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UNIT CANONICAL CORRELATIONS BETWEEN
FUTURE AND PAST

By E. J. HANNAN AND D. S. POSKITT

Australian National University

Stationary vector ARMA processes x(¢), t =0, +1, +2,..., of n compo-
nents are considered that are of full rank, and the situation where there are
linear functions of the future x(¢), ¢ > 0, and the past x(t),¢< 0 (more
properly the present and the past) that have unit correlation. It is shown
that the number of linearly independent such pairs (i.e., the number of unit
canonical correlations between future and past) is the number of zeros of the
determinant of the transfer functions, from innovations to outputs, that lie
on the unit circle, counting these with their multiplicities.

1. Vector ARMA processes and unit canonical correlations. Consider a
vector ARMA, stationary process x(t) of n components, i.e., a process generated
by

p q
YAt - j) = LB()et —j),  AQ0) = BO),
0 0

1.1
- E{e(s)«(ty} = 8,5, >0

The ¢(t) are to be the innovations so that £(z) = a(2)~'b(2), a(z) = LA(j)z/,
b(z) = LB(j)z, is rational and analytic for |z| < 1 and det(k) # 0, || < 1. The
requirement that £ > 0 could be dropped but we consider only the full rank
case. For details concerning these well-known facts, see, for example, Hannan
(1970).

Let x(¢ + u|t) be the best linear predictor of x(¢ + u) from x(s), s < t, taking
“best” to mean best in the least-squares sense. It is known that the Hilbert space
spanned by the x (¢ + u|t), j=1,...,n, u=1,2,..., is finite dimensional and
is spanned by

x;(t+ ujt), u=1,...,d;, j=1,...,n.

The d; are the Kronecker indices and their sum d = £d /; is called the McMillan
degree. [For details see Kailath (1980).] Let

(12) k(z)=i::K(j)zf, KO) =L, #=[K(i+j-1]i,ora...

Here 5# is the so-called Hankel matrix of the system, being an infinite matrix
with K(i + j — 1) as the (i, j)th block. Then d is the rank of /.
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Here we consider canonical correlation of the future and past, i.e., (stationary)
linear functions £,(¢) of x(s), s < ¢, and n,(¢) of x(s), s > ¢, such that

E{¢()¢(t)}) = E{nj(t)nu(t)} = 84,
E{gj(t)nj(t)} = by 12p;2p,2 -+ 20.

The existence of such canonical correlations p; and of the associated pairs of
“discriminant function” processes £(t),1,(¢) is established, in general, by a
standard Hilbert space argument but we do not need to go into that here because
the situation is simpler. Let H_ be the real Hilbert space spanned by x,(t),
J=1...,n, t=0,—-1,-2,..., and H* be spanned by x(t), j=1,...,n,
t=1,2,.... In each case the inner product is given by the covariance function.
If H is spanned by all x(¢) let P project in H on H,.1f € H*®, £ € H,, then
E{n§} = E{Pn¢} = E[{PLa; ,x,(u)}{Xb, ,x/(u|0)}], where the sums are over
u=1,...,d; j=1,...,n Indeed, Py must be of the form Ya;,x{(u|0) and £
may be decomposed into a sum of the same random variables and a component
orthogonal to all of those random variables. Thus

E{n¢} = E[{Zaj, uxj(u)}{zbj, uxj(ulo)}]‘

If £ is orthogonal to x(u|0),u = 1,...,d,, j=1,...,n, in H_, then E{n¢} =0
and thus, in particular, if 7 is orthogonal to the space spanned by the x (u),u=
L,...,d;,j=1,..., and ¢ is orthogonal to the x(ul0),u=1,...,d, j=
1,..., n, then E{n{} = 0. Thus the canonical correlation construction is reduced
to that between two finite set of d = ©d, random variables and is classical. It
follows also that in (1.3) p; = 0, j > d. Thus according to this classical theory, we
may construct £,0),7,(0), j=1,...,d, that are orthogonal and lie, respec-
tively, in H_, H® and satisfy E{§(0m0)} =pj1 2p; 2 py> -+ 2p;20.
Now £(¢),m,(t) are obtained by time translation and (1.3) follows by sta-
tionarity.

