15) involves
|log c|/J(8) [see also (1.13)], if one uses the “c — 0” approximation in this case,
it seems more reasonable not to consider A as “fixed” but to also let A — 0.

Another important development in the area of Bayes sequential tests of
composite hypotheses is Chernoff’s (1961, 1965a, b) work on testing sequentially
H,: 0 < 0versus H,: § > 0in the case where the X; are normal with mean § and
variance 1. Instead of assuming an indifference zone as in Schwarz’s theory,
Chernoff’s theory assumes a loss of |6| for the wrong decision and considers the
problem of finding a stopping rule T' to minimize

r(T) = cf_°° E,Tdn(8) + fj’ 16|B,{Sy > 0} d(0)

(1.16) o
+f0 0P,{S, < 0} d=(8),

where the prior distribution # is assumed to be normal with mean 0 and variance
o2, noting that the Bayes terminal decision rule accepts H, (or H)) according, as
S, < 0 (or S, > 0) when stopping occurs at stage n.
While Schwarz (1962) applied the transformation t=n /|logec| and w =
S,/|log c| to obtain the limiting region (1.8) in the (¢,w) plane as ¢ — 0,
Chernoff (1961) introduced a different normalization for the problem (1.16),

(1.17) t=c¥3(n+d7%), w=c"%,
n

and obtained also a limiting continuation region of the form {(¢, w): |w| < f(¢)}
as ¢ — 0. The stopping boundary f(¢) arises as the solution of the corresponding
continuous-time stopping problem involving the Wiener process, and an asymp-
totic analysis of the free boundary problem associated with the optimal stopping
problem leads to

(1.18) f(t) = (3t[log1/¢ — (log8)/3 + 0(1)]}'/* ast— 0,

(1.19)  f(t) ~ (48)7" ast— oo

[cf. Chernoff (1965a) and Breakwell and Chernoff (1964)]. It is interesting to
compare this with the boundary |w| = f*(¢) in Schwarz’s limiting region (1.8) in
the normal case where 8, = A = —0, [{(0) = 16% and A = (— o0, 0)]:

(1.20) *(8) = [(2¢)% - At]™.

There is, therefore, a'big difference in the asymptotic solutions as ¢ — 0
between Schwarz’s theory, which assumes a fixed indifference zone (4,, 6,), and
Chernoff’s theory, which assumes (instead of an indifference zone) a loss of |0| for
the wrong decision. Not only are the normalizations and limiting regions differ-
ent in the two theories, but the methods of deriving these results are also very
different. Schwarz’s (1962) theory is based on approximating the Bayes rule by
simple upper and lower bounds that are associated with stopping when the
posterior risk falls below ¢ (for the upper bound) or falls below constant times
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c|log ¢| (for the lower bound). Chernoff’s (1961) theory deals only with the
normal case and is based on replacing the discrete-time stopping problem by a
continuous-time stopping problem which can in turn be reduced to a free
boundary problem.

In this paper, adopting the 0-1 loss function, we provide a unified approach to
Bayes sequential tests of H,: 6 <6, versus H;: § >0, (as considered by
Schwarz) and also of H: 6 < §, versus K: 8 > §, (as conmdered by Chernoff) for
the parameter 8 of the exponential family (1.1). Note by (1.4) that if X e Y'(A),
then

n n
(1.21) log{ 1‘[1 f2( X;) Hl f,(X,.)} =nlI(8,,9).
Therefore, Schwarz’s stopping rule (1.9) is essentially equivalent to
(1.22) N=inf{n>1: max|1(8,,6,), 1(8,,8,)] = n""|log cl}.

We propose to replace the factor |logec| in (1.22) by g(cn), where g is a
nonnegative function on (0, o) with g(¢) ~ |log f| as ¢t — 0 and satisfying some
other conditions that will be described in Section 3. Thus, to test H,: 6 < 6,
versus H;: 6 > 6, with the 0-1 loss and a cost of ¢ for each observation, we
propose to use the stopping rule

(1.23) N(g,c)= inf{n >1: max[I [ ) 1)] > n'lg(cn)}

and the terminal decision rule §* that accepts H, or H; according as 9 ) < 0*
or 9N(g ¢ > 0%, where 0* is defined in (1.11). In Sectlons 3 and 6, it w111 be shown
that the test is asymptotically Bayes [in the sense of minimizing (1.7)] as ¢ = 0
for a large class of priors on A, not only for fixed 6, and 8, (as in Schwarz’s
theory), but also as 8, — §, » 0. Moreover, from the frequentist viewpoint of
optimality, it will be shown that as ¢ — 0 the test asymptotically minimizes not
only the maximal expected sample size supy; E,T, but also [(E,T)p(8)d8 for a
large class of weight functions p, among all tests that satisfy the error con-
straints (1.6) with & = P, (O, ., > 0*} and B = Py (B ., < 0*}.
Letting 8, = 6, in (1.23) leads to the stopping rule

(1.24) T(g,c) = inf{n >1: 1(8,,8,) > n"'g(cn)}.

In Section 4, we propose to use this stopping rule for the problem of testing H:
6 < 8, versus K: 6 > 0, with the 0-1 loss and a cost of ¢ for each observation.
The terminal decision rule is to accept H or K according as 9T(g, o S by or
Tig, o) > o- 1t will be shown that by a proper choice of g (developed in Section
2), the test is asymptotically Bayes as ¢ — 0 for a large class of priors on A.
The stopping rules (1.23) and (1.24), therefore, provide a unified treatment of
testing H,: 0 < 6, versus H,: @ > 6, (with an indifference zone) and of testing
H: 6 <6, versus K: 6 > 6, (without an indifference zone). Intuitively, as
‘9, — 8,, the Bayes sequential test of H,, versus H, should approach the Bayes
procedure for testing H versus K. Section 2 presents several basic results on the
continuous-time stopping problems in Bayes sequential tests of H, versus H,
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and of H versus K for the drift coefficient § of a Wiener process. These results
show that the stopping boundary for testing H, versus H, indeed approaches
that for testing H versus K as 6, — ,. Moreover, the asymptotic behavior of
the stopping boundaries near the origin is essentially the same for both prob-
lems.

Section 5 gives some numerical results on the performance of the tests
proposed herein. Their risks cE,T + P;{wrong decision} are compared at various
values of @ with the risk of the “fictitious” optimal fixed sample size test that
assumes the value of 6 to be known. A discussion of these results and of the
adaptive character of the stopping rules (1.22) and (1.24) is also provided in
Section 5.

2. Bayes sequential tests for the drift of a Wiener process. Let w(?),
¢t > 0, be a Wiener process with E(w(t)) = pt and Var{w(¢)) = ¢ (p is the drift
coefficient). Consider the problem of testing sequentially H: p < 0 versus K:
p > 0 with the 0-1 loss and a cost of ¢ for observing the process for a period of
length t. Assuming a flat prior (i.e., Lebesgue measure) on p € (— 0, o0), the
Bayes terminal decision rule is to accept H or K according as w(¢) <0 or
w(t) > 0 when stopping occurs at time ¢. With this terminal decision rule, the
posterior loss L(t,w) at time ¢ if w(t) = w is observed and we decide to stop
can be easily shown to be
(2.1) Lo(t,w) = t + &(— |w|t/2),
where ®(x) = [* (27)~%exp(— 1y?) dy. Introduce the transformation

s=1/t, Y(s)=uw(t)/t,
(2.2)
y=uw/t, o(s,y) = Lo(t,w) =s' + ®(—|yls~?).

Then Y(s) is the posterior mean at time ¢ = s!, and the optimal stopping rule is
to stop as soon as |Y(s)| > y*(s), where the optimal boundary y*(s) can be
determined by the free boundary problem

23 1d% du ; N

. _—— = <

a) 2 ay2 as or Iyl y (3),
(2.3b) u(s, y) = o(s,y) for|y| = y*(s),
93 du du ; i

( .C) ay - as Orlyl_y(s)

[cf. Chernoff (1968)].

