The Annals of Statistics
1988, Vol. 16, No. 2, 483-520

ON THE PRESERVATION OF LOCAL ASYMPTOTIC
NORMALITY UNDER INFORMATION LOSS?!

By LuciEN LE CaM AND GRACE J.. YANG
University of California, Berkeley and University of Maryland

1. Introduction. In the present paper we consider a situation where there
are unobservable random variables X ,; j = ,ky; n=1,2,..., and where
what is actually seen are other variables Y, that are less 1nformat1ve than the
X ,. For instance, the Y; , may be functlons of the X;

It can then readily happen that the family of probablhty measures that
governs the behavior of the X; , is simple and easily studied but that the
corresponding family for the Y, , is more untractable. We shall show that if the
{X 9 .} satisfy certain conditions, such as the LAN conditions, then the Y, , will
also satisfy the same requirements. This means that certain methods of estima-
tion and testing can be carried out with the Y, , with some assurance of success
without having to verify that their distributions satisfy the necessary require-
ments. Actual computation of the estimates may still be a complex task, but not
nearly as difficult as the analytical effort needed in the verification of assump-
tions.

The results are proved under suitable negligibility conditions imposed on the
X; , and mostly for the case where the X, , are independent for each fixed n.
However, we point out that a similar phenomenon can also be expected for
certain nonindependent double arrays {X; ,}.

The problem was brought to our attention by several special examples. One of
them is in a neurophysiological study where the underlying model involved
independent variables U,, X, ,,... . The variables U, had a binomial distribution
B(m, p) and the X;, were positive i.i.d. variables whose common distribution
depended smoothly on a one-dimensional parameter §. Standard textbook results
on the asymptotic behavior of the system were readily applicable to the variables
{U,, X, ,,...} but what could be observed were only the sums

Y,=Y{X,,;0<k<U)}, »=12..,n
k

Another example comes from what is called the use of counting processes for
life history data (see [1], [3] and [15]). One has a large number n of different
individuals behaving independently of each other. During the observation period
[0, L], certain events A,, i = 1,2,..., I, can happen to them. At time ¢ the
instantaneous intensity for the occurrence of event A; for individual % is a
variable A, (). As functions of ¢ these A, ,(¢) are predlctable random processes
in the sense that A, ,(¢) depends only on the hlstory of individual & in the

Received November 1985; revised August 1987.

1Research partially supported by National Science Foundation Grant MCS-84-03239.
AMS 1980 subject classifications. 62F05, 62F12, 62G20, 62M05.

Key words and phrases. Asymptotic normality, information loss, LAN, one step estimates.

483

g\]{‘%
Institute of Mathematical Statistics is collaborating with JSTOR to digitize, preserve, and extend access to @, 22

The Annals of Statistics. EINORY,

vvvvvv.jstor.org



484 L. LE CAM AND G. L. YANG

half-open interval [0, £). In such problems there is a well-developed theory
applicable to the situation where each individual is monitored continuously
throughout the entire period [0, L]. Its elaboration, reviewed in [3], relies
materially on the fact that likelihood ratios can be written in a simple explicit
form.

The question arises whether the theory can be made applicable to a situation
where each individual is seen only at a few isolated times, say 0 < ¢, < ¢; <

++ <ty < L. Even in a purely Markovian system, assumptions made on the
intensities A, ; do not translate into simple statements on the likelihood ratios
for isolated observation times. The fact that our theorems give some information
on the behavior to be expected of likelihood ratios allows one to direct numerical
computations in an efective manner.

Our main results depend very strongly on the negligibility assumptions placed
on the X; .. It is a trivial fact that the results are not valid without some
restrictions, but, except for a modification of a result of Davies [9] given in
Section 6, we do not know whether extensions to other situations are possible.