Let m(z) be the polynomial, with m(0) = 1, having as zeros precisely the
zeros of det k(z) that lie on |z| = 1, with the same multiplicities. If k(z) =
a(z)~'b(z) and a(z), b(z) are left coprime, then det a(z) and det b(z) are also
coprime [again, see Kailath (1980) for details] and hence the zeros of det k(z) are
those of det b(z). However, the matrix fraction description k(2) = a(z)~'b(z2) is
to some extent arbitrary so we continue to refer to det £(z). Returning to m(z),
it is easily established that, p < d being the number of zeros counted with their
multiplicities of det k(z) that are of unit modulus, and a being the number that
are at z = 1, then m(z)/m(z"') = (—1)%*

Let £,(¢), n,(¢) be two discriminant function processes. Then these correspond
to transfer functions, §,(2),n(z) from x(¢) to §,(t), n;(t), respectively. (The
notation has virtues and vices but should cause no confusion.) Thus [Hannan
(1970), Chapter 1I]

§(0) = [ ey die),  mi(e) = [ emn(eny ds(a).

-m

(1.3)

Necessarily {;(z) must be analytic for |2| < 1 and 5,(2) for |z| > 1 because §(t)
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must be expressible in terms only of x(t—s),s >0, and 7,(¢) in terms of
x(t + s),s > 0. Because s = 0 does not occur in the second case we must also
have 7,(2) converging to zero as |z| — oo. In fact, we shall show that any such
pair, which we call §(z), n(2) in general, for which p; = 1, is of the form

£(2) =n(z) = m(2)"'p(2),

where p(z) is a vector of polynomials of degree p — 1 at most. There will be a
different polynomial for each j value such that p; = 1. Of course, m(2)~'p(z) is
analytic for |2| <1 but also m(z) = m(z~')}(—-1)%* so m(z) 'p(z) =
(—1)’m(2~')"'27#p(z) and since p(z) is of degree p — 1, then this is also
analytic for [z| > 1 and has 5(2) - 0 as |z| > oo. Clearly, {,(t) = n;(t) as. if
§(2), m,(2) are of this form and thus clearly p; = 1. If n = 1 we may take p(z) to
be any polynomial of degree p — 1 and thus the dimension of the space of
discriminant function pairs for unit canonical correlation is at least p. In fact,
the theorem that follows says it is p. However, when n > 1 it is not evident that
£(2)'k(z) is square integrable on |z| = 1. For n = 1 there is no problem since
m(z) divides k(z) but for n > 1, m(z) does not necessarily divide all elements of
P(2)k(z). Indeed, now the space of all p(z) of degree p — 1 at most is nu, which
is, in fact, too high and p(z) must be constrained in a way indicated in the proof
of the theorem. We illustrate by the case where k(z) = I — Bz and there is a
nonsingular matrix A so that ABA™! is diagonal. Then Ak(2)A~! = A(2) is
diagonal. Let us say there are two unit zeros of det k(z), these being 1 and —1.
We may arrange these to be in the first two places in the diagonal in A(z) so
that these elements are (1 — z),(1 +2). Thus m(z)=1-22a=1 and
m(z)"'k(z) = A~ Y{m(z)"'A(z)}A. Now clearly p(z)'A~! must be such as to
eliminate the poles on 2| =1 so that p(z)A~!=(a,(1 + 2), (a1l — 2),
0,0,...,0). Thus the space of such p(z) is two dimensional and there are two
discriminant function process pairs with unit canonical correlation and transfer
functions of the form m(z)~!p(z). The general case is described in the proof of
the theorem and will not be explained in more detail here for the construction
can hardly be of any utility, other than in the proof of the theorem.

THEOREM. The number of canonical correlations that are unity is the
number of zeros of det{k(z)} on |z| =1, counting each such zero with its
multiplicity.

ProOF. Let f(w) be the spectral density matrix. Then 2#f(w) =
k(e*)Ek(e*)*. This decomposition is unique, subject to the conditions on
k(z), % given previously. Since f(-w) = f( w) is again a rational spectral
density matrix, then 27f(—w) = Il(e'*)Ql(e**)*, & > 0, where I(0) = I, I(2) is
analytic for |z| < 1 and det{l(z)} # 0, |2| > 1. Since
det{f(w)} = det{ f(—w)} = |detk(e')|’det(E/27) = |det I(e'*)|*det(Q/27)

and det &, det [ are rational, analytic for |z| < 1, never zero for z < 1 and satisfy
det £(0) = det /(0) = 1, then det{k(z)} = det{l(z)} and det(E) = det((2). Let
¢,m be linear functions, respectively, of x(¢),t < 0,x(¢),t> 0, having unit
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correlation. Then, as before,
£= [ geyds(e), = [ n(eydi(o),
where

x(¢) = /_ e dt(w)

is the spectral representation of x(¢) and

0

(1.9) i(z) = Ta()h,  m(z) = iﬁ(j)z-f,

0
where the a( ), B(j) are vectors of n components. Thus

1= [ &(e“yi(o)n(e™™) do

= {fjﬂé(eiw)'f(w)ﬁ(e"iw) d“’f_ﬂﬂ"(eiw)'f(w)n(e‘iw) dw}l/2_

It follows from the obvious generalisation to vectors of Schwarz’s inequality
[Hardy, Littlewood and Polya (1964), page 132] that