An asymptotic analysis of the free boundary problem (2.3) along the lines of
Breakwell and Chernoff (1964) and Chernoff (1965a) shows that

© §712%(s) = 1(2/m)"*(s — Bs®/48n + ---} ass >0,

s V2y*(s) = {2[logs + lloglog s — ilog4w + o(l)]}l/2 as s — 0.
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Since ys~1/2 = wt~'/? by (2.2), we therefore obtain

LEMMA 1. For the preceding problem of testing H: p <0 versus K: p > 0
with 0-1 loss and unit sampling cost per unit time, the Bayes stopping rule
(with respect to the flat prior) is

(2.4) 1o = inf{t > 0: |w(¢)| = hy(2)},
where h, is a positive function on (0, ) such that

(2.5) hy(2) = {2t[log t™ '+ Loglog¢™! — tlogdn + o(l)]}l/2 ast— 0
and
(2:6) ho(t) = 1(2/m)"*(t V2~ 5t7%%/487 + -~} ast— co.

We now introduce an indifference zone (—v, y) and consider the problem of
testing Hy: p < —y versus H;: p > y with unit sampling cost per unit time and
a loss of 1 for the wrong terminal decision (and 0, otherwise). Assuming a flat
prior on p, the Bayes terminal decision rule accepts H, or H, according as

w(t) < 0 or w(t) > 0 when stopping occurs at time £, and the posterior loss at
this time is given by

2.7 L(t,w)=t+ ®(—|w|t™*? - yt'/?).
An asymptotic analysis of the corresponding free boundary problem leads to
LEMMA 2. For the problem of testing H,: n < —vy versus H,: p > y with 0-1

loss and unit sampling cost per unit time, the Bayes stopping rule (with respect
to the flat prior) is

(2.8) 7, = inf{t > 0: |w(¢)| 2 h(t)},
where h, is a positive function on (0, ).
(i) For fixed 0 <y < o0, as t = 0,

(2.9) h(t) = {2¢t[log£™* + Lloglogt™* — Llogdr + o(1)]}",
and
(2.10) h(t) ~ 1(2/7)"*t V2%xp(—1y%) ast— .

(ii) Let y — . Then the asymptotic expansion (2.9) still holds as t — 0 such
that t = o((y%log y?)™ ).
(iii) Let y = oo0. Then for every fixed 0 <p <2, as t = 0 such that t <

py?log v?,
(211) k(&) =~y + {2t[log s + Hloglog £~ + O(D)]}' "~
(iv) As y = 0, SUp;, A -210g y2/1,(t) = O for every A > 2.

Details of the asymptotic analysis of the free boundary problem (2.3) [with
o(s, y) =81+ ®(—|y|s~ 2 — ys~1/2), where s = t~! and y = w/¢] associated
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with Lemmas 1 and 2 are given elsewhere. Comparison of (2.9) with (2.5) shows
that the optimal boundary for the problem of testing H,: p < —y versus H;:
p = v has the same asymptotic behavior for small ¢ as the optimal boundary for
testing H: p < 0 versus K: p > 0. Moreover, even when y — oo (large indiffer-
ence zones), (2.9) still holds for ¢ = o((y2log y?)~!) and a modified form (2.11)
also holds for ¢ < (2 — &)y %log y2. Thus, in the case of 0-1 loss, there is a
unified asmptotic theory as ¢ — 0 for continuous-time Bayes sequential tests of
H versus K and also of H,, versus H,. In this connection, also note the difference
between (2.5) corresponding to the 0-1 loss and Chernoff’s asynmptotic expan-
sion (1.18) corresponding to the loss |u| due to wrong decision. Since setting
vy = 0 in (2.10) gives the leading term in (2.6), there is also a unified asymptotic
theory as ¢t — oo for Bayes sequential tests of H versus K and also of H, versus
H; in the case of 0-1 loss.

Using the numerical methods developed by Chernoff and Petkau (1986), we
computed the continuous-time optimal stopping boundaries A, for a variety of
values of y. The graphs of A, for y = 0,0.5,1,5 are given in Figure 1. Our
numerical and analytic resu'*s suggest the following simple approximation to A:

hE(t) = 1(2/m) /(¢ - 5t75/2/48x), ift =08,
= exp(—0.69t — 1), if0.1 <t<0.8,
(2.12) =0.39 — 0.015¢"/2, if0.01 <¢<0.1,
= {¢[2log t™" + loglog ¢~ — log4m

Y% if ¢ <001

—3exp(—0.016t"12)]
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Figure 2 shows that A, is closely approximated by A§. The approximation A
is based on (i) the asymptotic expansion (2.6) which holds remarkably well for
t > 0.8 (Figure 2a), (ii) the approximate linearity of log 2,(¢) for 0.1 <¢<1
(Figure 2c), (iii) the approximate linearity of A, as a function of ¢~ 172 over the
range 0.01 < ¢ < 0.1 (Figure 2b) and (iv) the asymptotic expansion (2.5) as ¢ — 0.

For 0 <y < 20, our numerical results and the asymptotic relation (2.10)
suggest the following simple approximation to A.:

h¥(t) = h§(t)exp(—1v%), t=1,
= h§(t)exp(-1y21%), 0<t<l.

Figure 3 shows that this provides a good approximation to A.; moreover, for
v = 20, we can use the following approximation which is suggested by Lemma
2(ii)—(iv):

(214)  hy*(2) = [£/*(2logt™" + loglog ™! — log4m)"” — y¢]

(2.13)

. 8. Asymptotically optimal sequential tests of H,: 0 <08, versus H;:
0 > 0, for the parameter of an exponential family. Let X, X,,... beii.d.
random variables having a common density f,(x) = ¢®*~¥® with respect to
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some nondegenerate measure ». Let S,=X, + --- +X,, X, =S,/n. In this
section, we study the problem of testing H,: 6 < 6, versus H;: 0 > 0, (> 6,)
with a cost ¢ for each observation and the 0-1 loss.

To begin with, suppose that ¢ is small and the width 6, — 6, of the indif-
ference zone is considerably larger than c'/2. Specifically, let

(3.1) ¢~ 0 and (8, - 6,)*/c > co.

Moreover, assume that the X; are normal with mean 8 and variance 1, and that
0, = —0,. Define

(32) t=cn, W(t) = cl/ZSn, p= 0_1/20, y= 0_1/201.

Since c'/20n = ut, w(t) is a Wiener process with drift coefficient p and with ¢
restricted to the set I, = {c,2c,...}. As ¢ = 0, I, becomes dense in [0, c0). This
suggests using for small ¢ the Bayes stopping rule 7, defined in (2.8) for testing
H,: p < —vy versus H;: p > vy based on the w(t) defined in (3.2).

Let g(t) = {h(?) + vt)%/2t, where h, is defined in Lemma 2. Then in view
of (3.2),

lw(t)|2h,(2) = (lw(t)| + v¢)’/2t = g,(2)
(3.3) < (ISl + 6,n)’/2n = g,(cn)
o max{I(@n,oo), I(@n, 01)} >n"'g(cn),

where 9n =X, and I(6,A) = 1(8 — A\)? is the Kullback-Leibler information
number. Hence 7, leads to a stopping rule of the form (1.23). By (3.1), y » o
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and, therefore, by Lemma 2(iii), for every fixed 0 < e < 1,
(3.4) g,(t) =logt™' + jloglogt™' + O(1) if0<t<(2-¢e)y %logy?,
=o0(1) ift>(2+e)y 2logy2

We now extend the rule 7, from the normal case to the general exponential
family. We assume that 6 is known to lie in an open interval A C © satisfying
(1.3) and that 6,, 8, € A. Define the maximum likelihood estimate 9 by (1.4).
For every real number § let &; denote the class of all nonnegative functlons on
(0, 00) such that

(35) g(t) ~logt' and g(¢t) >logt !+ ¢loglogt™! ast— 0.
For g € %, and c > 0, define the stopping rule
(3.6) N(g,c) = mf{n >1: max[I ,6,),1(8,,0,)] = n“g(cn)}

as in (1.23). In conjunction with this stopping rule, use the terminal decision rule
6* which accepts H, or H, according as gN(g oS 0% or Oy o > 0%, where 0* is
defined in (1.11). The following theorem shows that the test (N( 8,c), 8% is
asymptotically Bayes [in the sense of minimizing (1.7)] as ¢ — 0 for a large class
of priors, not only for fixed 6,, 8, (as in Schwarz’s theory), but also as 8, — 4, — 0.

THEOREM 1. Let 7 be a probability distribution on A and let r(T, §) denote
the Bayes risk (1.7) of a test (T, 8) of H,: 0 < 6, versus H,: 6 > 6, with the 0-1
loss and cost c per observation. Let g € €, with § > — }

(i) Assume that #([8, — ¢, 0,]) > 0 and #([6,,0, + t]) > O forall t > O and
that for some p > 0 and ¢ > 0,

m([x, y]) <p(y—x) forallx,y<[6,-¢6,]U[06,,6,+¢]
withx < y.