Section 2 gives the essential notation and assumptions with a statement of the
problem in a formal mathematical framework. Section 3 shows that contiguity is
preserved under loss of information. It also contains related inequalities that will
be used in the following sections. Section 4 is about the preservation of asymp-
totic normality for what we call bounded infinitesimal arrays. These are double
arrays of independent experiments where the total information (defined in a
suitable manner) remains bounded and where each individual experiment con-
tributes an asymptotically negligible amount of information to the total.

Asymptotic normality has been used mostly in connection with the so-called
LAN conditions (see [10], [20], [25] and [34]). These involve not only the local
asymptotic normality that gave them their name but also linear relations
between vector parameters and logarithms of likelihood ratios. It is shown in
Section 5 that such linear relations are also preserved. The technique of proof
involves the use of quadratic forms that “control” the asymptotic behavior of
likelihood ratios. According to Davies [9], such “quadratic control” may be
preserved under certain information losses that do not actually preserve the local
Gaussian behavior. It is the main relation needed for the improvement of
auxiliary estimates, described later in the same section.

Section 5 ends in a description of a method of construction of estimates. One
starts with a good auxiliary estimate and adds to it a correction calculated from
likelihood ratios. This gives asymptotically efficient estimates. The general
method has been described elsewhere by one of the present authors. It is pointed
out that, for our infinitesimal arrays, the method admits a number of variants
that are often easily applicable in practice.

An application to the neurophysiological problem that motivated us is de-
scribed in some detail in Example 1, Section 9.

Section 6 departs from the general theme. It does not use independence or
negligibility assumptions. What it shows is that joint asymptotic normality of
logarithms of likelihood and of estimates available from the restricted informa-
tion together with a condition that these estimates be “distinguished” leads to
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preservation of the LAN conditions. For that LAN situation the result is an
improvement of a result of Davies who dealt in [8] and [9] with preservation of
what we call “quadratic control.”

Section 7 is an aside on the independent identically distributed case. It shows
that differentiability in quadratic mean (for square roots of likelihood ratios) is
preserved under information loss. This is not surprising.

Section 8 sketches a possible extension of the results of Sections 4 and 5 to
cases where the observations are not independent but where the information is
still acquired by infinitesimal amounts. It is clearly applicable to certain Markov
models where the information is lost by observing only at isolated times instead
of continuously. Some of the difficulties that arise in the non-Markovian case are
pointed out.

Section 9 contains several examples intended as illustrations. The first is the
already mentioned neurophysiological problem that started our investigation.
The second is intended to show in an i.i.d. situation that one should not expect
that good behavior of maximum likelihood estimates would be preserved. It is
also a warning against iterative procedures often used to compute approxima-
tions to the maximum likelihood estimates.

Example 3 explains how to deal with homogeneous Markov processes. It also
contains a warning about loss of identifiability for the instantaneous transition
intensities.

Example 4 shows that asymptotic normality may be preserved even though
the rates of convergence of estimates are altered. This is to emphasize the
warnings of Section 2.

Example 5 discusses the method of moments used in estimation.

Example 6 shows that the techniques proposed here apply to the loss of
information incurred by grouping data.

Finally, Example 7 allows one to pass from ordinary data to censored data.
Here again the identifiability problems may interfere. Otherwise solutions are
reasonably simple. Each section, except Section 2, begins by a short description
of its content. The reader who is not interested in the techniques of proofs may
skip them. It is possible to read the examples first, referring as needed to the
statements of the theorems.

2. Notation and assumptions. The main results of the present paper refer
to a situation describable as follows. For each integer n, let @n be a parameter
set. For each pair of integers (j, n); j=1,2,...,k,, n=12,..., let & , bean
experiment indexed by ©,, that is, a family & { b, ,,(o), 0e @n} of probabll-
ity measures on a o-field %, . Let &, be the d1rect product of the & ,, that i is,
&, is the experiment where one observes independent random elements X

such a manner that, when 0 is true, the distribution of X; , is given by p; ,,(0)
The joint distribution is given by the product measure

B(0) = I;.0).