(1.5) (e )Yk(e™) =n(e*)k(e™) ae.(dw),

or at least this can be made so by multiplying, say, each element of n(z)k(z) by
a positive real constant. The Hardy space H, is the space of all functions
analytic for |z| < 1 and square integrable on |z| = 1. [See Hoffman (1962), for
example.] We shall also say that an n element vector of functions is in H, if each
of its elements is so. Thus, from (1.5), n(z)k(z) € H,, since {(z)'k(z) certainly
€ H,. Also since 2~ 'n(z~!) contains only positive powers of z in its expansion,
converging for |z| <1 and n(z)Il(z) is square integrable on |z| =1, then
z79(27YYl(2) € H,, the factor z coming from the fact that 8(0) = 0. Thus

n(2)k(2) = hi(2),  2n(2)U(z7) = hy(27),

where h,(2), hy(z) € H,. Put k(2)"! = m(2)"'r(2), l(z) "' = m(z) 's(z). Then
r(z), s(z) are analytic for |2| < 1. Remembering that m(z)/m(z"1) = (—1)%*,
we have

n(2) = m(2) 'hy(2)r(z) = 27 'm(z7) hy(27Y's(27Y),
sothat

hy(2)r(z) = (—1)%2* " hy(271)'s(27Y).

This is possible only if A,(z)'r(z), and hj(z)s(z) are rows of polynomials of
degree p — 1 at most. Thus

£(z) =n(z) = m(2) 'p(2) = (-1)°z7*m(27") "'p(2),
where p(z) is a row of polynomials of degree p — 1 at most. However,

£&(2)k(2) = n(2)'k(z) must also be square integrable on |z| = 1, i.e., each ele-
ment of the vector must be square integrable. There exist matrices u(z), v(z),
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with constant, nonzero determinants, such that k(z) = u(z)A(z)v(z) and A(2)
is diagonal with diagonal elements n,(z)/d,(2), the numerator and denominator
polynomials being prime to each other. Also n,(z) divides n,,(2), and d;.,(2)
divides d;(z). [Again, see Kailath (1980).] Thus square integrability of £(2)'%(z)
is equivalent to that of £(z)u(z)A(z) since v(z) is bounded on |z| = 1, with
det{v(2z)} a nonzero constant. In turn this is equivalent to the square integrabil-
ity of £(z)u(z)diag{m(z)}, where diag{m(2)} is a diagonal matrix with m,(z)
in the ith place and m;(z) with m,(0) = 1 has zeros those of n,(z) on |z| = 1.
This is because m,(2) Y{n,(z)/d,(z)} is analytic for |z| <1 and never zero
there. Put »,(2) = m(z)/my(2). [Clearly, m,(z) divides m(z).] Then
p(2)u(z)r(z)~! must be square integrable, where »(z) is diagonal with »,(z) in
the ith place. Now j(2) = u(z)r(z)~! is a matrix of rational functions, analytic
for |z| < 1. It is also the reciprocal of a matrix of polynomials. Put j(z) =
q(2) + r(z), where g(z) is the matrix of quotients obtained by dividing each
numerator of an element of j(z) by its denominator. Now r(z) is strictly proper
(i.e., all numerator degrees are lower than denominator degrees) and thus has a
canonical left-prime matrix fraction description ¢(z) ~'d(z), corresponding to its
Kronecker indices. [See Kailath (1980) or Deistler and Hannan (1981), where this
is termed the echelon form.] Thus j(z) = ¢(2) Y{¢(z)q(z) + d(z)} and again
this is left prime. Thus ¢(z)q(z) + d(z) is unimodular and the degree of det ¢(z)
is that of det j(z)~!, namely, (n — 1)pu. Also the largest Kronecker index is no
greater than p since m(z)j(z) is a polynomial and m(z2) is of degree p. Let d; be
the ith Kronecker index of r(z). Then ¥'(p — d;) = p, where the sum may be
taken over i for which d; < p. For p(2)j(z) to be square integrable it is
necessary and sufficient that it be polynomial, i.e., that p(z)'r(z) be polynomial.
For this it is necessary that p(z) = e(z)¢(z), where e(z) is polynomial. Thus
the number of linearly independent p(z), of degree p — 1, for which p(z) j(z) is
polynomial is the number of linearly independent vectors e(z) for which e(z)¢(z)
is polynomial and of degree p — 1. The matrix c¢(z) is characterised by the fact
that the diagonal elements are monic and of degree d; and the elements
c;/(z) satisfy the following degree requirements: degreec;i(z) < d;, i # j;
degree c; (z) < d;, j > i; degree c;(z) < d,, j < i. Now, clearly, we may allow
e,(z), the ith element of e(z) to vary freely over all polynomials of degree
p — d; — 1 since the ith row of c(z) is of degree d;. Here the polynomial is null if
(p—d;— 1) <0, ie., d;=p. Thus if we show that these are the actual maxi-
mum degrees, then the theorem will be proved since there are ¥'(p — d;) freely
varying coefficients in such e(z). Let §;=p—1-d;+a;a,<0,d;, <p;
;=a,—1,d;=p,a; >0, be the degrees of the elements of e(z), where again
the element is null if §; < 0. Let j be the greatest column number for which a; is
greatest. Then the degrees n; of e,(z)c;;(2) are