(3.7)

Then for fixed 6, and 6,, as ¢ — 0,
(3.8) r(N(g, c),8*) ~ c|log c| f anl) _ inf (T, 8)
. g! b g A J(o) (T, 8) b b

where J is defined in (1.10). Moreover, we can drop the assumption (3.7) if
£> 1.

(ii) Assume that = has a positive continuous density n’ in some neighborhood
of 8,. Then as ¢ - 0 and 6, — 8, such that (6, — 0,)?/c - oo,

sy T(N(&)8) ~ (8 (60) /4 (80)) (6, - 6,) " "log[(8, — 6,)"/c]
(3.9) ~ inf (T, 5).
(1,9
(iii) Let 0 <y < oo and let g.(t) = {h.(t) + yt}*/2t, where h., is the optimal
boundary for the continuous-time stopping problem introduced in Lemma 1 ( for

y = 0) and Lemma 2 (for y > 0). Then g, € ¥, ,,. Assume that m has a positive
continuous density =’ in some neighborhood of 6,. Then as ¢ = 0 and 6, — 6,
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such that (6, — 6,)/(2¢*/?) - v,
r(N(g,,¢), 8*) ~ Jnf r(T,8)

‘/277 (8)
(3.10) ~ W{/ E(r|n)dp

+/_:P[w(‘rv) > OIM] dp + fwa[w(TV) < OIM] d”},

where w(t), t > 0, denotes the Wiener process with drift coefficient p under
P(-|p), and 7, is defined in (2.8).

The proof of Theorem 1 is given in Section 6, which also studies the power
function and the expected sample size of the test (N(g, ¢), 6*). Let

(3.11) a=P by, o>0"),  B=Pflng=<0*)

and let #(a, B) denote the class of all tests that satisfy the error constraints
(1.6). Making use of the asymptotic properties of the test (N(g, ¢), §*), together
with Hoeffding’s (1960) lower bound for the expected sample size of any test in
F(a, B), we prove in Section 6 the following asymptotically optimal frequentist
properties of the test (N(g, ¢), §%).

THEOREM 2. Let g € 6; for some ¢ and define a,f by (3.11). Then
(N(g, ©), 8%) € #(a, B).
(i) For fixed 6, and 6,, as ¢ - 0,

(3.12) loga ~ log B ~ log c,
and for every bounded subset B of A,
(3.13) EyN(g,c) ~ |logec|/J(0) ~ inf  E,T,

(T,8)€4(a, B)
uniformly in § € B, where J is defined in (1.10).
(i) As ¢ = 0 and 0, — 6, such that (6, — 6,)?/c - oo,
(3.14) log a ~ log B ~ log(c/d?),
where d = 0, — ,. Moreover,

3.15) supE,N(g,c) ~ 8d %(logc™'d?)/y"(6,) ~ inf supE,T
( ) 0p sN(g,c) ( g )/‘P(o) T, 8) g ) 0p [)

and for every distribution function = on A having a positive continuous deriva-
tive ' in some neighborhood of 0,

| EoN(g, c) dm(8) ~ (87(8,)/4"(6,))d"log(d?/c)
(3.16)

~ E,Tdn(8
, 8)6f(a B)f oTdn(8).
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4. Asymptotically optimal tests of H: 8 < §, versus K: 6§ > 0,. In this
section we study the problem of testing H: 6 < 6§, versus K: 8 > 6§, for the
parameter @ of the exponential family (1.1), with a cost ¢ for each observation
and the 0-1 loss. Assuming a prior distribution = on A, the Bayes risk of a test
(T, 8) is given by

r(T,8) = cfAE,,wa(o) + j;dp,,{s accepts K } d(8)

(4.1)
+j; 0P,,{8 accepts H)} dn(8).

Define h, as the optimal boundary for the stopping problem in Lemma 1
involving the Wiener process and let gy(¢) = h2(¢)/(2t). Consider the stopping
rule

(4.2) T,=inf{n > 1: 1(8,,6,) = n~'go(cn)},
and the terminal decision rule 8§* such that
(4.3) 8* accepts H or K according as 9Tc < @, or 9Tc > 6.

Note that 97; # 0, by (4.2) and that the stopping rule N(g, c) defined in (3.6) for
testing H,: 0 < 6, versus H,: 6 > 0, reduces to T, when 8, = §, and g = g,,.
Theorem 3 shows that (T, §*) is asymptotically Bayes, with respect to a general
class of priors =, for testing H versus K.

THEOREM 3. Let m be a prior distribution on A such that = has a positive
continuous density ' in some neighborhood of 6, (€ A). Define r(T, ) as in
(4.1) and define T, by ( 4.2) and 6* by (4.3). Then as ¢ — 0,

T,h8*) ~ i
r(T,, §*) (;‘r’xg)r(Tﬁ)

01/277’( 00)

WD~ gy A B da

+f_0wP[w(70) > Olu] du + waP[w(’ro) < 0u] du},

where w(t), t > 0, denotes the Wiener process with drift coefficient p under
P(-|p), and 1, is defined in (2.4).

We preface the proof of Theorem 3 by Lemmas 3 and 4.

LEMMA 3. Let w(t), t >0, be the Wiener process with drift coefficient p
under P(-|p). Let h be a bounded positive function on (0, ©) such that

(4.5) h%(t) ~ 2tlogt™! and h%(t)/2t=1logt ' + £loglogt™ ast— 0
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for some ¢. Define T = inf{t > 0: |w(¢)| = h(t)}. Then
f " E(rln) dp

— o0

(4.6) ) .
+f° Plu(r) > ol du+ ["Plu(r) < Olp] du < oo.

Proor. By (4.5) and Lemma 1 of Lai, Robbins and Siegmund (1983), as
lu| = oo,

E(rln) ~ (2log u?)/p?,
Plw(r)sgn(p) < 0lu] = O (log u?) ~*~%).
From (4.7), the desired conclusion (4.6) follows. O

4.7)

LEMMA 4. Let 6, € A. Forc > 0, let w(t) = (¢/y"(0,))/%(S, — ny'(6,)) for
t=cn (n=1,2,...) and define w(t) by linear interpolation for cn <t <
c(n + 1). Then for B> 0 and M > 0, as ¢ = 0, the process {w/(t), 0 < t < B}
under Py .., yn8,y* converges weakly to the Wiener process {w(t), 0 < t < B}
with drift coefficient p., the convergence being uniform in —M < p < M.

Proor. Note that for ¢t € {c,2¢c,...},
Eg, e pic vty (W)
= t(ey(8)) V(w80 + n(c/¥"(8))) = ¥(60))
- ut,
Varoow(c/-wwo»‘/’(wc(t)) ~ Vary (w/()) = ¢,

as ¢ — 0, uniformly in ¢ < B and —M < p < M. Since

supEy|X — E;X|" < o forallr>0
fecA

[cf. Lai (1988), (3.3)] the desired conclusion then follows from the uniform version
of Donsker’s invariance principle [cf. Freedman (1971), pages 90-93 and Lai
(1977), Theorem 2]. O

LEMMA 5. Let 8, € A. Define T, by (4.2) and 6* by (4.3). Then as ¢ — 0,
E,T, = O((6 - 6,) "log{c (0 - 6,)°})

(48) uniformly in 6 € A with (8 — 6,)” > 2¢,
(49) Py{br, > 6,) = O(c(6 - 6,)77)

uniformly in 6 € A with 6 — 6, < —(2¢)"?,
(4.10) Py{by, < 8,) = O(c(6 - 8,)77) |

uniformly in 8 € A with 6 — 6, > (2¢)"*.
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Proor. We make use of the boundary crossing theory developed in Lai
(1988). Since g,(t) = hi(¢)/2t, it follows from Lemma 1 that

(4.11) 8o(t) ~logt ™ ast—>0 and gy(t) >0 ast— .

Let L, = sup{n: I(@n, 0,) < n7'gy(cn)}. In view of (4.11), an argument similar
to the proof of Theorem 3 of Lai (1988) shows that

E,L,= 0((8 - 6,) "log{c™X(8 — 6,)"})
uniformly in § € A with (8 — 6,)? > 2¢. Since T, — 1 < L, (4.8) follows. More-

over, (4.9) and (4.10) follow from Theorem 1(iii) of Lai (1988) [see also Lai (1988),
Lemma 7 and Lai (1987), Lemma 1].