Consider another double array of experiments %, , = {q; in(0); 8 €0,} and
the corresponding direct product %,. Assume that .97 is less informative than
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the corresponding &; , in the sense of Blackwell [6], that is, for every decision
problem, any risk functlon possible on %, , is also possible in &; ,. This can
happen, for instance, if g; ,(0) is the restnctlon of p; ,(0) to a sub o-ﬁeld B; n
of & ,
In such a situation one may inquire whether certain asymptotic properties of
the sequence é” remain valid for the weaker sequence .97 For instance, let s,
and ¢, be two points of ©,. Consider the product measures P,(s,) and P(¢,)
and the corresponding products Q.(s,) and Q,(t,) relative to the experiments
Z,.
(a) If {P(s,)} and {P,(¢,)} are contiguous sequences, is the same true of
{Qn(s,)} and {Q,(¢,)}?

(b) If the pair [P(s,), P(¢,)] is an asymptotically Gaussian experiment, is the
same true of [Q,(s,), @.(%,)]? .

(c) If O, is a Euclidean space R* and the &, satisfy the LAN conditions, is the
same true of the £?

The answer to question (a) is easily seen to be positive. This will be proved in
Section 3. The answer to (b) and (c) is more complex. We shall show that it is
also positive under a ‘“negligibility” requirement imposed on the components
&, .- However, the positivity of the answer must be qualified in an important
manner. To indicate the qualifications, note that, for such product experiments,
there are some natural metrics definable as follows. Let

12 (5, 8) = 4 [[ Ja;.(5) — Jam; (D) |°

be the square Hellinger distance for &; ,. Let HX(s, t) = L ;h? (8, t). Using the
alternate measures q; ,(s) in a similar manner, define from .9" a distance K,
analogous to H,.

For the experiments {P,(0); § € ©,}, the metric H, is a very natural one. The
local asymptotic theories are often carried out on neighborhoods of the type

V,(6,b) = {t; t € ©,, Hy(t,60) < b},

for a presumed true value 6. This is what one does, more or less, for the LAN
assumptions. This is also what one does in the i.i.d. case for many nonparametric
studies. (See [31], for instance.)

The corresponding neighborhoods for the %, would be

W,(0,b)={t,te0,, K, (t,0)<b}.

Note that since K, < H,, one has V,(0, b) c W,(6, b) but that W, (8, b) may be
immensely larger than V (0 b) (in terms of the distance H,,).

What we shall show is that certain properties, such as asymptotic normality,
are inherited by the {Q,(0); 6 € ©,} on the sets of the type V,. Nothing can be
said in general about the larger W,, although Section 7 does contain a result of
that nature.

For the same reason, existence of estimates that converge at a given speed on
the {P,(0); 0 € ©,} is not a property that transfers to the weaker {Q,(9);
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0 € 0,}, since, for instance, the measures @,(6); 8 € ©, might be all equal to a
single one, @,(6,). Section 7 again, contains some further elaborations on this
point. The reader may have noted that, in the description of the experiments
&, = {P[0); 0 € ©,}, the index set is allowed to vary with n. This again because
of the local nature of the results. It is sometimes possible to stabilize the sets 0,
by various transformations, such as using 6 = yn(t — ¢,) or more elaborate
matrix multiplication. Then the 8, may be replaced by a fixed set © indepen-
dent of n. However such stabilizations are essentially irrelevant to our main
purposes and they would make matters more complex since the stabilizing
transformation needed for % may be different from that needed for é,.

3. Preservation of contiguity and some other inequalities. The purpose
of this section is to show that contiguity is always preserved under loss of
information. This can readily be established directly, but we use a more specific
approach yielding inequalities on likelihood ratios. They will be used in the
subsequent sections.

One first easy remark is as follows.