i>j, n,58,+d,Sp+a,—1<p+aJ—l,

Thus the jth element of e(z)’c(2) is of degree p + a; — 1 so a; = 0. Thus the
theorem is proved. O
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2. Discussion. For a discussion of the general problem (i.e., not for ARMA
processes alone) of canonical correlation of future and past the reader may
consult Jewell and Bloomfield (1983) and references therein. There 8, defined by
cosd, = p,;, 0 <6, <m, is called the angle between the present and past. A
general condition, for n = 1, for this angle to be positive is given there. That
condition shows easily that the angle is zero if 2(z) has a zero on |z| = 1. Of
course, the condition that x(¢ + 1) be linearly perfectly predicted from the past
is the condition, for n = 1, that

(2.1) [:bgﬂw)dw=-—w,

so that f(w) must approach zero at some frequency. Of course, (2.1) cannot hold
for a scalar ARMA process, and the angle between present and past can be zero
only if f(w) is zero at some w.

The canonical correlations can be explained also in terms of 5. Thus let
2D = (x(t + 1), x(t + 2),...), &, = (e(t), e(t — 1),...), with e¢*D defined as
for x**V, Then it is trivial to show that

x(t+1) =‘#et +J{‘8(t+1)’

where X is a block Toeplitz matrix with K(i — j) as the block in row Z, column
i, J=12,....Let & have L(j — i) as the block in row i column j, where

zu)=§Lupa

In the case where det{k(2)} # 0, |2| < 1, then the canonical correlations are the
singular values of

9= (I, 8 Q%) 2 w(I, ® £?),

where I, ® Q712 for example, is a block diagonal matrix with all diagonal
blocks 212, The matrix ¢ is again a Hankel matrix and has “symbol”
g(2) = QY2 (27 1)~ 'k(2)¥Y? [which is just k(z2)/k(z!) for n = 1]. By this it
is meant that the typical block G(i + j — 1) of ¥ is the coefficient of z'*/~! in
8(z). However, g(z) is not analytic for |z| = 1, though it is unitary there. When
det{k} can be zero on |z| = 1, £ does not have a bounded inverse. However, ¢ is
well defined via g(z) as before. It must be possible to establish the theorem of
this paper through a direct consideration of g(z).

An explicit construction in a simple case may be of interest. This case also
relates closely to the example discussed just before the statement of the theorem.
Take n = 1 and x(¢) = &(t) — &(t — 1). Then &(¢) is the limit in mean square of

N-1 j
L (1- 5 ste-i)
j=0
and &(¢) has unit correlation, as is easily seen, with n(¢ + 1), which is the limit in
mean square of

N-1

- (1— %)x(t+j+ 1).

J=0
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Finally, Whittle (1984), Section 3.8, contends that processes of the type
discussed previously will not be found in practice because of observation error.
The results of this paper also suggest that from a statistical viewpoint ARMA
models with zeros on |z] = 1 may be somewhat unreal, for one does not expect to
be able to predict precisely any aspect of the future even using the infinite past.
Of course, such a statement must be taken with a grain of salt since ARMA
models are in any case unreal, in the sense that any model is an approximation
to reality.
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