PROOF OF THEOREM 3. Let M > 2. By Lemma 4, as ¢ — 0,
Py s picpyrooyrtcT. < x} > P{ry < xjp} forall x > 0,
ﬂoﬂ(c/-k"(oo»‘/’{an < 00} - P{w(7)) < O|p}
uniformly in —M < p < M, noting thaf for 9,, near 0,,
” 2 ” - D ’ 2
nI(8,,6,) ~ 39"(80) (8, — ) "n ~ $(v7(6,)) " {w(8,) — ¥ (6)} n

= 3(en) (e (B))(S, — nv'(8))°

and that 7, = inf{£: w?(¢)/2t > gy(t)}. It therefore follows from Lemma 4 that
as ¢ — 0,

ooo ;‘:(/-/:(;0::),:2{%( cT.) + P,[(T,, 8*) makes the wrong decision] } d(8)
o —M(c, (]

(412) ~ (c/9(8) 7' (@) [* E(rw) du + [° Pluo() > Olu] d

M
+f Plw(7) < O|u] dp}.
0
By choosing M arbitrarily large, it then follows from Lemma 5 and (4.12) that
r(T., 8*) ~ (c/¥"(6))*'(6,)

(4.13) x{ [ ECui)du+ [° Pluo(r) > o]

+_/(;°°P[w('ro) < 0lu] dp,}.
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Let M > 2. Asc— 0,
inf r(T,8) 2 (v'(8) + o(D)(c/¥"(8))"”"

. M
X (lTng) ~ M{E00+u<c/¢"(oo))'/2(CT)

(4.14) + Py ¢ e i) [(T, §) makes the wrong decision]} dp
) M
- a'(8)(c/4(8))"* int { [ E(rlp) d

+fi)MP[w(T) > Olp] dp + fOMP[w(f) < 0lu] dﬂ},

by Lemma 4, noting that for any given stopping rule 7 of the Wiener process
w(t) with drift coefficient p, the Bayes terminal decision rule for testing H'":
p < 0 versus K’: p > 0, with respect to 0-1 loss and uniform prior distribution
on [—M, M], accepts H' or K’ according as w(t) <0 or w(r)> 0. By the
definition of 7, and Lemma 3 [noting that A, satisfies (4.5)],

lim inf{f_MME(ﬂp) dp + fi)MP[w('r) > O] dp + fOMP[w('r) < 0|u] dp.}

M- 71

(415) = f:E(Tolu)dn+ f_owP[w('ro) > Olu] dp

+ f Plw(r) < O|u] dp.
0
From (4.13)-(4.15), the desired conclusion (4.4) follows. O

5. Some numerical results and discussion. In this section, we report
some simulation results for the sequential tests introduced in the preceding
sections. Instead of the exact continuous-time optimal stopping boundaries k,
and A, of Lemmas 1 and 2, it is much more convenient to use their approx1ma-
tions h* defined in (2.12), h* defined in (2.13) for y < 20, and h** defined in
(2.14) for v > 20. These approx1mat10ns lead to the stopping rules
(5.1) T* = inf{n >1: I(@n,ﬂo) >n"g} (cn)}
and
(5.2) N* = inf{n >1: max[I(@n,ﬂo), 1(8,, 01)] > n‘lgy*(cn)},

where g*(t) = {h*(t) + yt)*/2t for 0 <y < 20, g}(t) = {(R}*(t) + yt)?/2t for
vy > 20 and

(5.3) y=(6, - 6,)/(2¢"/?)
[cf. (3.2), (3.3) and (3.6)].
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TABLE 1
Expected sample size (E,T.*), error probability (py) and risk R (0) of the test (T,*, 8*) of H: § < 0
versus K: 0 > 0 for the mean 6 of a normal distribution with unit variance. Cost per observation = c.
Each result is based on 1600 simulation runs using importance sampling [ Siegmund (1976)].

c=10"2 c=10"3 c=10"*

p=c V% ET* p RO®) ET* p R0 EI* p R0

100 1.0 0.000 0.010 1.7  0.0000 0.0017 12 0.0000  0.0012
80 1.0 0.000  0.010 22  0.0000 0.0022 17 0.0000  0.0017
60 1.0 0.000 0.010 32 0.0000 0.0032 26 0.0000  0.0026
40 11 0.000 0.011 53 0.0000 0.0053 46 0.0000  0.0046
20 19 0.000 0.019 133 0.0002 0.0135 121 0.0004 0.0125
10 3.8 0.001  0.039 30.8 0.0032 0.0340 288 0.0049  0.0337

5 7.3 0024  0.097 61.0 0.0382 0.0992 553 0.0470  0.1023
2.5 11.6 0.132 0248 91.3 0.1593 02506 850 0.1718  0.2568
0.5 13.8 0.407  0.545 1104 04173  0.5277 995 0.4215 0.5210

For the problem of testing H: 8 < 6, versus K: 6 > 6, with the 0-1 loss and
cost ¢ for each observation, the risk function of a test is given by

R(8) = cE,T + Py{reject H}, 0 <4,,

54
(54) = cE,T + Py{reject K}, 8> 0,,

where T is the stopping time of the test. We will use the terminal decision rule
&* such that when stopping occurs at stage n,

8* accepts H or K according as 8, < 6, or 8, > 6,,

5.5 R
(5.5) and accepts H or K with probability ; if 8, = 6,.

Table 1 considers the case of a normal distribution with mean @ and variance 1
and tabulates the risk function of (7.*, 8*) for ¢ = 1072,1073,10~%. Note that
for every stopping rule T, the terminal decision rule 6* is Bayes with respect to
prior distributions that are symmetric about 6,. Assuming without loss of
generality that 6, = 0 (as in Table 1), note that the risk function of (T_*, §*) is
an even function (R (0)= R (—0)). Table 1 shows relative constancy of
R (c'/?) for the test (T,*, 6*) as ¢ varies from 10~2 to 10~*, particularly when g
is not too large, in agreement with the fact that R (c'/%u) converges, as ¢ — 0,
uniformly over bounded p intervals (Lemma 4).

Table 2 compares the risk of (T,*, §*) with that of the approximate Bayes test
(T,, 6*) defined in (4.2) using the continuous-time Bayes boundary g,. It shows
that there is little difference in risk performance between the two tests. Table 2
also compares the risk at @ of the test (7,*, 6*) with that of the (fictitious)
optimal nonsequential test (n,,, 6*) that chooses the best fixed sample size,
assuming knowledge of 6 and allowing fractional observations. First note that for
4d>0,

en + Py{(n, 8*) rejects K} = cn + ®(—0n'/?)
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TABLE 2
Risk function (= sampling cost + error probability) of the fictitious optimal fixed sample size test
(n. ¢, 8*) assuming knowledge of 8, compared with the risk functions of (T,*, 8*) and of (T, 8*) in
testing H: 60 < 0 versus K: 0 > 0 for the mean 0 of a normal distribution with unit variance. Cost
(¢) per observation = 10™4,

Sampling Error Risk of Risk of Risk of

B (=c71%) Cost ¢, (- pt,/%) (n,4,8%) (T.*,8%) (T.,8%)
100 0.00126 0.00019 0.00145 0.0012 0.0012
80 0.00185 0.00029 0.00214 0.0017 0.0017
60 0.00299 0.00051 0.00350 0.0026 0.0026
40 0.00581 0.00115 0.00696 0.0046 0.0046
20 0.01709 0.00447 0.02156 0.0125 0.0125
10 0.04485 0.01709 0.06194 0.0337 0.0337
5 0.09426 0.06238 0.15664 0.1023 0.1027
2.5 0.11854 0.19469 0.31323 ° 0.2568 0.2552
0.5 0.00992 0.48014 0.49006 0.5210 0.5240

is minimized when 16(27n)~/%xp(—0?n/2) = c, treating n as a continuous
variable. Hence, letting ¢, be the solution of the equation

(5.6) (27t)"” = tuexp(-1pt),
the optimal fixed sample size n, , is given by
(5.7) n,e=c't, withp=c"'20,

and the risk of the test (n, 4, 8*) is given by
(5.8) en, g+ @(—Onlc{%) =t + (I>(—p.t,1/2).
Note that as p — o0,
t, = n~*{4logp — loglog u — log 8 — }log(27) + o(1)},

so ®(—pt}/?) = O(p~?) = o(t,). Therefore, the risk (5.8) of the fictitious optimal
fixed sample size test (n,,, 6*) assuming knowledge of 6 is asymptotically
equivalent to (2log p?)/u2. From (2.12) and (4.7), it follows that the risk at 8 of
the test (T.*, §*) is also asymptotically equivalent to (2log p?)/p? as ¢ — 0 such
that |p| = ¢~/2|6| - oo, but 6 = o(|log c|'/?) [cf. Lai, Robbins and Siegmund
(1983), Lemma 2]. Table 2 shows that (T *, 6*) compares favorably with (n 4 8%)
over the entire range of values of p, not only when p is large.