ProposITION 1. Let {P(s,)} and {P,t,)} be contiguous. Then the se-
quences {Q,(s,)} and {Q,(t,)} are also contiguous.

This is a special case of a more general lemma (see [27], Chapter 6, Section 2).

LemMma l. Leté,=(P,,, P, ,} and %, = {Q, ¢, Q, .} be two binary experi-
ments. Assume that (1) the deficiency 6(8,, #,) of &, with respect to %, tends
to 0 and (2) the sequences {P, ,},{P, 1} are contiguous. Then the sequences

{Qn,O)’ {Qn, 1} are contzguous

This lemma itself is an immediate consequence of an inequality that will be
used in Section 4. To state it, let S be a set of probability measures on a o-field
. Let A be another positive finite measure on .o/. Let us say that the set S is
(a, cA) limited if ||P — P A c)A|| < a for every P € S.

Here the norm is the total variation norm and the measure P A cA is defined
in the following manner. One takes the Radon-Nikodym density dP/dA of the
part of P that is dominated by A. One takes for P A cA the measure whose
density with respect to A is the minimum of dP/d\ and c.

LEMMA 2. Let &= (P); 0 € ©) and F= {Q, 0 € O} be two experiments
with the same set of indices ©. Assume
() {Py; 0 € O} is (a, cA) limited,;
(ii) the deficiency 6(&, F) does not exceed ¢/2.
Then there is a positive linear transformation T that sends probability
medsures into probability measures and is such that

(iii) |Qy — TPyl < & for all 6;
(iv) if w= TN, then F is (a + ¢, cu) limited.
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Proor. The existence of T is part of a general theorem of [21]. Once this is
established note that

T(Py A cA) < (TB)) A (Tex) = (TP,) A (cu).
Also
IT(Py — Py A eA) || <11Py = Py A M| < e
Therefore, '
ITB, - (TB) A ()] < a.

Now write @y — TPy =D = D*— D~. Then @, < TPy + D* and Q4 A cp >
(TP, — D7) A cp. Therefore,

1Qs — Qo A cpll < | TP, — (TB,) A (ep)|| + I1DII.
This gives the desired result. O

Applying this to the case where 8(&, %) = 0, one sees that truncating the
densities of the measures @, results in a modification of these measures that is
smaller than the modification made by the same truncation on the P,.

One should expect that some other inequalities would also be preserved. Many
arguments involving maximum likelihood estimates use bounds on expresssions

of the type
f(x,¢) *
s sl 1]

for densities f(x,t) = dP,/d\. A bound on an integral [¢(x,V)dP, will carry
over to the similar expression defined on the weaker %#. However, some precau-
tions must be taken. See the examples of Section 9.

4. Preservation of asymptotic normality. In this section we consider
experiments that are weakly asymptotically normal in the sense of the Gaussian
approximability described in Definition 2. It is first shown that this property is
equivalent to approximability of distributions of log-likelihood by multivariate
Gaussian distributions at least whenever Hellinger affinities remain bounded
away from 0.

This being done, we consider independent observations where the individual
experiments form what we call bounded infinitesimal arrays (Definition 3). For
these it is shown that, when loss of information occurs on each individual
component, asymptotic normality is preserved.

The approximations by Gaussian experiments involve quadratic forms that
“control” the behavior of likelihood ratios (Definition 4). The forms that control
the weaker experiments are smaller than the initial ones in the sense that the
difference is positive semidefinite.

Explicitly, the situation can be described as follows.

An experiment ¢ = {G,; 0 € 0) is called Gaussian if it satisfies the following



LOCAL ASYMPTOTIC NORMALITY 489

two conditions:

(i) For any pair (s, t) of elements of ® the measures G, and G, are mutually
absolutely continuous.

(i) Let A(t, s) = log(dG,/dG,). The stochastic process ¢ ~> A(t, s), ¢t € 0, is
a Gaussian process for the distributions induced by G,. Here s is an arbitrary
point of ©.