The fictitious optimal fixed sample size n,, serves as a benchmark for
comparison of the test (T, 6*), or its approximation (T ,*, §*), with the class of
fixed sample size tests. We now compare (T, *) with a realizable fixed sample
size test of H: 6 < 0 versus K: § > 0 that is optimal in some sense. Since (7, 6*)
is an asymptotic solution, in view of Theorem 3, to the Bayes problem of testing
sequentially H versus K under the 0-1 loss, cost ¢ per observation and a prior
distribution F of 8 that has a positive continuous density f in some neighbor-
hood of 0, it is natural to consider the corresponding Bayes nonsequential test.
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Assuming F to be symmetric about 0, the sample size n, of the Bayes
nonsequential test can be determined by minimizing

cn + jo‘”p,{s,, <0} dF(8) + f_" P,{S, > 0} dF(6)

0
=cn+ 2/ ®(—n'/%0) dF(6).
0
Treating n as a continuous variable, an asymptotic analysis shows that as ¢ — 0,

(5.9) ng~ (£2(0)/27)c2/3

and that the Bayes risk of this Bayes nonsequential test is of the order
3( f 2(0)/27)/3%'/3 as ¢ — 0, which is larger than the order of constant times c'/2
for the Bayes risk of the test (T, §*) given in (4.4).

We next compare the test (T, *) with the class of SPRTs for testing the sign
of a normal mean under the 0-1 loss. Again taking any prior distribution F
which is symmetric about 0 and which has a positive continuous density f in
some neighborhood of 0, we note that the Bayes SPRT stops sampling at stage

(5.10) 7(b) = inf{n:|S,| > b}

and rejects H: § <0 or K: 8 > 0 according as S, ,, > 0 or S, ;, < 0, where b is
the value of x > 0 that minimizes the Bayes risk

(5.11) 2["{cEyr(x) + Py[S,e) < 0] } dF(6).
0
Standard computations show that & — o as ¢ — 0 and

f:Po[S,(b) < 0] dF(8) ~ f0°°e—2b0/(1 + e~240) gF(4)

(5.12)
~ 3b7'f(0)log2,
wa,T(b) dF(8) ~ b [ 071 — e2)/(1 + e72%) dF(9)
(5.13) ° °
~ f(0)b log b.
From (5.12) and (5.13), it then follows that (5.11) is minimized at
(5.14) x=b~ (log2)"*(c|logec|) ™* asc— 0.

Therefore, the Bayes risk (5.11) of (7(b), §*), the Bayes SPRT, is of the order
2(log 2)*/2f(0)(c|log c|)!/? as ¢ — 0, which is larger than the order of constant
times c'/2 for the Bayes risk of the test (T,, 8*) given in Theorem 3.

In Table 3, we apply the rule (T,*, 6*) to test H: p < § versus K: p > 1 for
the mean p of the Bernoulli distribution P{(X =1} =p =1 — P{X = 0}. The
natural parameter is 8 = log[ p/(1 — p)], and the hypotheses can be written as
H: 6 < 0 versus K: 6 > 0. Note that ¢(8) = log(1 — p) = —log(1 + e?), so (1.3)
does not hold if A is the entire parameter space ©. We assume, therefore, that p
is known to lie between 0.05 and 0.95, so that the maximum likelihood estimate
of p at stage n is p, = 0.05 V (X, A 0.95). In terms of the parameter p, the
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TABLE 3
Expected sample size, error probability and risk of the test (T,*, 8*) of H: p < } versus K: p > 1
for the mean p of a Bernoulli distribution. Cost (c) per observation equals 10~4. Each result zs
based on 1600 simulation runs. Also given for comparison are the fictitious optimal ﬁxed sample size

test (n, ,, 8*) assuming knowledge of p and the test (T &%),
The test (T,*,5%) Risk of The test (n,, ,,5%)
Error the test Error

n D E,T* probability Risk (Tc, %) n,, probability Risk
- 100 0.119 16 0.0000 0.0016 0.0015 13 0.00030 0.00160
- 80 0.158 20 0.0000 0.0020 0.0020 19 0.00038 0.00228
—60 0.231 28 0.0000 0.0028 0.0028 31 0.00053 0.00363
—-40 0.310 48 0.0000 0.0048 0.0048 59 0.00116 0.00706
—20 0.401 123 0.0004 0.0127 0.0128 71 0.00452 0.02162
-10 0.450 280 0.0063 0.0343 0.0350 + 449 0.01707 0.06197
-5 0.475 565 0.0489 0.1054 0.1058 941 0.06253 0.15663
—2.5 0.488 824 0.1699 0.2523 0.2519 1143 0.19897 0.31327
-0.5 0.498 1013 0.4384 0.5397 0.5397 99 0.48011 0.49001

Kullback-Leibler information number can be written as
I(p, p) = plog(p/p) + (1 - p)log[(1 - p)/(1 - p)].

Thus, T,* = inf(n > 1: I(p,, ;) = n”'gy(cn)}. For comparison with the normal
case in Tables 1 and 2, define p = 1¢~'/29, the factor 1 being the standard
deviation of X at 6 =0 (or pP=13).

Without assuming prior knowledge that p lies between 0.05 and 0.95, we
consider also the stopping rule T inf{n > 1: I(X,,, }) = n"'g,(cn)}, where we
define I(x, 3) = log2 (by contmulty) for x = 0 or 1. The performance of (TC, %)
is very close to that of (T.*, §*) as its risk function reported in Table 3 shows.
Table 3 also compares the risk at p of the test (T,*, §*) with that of the
(fictitious) optimal nonsequential test (n, ,,8*) that chooses the best fixed
sample size, assuming knowledge of p. This best fixed sample size is obtained by
choosing n to minimize

R/p) = cn + BS, > in} + 1B,(S, = in}

for p < }, noting that R (p) is symmetric about p = 1 and that S, has the
binomial B(n, p) distribution. The optimal values of n for various values of p
are given in Table 3 for ¢ = 10™*. Note that the risk, as a function of g, of this
fictitious optimal fixed sample size test in the Bernoulli case is quite well
approximated by that in the normal case of Table 2 over the wide range of p
values. Moreover, Table 3 shows that the risk of the test (T,*, §*) compares
favorably with that of (n, ,, §%).

The results of Tables 1- 3 show that the sequential tests (T, §*) and (7 ,*, §*)
are able to adapt to the wide range of possible values of the unknown 6 in
striking an optimal balance between sampling cost and error probability. Theo-
rem 4, whose proof is given in Section 6, establishes for the general exponential
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family that the risk at 8 of (T.*, §*) or of (T, §*) is asymptotically equivalent to
that of the fictitious optimal fixed sample size test assuming knowledge of 8 as
¢ — 0 and 6 — 6, such that ¢ (0 — 6,)%(= p?/y"(6,)) > .

THEOREM 4. Let X, X,,... be i.i.d. random variables whose common
density fo(x) belongs to the exponential family (1.1). Let 6, € A, where A is an
open interval satisfying (1.3). Define 9 by (1.4) and 1(6, M) by (1.2). Let R(6; T)
denote the risk function (5.4) of the test (T, 8*) of H: 6 < 6, versus K: 0 > 0,
with the 0-1 loss and cost c per observation, where T is the stopping rule and 8*
is the terminal decision rule (5.5). Let d. < D, be positive numbers such that as
c—0,

(515) d, >0 and d./c'?—> 0, D,—>w and D,=o(llogc|'?).