It is easily checked that, under (i), if condition (ii) is satisfied for some choice
of s, it is satisfied for all.

DEFINITION 1. Let a" = {P(0); 6 € B8,)} be a sequence of experiments. One
says that &, admits strong Gaussian approximations if there are Gaussian
experiments ? = {G,(0); 6 € ©,} such that the distance A(&,, 9,) tends to 0.

(The distance A is the one defined in [21] or [27].)

DEFINITION 2. One says that &, admits weak Gaussian approximations if
there are Gaussian ¢, such that for any subsets S, C ©,, which have a cardinal-
ity bounded independently of 7, the distance between &, and ¥, restricted to S,
tends to 0.

The condition of Definition 2 is similar to a relation often used in asymptotics
under circumstances where 0, is a fixed set © independent of #. Then one can
speak of weak convergence of &, to a Gaussian limit = {G,; 6 € ©). This is
convergence for the distance A for &, restricted to fixed finite subsets S C ©.
Note that the weak approximability of Definition 2 is considerably stronger than
what would be obtained from weak convergence to a limit . Our sets S, c ®
have bounded cardinality, just as a fixed finite S, but they are allowed to vary
arbitrarily with n. Thus our weak approximability is uniform on all sets of a
given finite cardinality. It would be inconvenient here to use weak convergence
to limits since our successive ©, need not be related at all.

Definitions 1 or 2 do not put any additional restrictions on the Gaussian ¥,.
Under some restrictions the weak approximability can be checked on the behav-
ior of distributions of likelihood ratios as follows.

ProrosiTION 2. Let é_”n = {P(60); 6 € ©,} be a sequence of experiments.
Assume that there is some ¢ > 0 such that

inf [\dP,(s)dP,(2) = .
n,s,t

Then the &, admit weak Gaussian approximations if and only if for every fixed
k and for every subset (s ,, 5y p»+-., Sy, ) Of elements of O, the joint distribu-
tions F,, under s , of the loganthms

n( j n)

log—————, J=12,...,k,
dPn(SO,n)
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are approximable by Gaussian distributions in the sense that the Lévy (or
Prohorov) distance between F, and a suitable k-variate Gaussian distribution
tends to 0 as n - .

Note. By dP(t)/dP(s)is meant the density with respect to P(s) of the part
of P(t) dominated by P(s).

ProoOF. Consider first two point sets {s; ,, s, ,} and the corresponding
binary experiments &, = {P,(s, ,), B(s,,,)}. Taking a subsequence if necessary,
one can assume convergence to a limit &’ = {R, R,}. The lower bound imposed
on affinities implies that the R;, i = 0,1, cannot be disjoint. Let X,, be distrib-
uted as

l dPn(sl,n)
8 dpn(so,n) ’

under P,(s, ,). There are numbers a < b such that Pr[a < X, < b] remains
bounded away from 0. Let Y, be a normal variable with a distribution A"(p,,, 6.2)
approximating that of X,,. Then Pr{a — 1 < Y, < b + 1] stays bounded away
from 0. It follows that ¢, must remain bounded away from + co.

If so, |u,| must also remain bounded. This means that cluster points of the
sequence of distributions .#(e*~) cannot have masses at 0. Thus R, dominates
R,. This implies that the sequences {P(s, ,)} and {P(s, ,)} must be contigu-
ous. It then follows by a standard argument that the conditions given are
sufficient to imply the weak Gaussian approximability for an arbitary k. The
result in the opposite direction is also the consequence of a standard argument
for which see for instance [22], page 14. O

_ Keeping in mind this result, let us return to the case of product experiments
&, =11;6; , described in Section 2.

DEFINITION 3. The double array {&; ,} with &; , = {p; .(0), 8 € ©,} will be
called bounded and infinitesimal if it satisfies the following two requirements for
all pairs (s,, ¢,) extracted from O,,:

(A) sup th-(sn, t,) < o,
noy

(B) lim sup A%(s,, ¢,) = 0
noj
(where A; is the Hellinger distance defined in Section 2).