(i) Given 0 € A, let n, 4 be the value of n that minimizes R (8; n) over all
nonrandom sample sizes n. Then as ¢ - 0,

(5.16) R(0;n.,) ~ {c/I(8,,6)}log[c™(6 - 6,)7]

uniformly in § € A such thatd_ < |0 — 6,| < D,.

(ii) Let g be a nonnegative function on (0, o) satisfying condition (3.5) with
¢ > — % and such that sup,, ,8(t)/t < oo for all a > 0. Define the stopping rule
T(g,c) by (1.24). Then as ¢ - 0,

(5.17) R(6;T(g, <)) ~ {c/I(8,6,)}log[c (6 — 6,)7]

uniformly in 6 € A such thatd_ < |0 — 6,| < D,.
(iii) As 6 — 6,, 1(6,,0) ~ I(0, 6,) ~ 24" (6,)(0 — 6,)>.

We now consider the problem of testing H,: § < —¢ versus H,: § > ¢ for the
mean 6 of a normal distribution with variance 1. As in Section 3 (noting that
6* = 0 in this case), we will use the terminal decision rule which accepts the null
or alternative hypothesis according as X, < 0 or X, > 0 when stopplng occurs at
stage n. Note that this is the same as the terrmnal decision rule 8* in Tables 1
and 2. Assuming the 0-1 loss and cost ¢ per observation, the risk R(6) of a test
(T, 6*) at 6 > 0 is given by

R(8) = cE,T + B{X, <0}, 0>
= CEoT, 0< 0 < E.

Note that R(#) = R(—0) and that y [defined in (5.3)] = ¢~ /2.

Denote the stopping rule N(g,, c) of Theorem 1(iii) by N,. Table 4 tabulates
the risk of the test (N7, §*) for ¢ = 0.05,0.25 and ¢ = 10~ % It shows that the
risk is closely approx1mated by that of the approximating test (N_*, §*) defined
in (5.2), whose expected sample size, error probability and risk are also tabulated.
Also given for comparison in Table 4 is Schwarz’s test (N, §*), where N is the
stopping rule defined in (1.22). Note that the risk of Schwarz’s test is consider-
ably larger than that of (N_*, §*) within the indifference zone in both cases. Note
also the steep change in error probability for (N*, §*) within the narrow range
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TABLE 4
Testing Hy: 0 < —¢ versus H,: 0 > ¢ for a normal mean with ¢ = 10~*. Each result is based on 1600
simulations.
(i) e = 0.05 (y = 5)
Risk of The test (N,*,8%) Schwarz’s test (N, %)

0 (N, 5%*) EyN* Error Risk EyN Error Risk
1 0.0011 12 0.0000 0.0012 17 0.0000 0.0017
0.6 0.0024 25 0.0000 0.0025 43 0.0000 0.0043
0.4 0.0043 44 0.0000 0.0044 89 0.0000 0.0089
0.2 0.0109 108 0.0006 0.0114 282 0.0000 0.0282
0.1 0.0346 227 0.0113 0.0340 798 0.0001 0.0799
0.05 0.1380 352 0.0987 0.1339 1725 0.0006 0.1731
0.03 0.0407 415 — 0.0415 2673 — 0.2673
0 0.0440 457 — 0.0457 4309 — 0.4309

(ii) e = 0.25 (y = 25)
Risk of The test (N*,8%) Risk of |
0 (NJY,8%) EyN* Error Risk Schwarz's (N, %)

1 0.0009 9 0.0000 0.0009 0.0012

0.6 0.0017 17 0.0000 0.0017 0.0026

0.4 0.0029 27 0.0003 0.0030 0.0043

0.3 0.0066 35 0.0029 0.0064 0.0060

0.25 0.0129 39 0.0083 0.0122 0.0075

0.1 0.0060 60 — 0.0060 0.0139

0 0.0067 69 — 0.0069 0.0178

0.05 < § < 0.2 in the case ¢ = 0.05 and also within the range 0.25 < § < 0.4 in
the case ¢ = 0.25. Such a feature not only provides a very good balance between
error probability and sampling cost for this range of § values, but also enables
the expected sample size to increase much more slowly than Schwarz’s test as 6
decreases from & to 0, as shown in Table 4. For small values of ¢ and e, this
slower rate of increase in expected sample size as 6 decreases to 0 provides
substantial reduction in Bayes risk over Schwarz’s test, as will be discussed later.

Note that in the present normal case, Schwarz’s stopping rule (1.22) reduces to

(5.18)

while (1.13) and (1.15) reduce to
E,N ~ 2|logc|/(16] + ¢)°

(5.19)

for every fixed 6 and

(5220)

N = inf{n: 1S, = (2n|log ¢|)"/* - en},

r(N, 8*) ~ 2¢|log | f_°° (6] + &) "2 dn(8) ~ nt r(T,5)

as ¢ — 0. The asymptotic relations (5.19) and (5.20) assume fixed & > 0, as
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pointed out in Section 1, and they also hold when N is replaced by N7 or by its
approximation N_*, in view of Lemma 6 (in Section 6) and Theorem 1.

We now show that (5.19), in fact, holds uniformly in 0 < || + & < B for every
B > 0. First assume that > 0 and consider N, = inf{n: S, > (2n|log c|)*/% —
en} instead of N. Introduce the transformation

t=(0+¢)’n, w(t)=(0+¢e)(S,+en).

Treating n as a continuous variable, w(¢) is a Wiener process with drift

coefficient 1 and (8 + ¢)>N, has the same distribution as 7 = inf{: w(¢) >

(2t|log c|)'/?}. Since Er ~ 2|logc| as ¢ — 0, it then follows that (5.19) holds

uniformly in 0 < 6 < B and 0 < ¢ < B. The case 8 < 0 can be treated similarly.
Since

P,{S,, < —(2njlog c|)"* + en} = <I>(—(2|log e))? - (8 - e)nl/z)
= o(cexp{ -3(0 - s)zn})

uniformly in § > eand n > 1 as ¢ — 0, and since N is bounded by 2¢~2|log ¢| + 1,
it then follows that as ¢ » 0 and ¢ —» 0,

(5.21) sup (Py{Sy < 0} + P_y{Sy > 0}) = o(ce?|log c),
2e202¢
T RSy < 0) + P_y(Sy > 0} = o(c(8 — )%

(5.22) N
uniformly in 6 > 2¢.

Let 7 be a prior distribution of # that has a positive continuous density #’ in
some neighborhood of 0. Then from (5.21), (5.22) and (5.19), it follows that as
¢c—>0and ¢ —» 0,

(5.23) r(N,8*) ~ 2c|log clfw (16] + &) "2 dm(6) ~ 47'(0)ec|log c|.
— 00

Comparing this order of magnitude for the Bayes risk of Schwarz’s test (N, 6*)
with that of the test (N}, §*) given by Theorem 1, we find that Schwarz’s test is
no longer asymptotically Bayes as ¢ — 0. In fact, by Theorem 1(iii), as ¢ — 0 and
¢ — 0 such that y = ¢~'/2%¢ converges to a finite limit, r( N, 8*) is of the order of
constant times c'/2, Note that in this case, e 'c = y~1/2%c'/2, so the Bayes risk
(5.23) of Schwarz’s test is of a larger order of magnitude than r(N},6%).
Moreover, by Theorem 1(ii), as ¢ — 0 and & — 0 such that ¢='/2¢ — oo,

r(N},8*) ~ 47'(0)e c(log ¢! — log e~2),

while the Bayes risk r(N, 8*) of Schwarz’s test is of the order 47'(0)e~*clog ¢~}
by (5.23).

Thecrem 2 says that the test (N7, 8*), or its approximation (N_j*,§*), is
asymptotically optimal as ¢ » 0 and y = ¢~'/2¢ > oo for minimizing the maxi-
mum expected sample size subject to error constraints under Hy: § < —e and
_H,: 8 > &. Moreover, it also asymptotically minimizes certain weighted averages
[E,T dn(0) of the expected sample size function E,T. As an illustration of this
even when vy is only of moderate size, consider the case ¢ = 0.25 and y = 25
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studied in Table 4(ii). Subject to the error constraints P_{(T, §) rejects Hy} < a
and P{(T, 6) rejects H,} < a, Hoeffding (1960) showed that

(5.24) E,T > 2¢7%{1 — log2a — (1 — 2log2a)'?}.

For e = 0.25, Hoeffding’s lower bound for E,T (< max,E,T) is 66.1 when
a = 0.0083 and is 64.4 when a = 0.009. From Table 4(ii), the maximum expected
sample size of the test (N*, §*) is 69 (at 6 = 0), which does not differ much from
Hoeffding’s lower bound. The values of E,N_* given in Table 4(ii) also show
substantial savings in sample size for § near 0 when compared to SPRTs, fixed
sample size tests and Schwarz’s tests that have approximately the same error
probabilities at +e. In particular, the optimal fixed sample size test with error
probability 0.0082 at +0.25 takes 92 observations. The SPRT that stops sam-
pling as soon as |S,| > 9 has error probability 0.0082 at +0.25, while Schwarz’s
stopping rule (5.18) with ¢ = 1,/250 (instead of ¢ = 10™* as in Table 4) gives an
error probability of 0.0081 at +0.25. The expected sample sizes E,T of these two
tests are listed next and are compared with the values of E;N* given in Table
4(ii). Each of these results is based on 1600 simulations:

) 1 06 04 03 02 01 0
SPRT 10 16 24 32 38 71 92
Schwarz(c=1/250) 8 15 25 36 42 72 8
N*(c=10"% 9 17 27 35 39 60 69

6. Asymptotic approximations of risk and proofs of Theorems 1, 2
and 4. To prove Theorems 1 and 2, we first derive asymptotic approximations
to the expected sample size and error probabilities of the test (N(g, c), 6%)
proposed in Section 3 for testing H,: 6 < 6, versus H,: 6 > §,. Lemma 6 shows
that the test has a bounded stopping rule with sample size bounded by

(6.1) n,=inf{n: nJ(6*) > g(cn)}, inf@ = o,
where JJ and 6* are defined in (1.10) and (1.11). Note that
(6.2) N(g, c) = inf{n: nd(8,) = g(cn)}.

Throughout the sequel, let d. < D, be positive numbers satisfying (5.15).

LEMMA 6. Let g be a nonnegative function on (0, ) such that g(t) ~ log ¢!
as t = 0. Then N(g, ¢) < n,. Moreover, as ¢ — 0:

@) (0 >)n, ~ (log(c™ (8, — 8,)%)/J(8*)) uniformly in 6,0, € A with

6, — 0, > d,, where (x) denotes the smallest positive integer greater than or
equal to x.

(i) E,N(g, c) ~ {log(c™J(8))}/J(8) uniformly in 0,6,,0, € A with d? <
J(8) < D2.

(iii) sup{E,N(g, c): 0, 6,,0, € A with J(8) > k} = O(|log c|) for every k > 0,
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PrOOF. Let b = jinfy. 4¢"(0) and B = isupyc 4¢"(9). Then by (1.2),

(6.3) b(8 —\)> <I(6,\) < B(6 — \)* forallg,\ € A,
and since 6,, 0, € A,
(6.4) Be™Y(0, — 6,)* > J(6*)/c > be™ (6, — 6,)°/4.

By (6.4), as ¢ — 0 such that (8, — 6,)2/c — o,
(6.5)  inf(t> 0: tJ(8*)/c = g(¢)} ~ (c/J(6*))log(c™ (8, — 6,)°).

Writing ¢ = cn, we obtain (i) from (6.5). Since J(8) > J(8*) for all 8, N(g,c) < n,
by (6.1) and (6.2). Finally, an argument similar to the proof of Theorem 3 of Lai
(1988) can be used to prove (ii) and (iii). O

We now make use of the boundary crossing theory developed in Lai (1988) to
study the error probabilities of the test. Define a,8 by (3.11) and, more
generally, define

a(8) = P{by, ., > 0*}if 0 < 6,,
(6.6) ( ) 0{ N(gr ) } 0

B(0) = Pp{byg, ., < 0*}if 0> 6,,
so that a = a(f,) and B = B(6,). For 8 < (< 6%),

a@) = [, . exn{=Ne (6~ 0)(Xnig.0 ~ v(6)

{aN(e,c‘)>
+9/(8%)(8 - 8) — (¥(6,) — ¥(9))]} aB,

< Py {lng o> 0*) = a(By).
By a similar argument for B(8), we therefore have
(6.7) a(0) <a forf <6, B(6) <B ford >0,.

The following two lemmas study the asymptotic behavior of 8(8) for 6 > 6, as
¢ — 0. Similar results hold for a(8) with 6 < §,.

LEMM@ 7. Letg € %;. Thenasc — 0,
68  B(8) - O({c/(0 ~ 6,)"}{log(c (0 - 6,)%)) 2)
uniformly in 0, 6,,0, € A with § — 0, >d_ and 0, — 6, > d..
Proor. Note that for 6 € A with § > 6, + d,
PO, < 0*)

< P,,{@n <6, and 1(8,,6,) > n"'g(cn) for some n < n,},

(6.9)
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since J(A) =I(A,0,) is A < 6*. Hence the desired conclusion follows from
Theorem 1(iii) of Lai (1988) and Lemma 1 of Lai (1987). O

LEMMA 8. Letg € %;. Thenasc — 0,

_ —£+3/2

(610)  B(8) = O {e/(6, - )"} {log(c (6, - 6,)7)) )
uniformly in 6,,0, € A with 0, — 6, > d..

PROOF. Let () = inf{n: I(8,, 01) > n~'g(cn)}. From (4.27) of Lai (1988)
and Lemma 1 of Lai (1987), it follows that as cm — 0,
(6.11) By {m < 7(8,) < 2m} = O(cm|log cm|~**'/2) uniformly in'0, € A.
By (6.9) and (6.11),
(6.12) B(6,) = O(c Y 2fglog(2fc)|-€+1/2).

J:2/<n,

Let d = 6, — 6,. Since n, = O(d~2log(c~'d?)) by Lemma 6(i), the desired con-
clusion follows from (6.12) [see Lai (1988), Proof of Theorem 1(iii)]. O

Lemma 9 provides more precise estimates for a(6,) and 8(64,) when 8, — 6, — 0.

LEMMA 9. Let g be a nonnegative function on (0, ) such that
(6.13) g(t)=logt ' + ¢loglogt ™ +p+o0(1) ast—0
for some constants ¢ and p. Then as ¢ —> 0 and 6, — 0, such that
0, — 0,)%/c - o,
(6.14) a(6,) ~ B(6;) ~ 4n~'/%=*(y"(6,)) ' (c/d?){log(d?/c))
whered = 6, — §,.

g+3/2

-Proor. Let 0 <{ < 1. For simplicity write N instead of N(g,c). Since
I(A, 6,) ~ 3"(6,) (A — 6,)% as X - 8,, 6* — 6, ~ 1d and, by Lemma 6(i),

(6.15) n,~ 8log(c~'d?)/(d*"(6,)).

Therefore, {|log(cn )| /n % ~ (¥(6,)/8)'/%d. Hence by Lemma 4 of Lai (1988)
and Lemma 1 of Lai (1987), we can choose % sufficiently large so that

(6.16) P, {8y — 8, = kd and {n < N < n,} = O((en,)?).

Let E = {8, > 0*, |8y — 0,| < kd and ¢{n, < N < n}. Defining the measure Q
by

o+ 2kd

Q(B) =f P(B)du

0

and choosing k sufficiently large, an argument similar to the proof of Lemma 8
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of Lai (1988) shows that as ¢ — 0 and d — 0 such that d%/c - o,
P,(E) = [ (dP,,/dQ) dq

(6.17) - (' (0)/2m) e g an e [ { [ NO2aP, o} e
—2kR\YE

~ (¢(8,)/27)"*e=*|log cnc|‘fcdn‘j/zf(‘m—m(4t2)_3/2 dt.
1/2

By choosing ¢ arbitrarily small, the desired conclusion follows from (6.15)—(6.17)
and the analog of (6.11) with 6, replacing 6,. O

While Lemma 9 shows that the order for B(4,) given by Lemma 8 is minimal
when 0, - §,, Lemma 10, which can be proved by a similar method, shows that
it is also minimal for fixed §,, 8, as ¢ — 0.

LEMMA 10. Let g be a positive function on (0, o) such that

(6.18) g(t) =logt ™'+ (£ + o(1))loglogt™! ast— 0.
Then with 6,, 0, fixed, as ¢ = 0,
(6.19) : cllog ¢ ~¢+%/2 < B(0,) < cllog c| ¢ +3/2

for every £’ > § > £”. The same inequality also holds for a(6,).

We now proceed to the proof of Theorems 1 and 2. This makes use of the
preceding lemmas and Hoeffding’s lower bound for the expected sample size
stated in Lemma 11 in the context of the exponential family [cf. Hoeffding
(1960), (1.4)].

LEMMA 11. For the exponential family (1.1), let (T, §) be a test of Hy: 8 € 0,
versus H,: 0 & O, such that P, [(T, §) rejects Hy] < p, and P, [(T, §) rejects
H\] < p,, where 0 < p, + p, < 1, 0, is a given subset of the natural parameter
space © and A\, € ©,, A, € O,. Then for every 0 € O,

E,T = ¢ Y{llog(p, + p,)| — 3(a/8"*)log( p, + p,)I'/*},
where ¢ = max{I(0, \,), I(6, \;)}, 6% = Varg[(A, — A)X] = (A, — A)H(6).

ProOOF OF THEOREM 2. From Lemmas 7-10, (3.12) and (3.14) follow. More-
over, the:desired conclusions (3.13), (3.15) and (3.16) on E,N(g, c) follow from
Lemma 6 and Lemma 11 (with A, = 6,, A, = 0,, p, = a, p, = B), together with
(3.12), (3.14) and the following two asymptotic relations as ¢ = 0 and 4, — 6, =
d — 0 such that d2/c > co:

(6.20) J(8%) = infJ(8) ~ ¥ (8,)d%/8,
%P og(c=J(0)) 7'(0) d/J(6
. N CCUONROEZ0

~ (87'(6,)/4"(6,))d " log(d?/c),
where p > 0 is such that =’ is positive and continuous on [§, — p, 6, + p]. O
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Proor or THEOREM 1. (i) For fixed 6, < 6,, it follows from Theorem 2(i)
that as ¢ — 0,

(6.22) c / E,N(g, c) dn(8) ~ c|log c| j dm(8)/J(0),

A A
noting that N(g,c) < n,= O(|log c|). If £ > 4, then from (6.7) and Lemma 8,
(6.23) f,, sao"‘(o) dm(8) + f,, Za,p(a) dw(8) = o(cllog c]).

Now assume that £> — 1 and that (3.7) holds. Then by (3.7), (6.7) and
Lemma 8,

/0"" a(0) dn(8) + Af‘+'l°gc'_1@(0)dw(0)

o—llog ¢|™*

< pllog.c| {a(fy) + B(8,)} = o(cllog c]).
Moreover, since —§ — 1 < 0, it follows from (3.7) and Lemma 7 that

o(6) d=(8) + / B(8) dm(0)

Ls%—]log ™! 0>6, +log ¢~

= O({c|log c| ¢ 12 fs t™2dt + c}) = o(c|log c|).
flog ¢!

Hence (6.23) still holds under (3.8) when ¢ > — 1. From (6.22) and (6.23),
r(N(g, c), 8*) ~ c|log c|[, dn(8)/J(8). It therefore remains to show that as
c—0

(6.24) (iTr}g)r(T,s) > (1 + o(1))c|log c|fAd7r(0)/J(e).

To prove (6.24), it suffices to restrict to tests (T, 8) such that
(6.25) r(T,8) < c|log c|?,
when c is sufficiently small. Let n > 0. Since

/0"’"_ P.[(T, 8) rejects H,] dm(x) + j;olﬂPy[(T,&)rejects H,] dn(y)

0
< c|log c|?

and since #([8,—1,6,]) >0 and =([0,,60, + n]) > 0, there exist x, y with
Op=x>6,—m, 0, <y< 0, + 7 such that

Rx[(Tv 8) rejects HO] = c|10g C'z/’”([oo - 00])’
P,[(T, 8) rejects Hl] < cllog c|>/=([8,, 6, + n]).
From (6.26) and Lemma 11, it then follows that
inf{ E,T: (T, 8) satisfies (6.25) }
(6.27) > (1 + o(1))|log c|/0 max max{I(9,x), I(0, y)}.
0=

x>0,—n,0,<y<06,+7

(6.26)
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!

Since r(T, 8) > ¢/E,Tdn(8) and since n can be chosen arbitrarily small, (6.24)
follows from (6.27).

(i) Let d =0, — 6, By Theorem 2(ii), as ¢ » 0 and 0, = 6, such that
d%/c - o,

(6.28) ¢ j; E,N(g, c) dn(6) ~ (87(6,) /4" (8,))cd "log(d?/c).

Moreover, since £ > — 1, it follows from (6.7) and Lemma 8 that
[ o(8) dm(8) + [T U=/ p(g) dn(0)
[ 6,

(6 .29) o — d(log d2/c)~!
= o(cd " log(d?/c))
and from Lemma 7 that

«(6) d=(8) + f

0>0,+d(log d%/c)~

B(8) dn(6)

‘/;500 —d(log d?/c)~!

(6.30) = O({c/€ t~*{log(c™'¢?)}) V2 0 c})
d(log d?/c)~!

= o(cdlog(d?/c)).

By (6.28)-(6.30), r(N(g, c), 8*) ~ (87'(8,) /4" (8))cd"log(d?/c).

Let 7> 0. Let (T,8) be a test such that »(T,8) < cd (logd?/c)%. An
argument similar to the proof of (6.26) shows that there exist x, y with
0p>x>6,—1d, 0, <y<0, + nd such that

P,[(T, 8) rejects H,| < 2cd2(log d2/c)’/nn'(6,),
P,[(T, 8) rejects H,] < 2¢cd™*(log d?/c)’ /mn’(8,),

provided that d is sufficiently small. Hence an application of Lemma 11 as
before shows that

(;ng)r(T,S) > {87'(6,)/4"(6,) + 0(1) }ed~"og(d?/c).

(iii) The desired conclusion (3.10) can be proved by an argument similar to the
proof of Theorem 3 in Section 4. O

We now derive asymptotic properties of the risk functions (5.4) for the class of
tests (T(g, c), 8*) of H: 6 < 6, versus K: 0 > 6, considered in Theorem 4. For
6 > d,, it follows from Theorem 1(i) of Lai (1988) that as ¢ — 0,

(6.31) E,T(g, ) ~ {log[c (8 - 6,)] } /1(6, 6,)
and from Theorem 1(iii) of Lai (1988) and Lemma 1 of Lai (1987) that
, _ _ ~t-1/2
(632)  Py{Br, o < ) = O[<(8 - 8)*{10gc (8 - 6]} ),
the convergence in .(6.31) and (6.32) being uniform in § € A such that
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d.<0—-0,<D, Since £ > — 2, the asymptotlc formula (5.17) on the risk of
(T(g, c), 6*) follows from (6.31), (6 32) and (6.3). This proves Theorem 4(ii), and
we now proceed to

PROOF OF THEOREM 4(i). For 6 < 6,,

Bo(ln> 60} = [, , exp{(0=0)S, ~ n(4(8) - ¥(8,))} aP,
(6.33)

- 8,>4 }exp{ —nl(6y,8) — (6~ 0)(S, - ny'(6,))} dP,.

Let A = (ny"(6,))/*(6, — 0) and Z, = (S, — ny'(6,)}/(ny"(6,))'"/*. Under
Py, Z, converges to the standard normal distribution. Since A > 0 and since
(8, > 6,} = {Z, > 0}, it then follows from (6.33) that.

e~ 1(00,0) 5 })0{971 > 8y} > e "0 D"4p, (7 > 1).

Note that Fy{Z, > 1} > 3®(—1) for all large n, say n > n,, and that there
exists C > 0 such that A < C{nlI(6,,0)}/* forall n > 1 and § € A N (— o0, b,),
in view of (6.3). Using a similar argument for P,,{0 < 6,} if 6 > §,, it then
follows that

exp{ —nl(6,,0)} > py(n) = %‘I;(—l)exp{ —nl(6,,9)

—C[nl(6y, 0)]1/2}

(6.34)

for all n > n, and 6 € A, where
py(n) = })0{9n > 00} if 6 < 6,,
=P{b,<6,}) if6>,.

From (6.34), it follows that the value n,, of n that minimizes cn + py(n)
satisfies

(6.35) n,4~1log[I(6,,60)/c]/1(6,,0) and py(n,,) =o0(cn, )

as ¢ — 0, uniformly in § € A such that d, < |0 — §,| < D.. From (6.35), the
desired conclusion (5.16) follows. O
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