Note that when (B) holds, condition (A) is equivalent to the affinity restric-
tion used in Proposition 2.

For such bounded infinitesimal arrays, weak Gaussian approximability can be
shown to be equivalent to any one of a large number of other properties. The one
that will be most convenient here is as follows.
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PRrOPOSITION 3. Let {&;,} be a bounded infinitesimal array. Then the
product &, admits weak Gaussian approximations if and only if for every choice
of pairs (s,, t,) of elements of ©, and every ¢ > 0,

lepj, n(tn) _pj, n(tn) A (1 + e)pj, n(sn)"
J
tends to 0.

Proor. Let
A= log—dp” n(t) .
dp B n( sn)

The condition as stated is equivalent to the fact that, for every &> 0,
LPrA; ,(¢,,s,) > ¢|t,] = 0. Computing probabilities under s, instead of ¢, one
obtains that ¥ ;Pr{ A ; (¢,, s,) < —els,] = 0. Howevet Pr{ A ,(¢,, 5,) < —elt,]
< PrA; (¢, s,) < —¢|s,]. Hence the result follows by the n.as.c. for the
CL.T. O

From this result one can immediately obtain the following.

THEOREM 1. Let {&;,} be a bounded infinitesimal array of experiments
indexed by ©,. Let {¥#; ,} be another array such that &; , is weaker than the
corresponding &; ,. Let &,=11;6;, and %, =11,%; ,. If &, admits weak
Gaussian approximations, so does 37;

ProoF. It is clear that {#; ,} is also a bounded infinitesimal array. By
Lemma 2, Section 3, there are transformations 7} , such that the measures
q;, (t) of F; , satisfy q; (¢) = T} ,p; ,(¢) and also

ilqj,n(tn) - qj,n(tn) A (1 + e)qj,n(sn)”
< "pj,n(tn) _pj, n(tn) A (1 + e)pj, n(sn)”'
Hence the result. O

Note that Theorem 1 refers to weak approximability. At the time of the
present writing, we do not know whether strong Gaussian approximability is
preserved. However, a conjecture stated in [26] would imply that, for bounded
infinitesimal arrays, strong and weak Gaussian approximability are equivalent.

The structure of a Gaussian experiment is well defined by certain quadratic
forms that may be introduced as follows. Let ¥, = {G, ,; 0 € ©,} be a Gaussian
experiment indexed by ©,. Let .#,, be the linear space of finite signed measures
p that have finite support on 0, and are such that u(0,) = 0. Let A’ (¢,s) =
log(dG,, ,/dG, ,) and let T'(n) be the variance of [A(¢, s)u(dt). This is a
positive semidefinite quadratic form on #,. It can be used to complete a
quotient of .#, to obtain a Hilbert space.

The quadratic form T controls the behavior of the process A/, in the following
sense: The integrals [[A’(¢, s) + 3T(8, — 8,)]u(dt) are almost surely 0 if and
only if I'(p) = 0. In other words, linearity relations satisfied by the random part
of A/, are those describable through T
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For experiments that are only approximately Gaussian, the situation is not so
neat but one can describe an analog as follows.

Let A (¢, s) = log(dP(t)/dP,(s)). Let T, be a positive semidefinite quadratic
form on /.

DEFINITION 4. The sequence of experiments &, is under the control of the
quadratic forms T, if, for elements pu, €.#, that have bounded mass
(sup,||i,ll < o0) and supports with bounded cardinality, convergence of I',(p,)
to 0 implies that

f{An(t’ sn) + %rn(st - ssn)}nu‘n(dt)
tends to 0 in P,(s,) probability.

This is obviously a way to say that, if T,(x,) tends to 0, the recentered A,
satisfy approximately the corresponding linear relation. The literature contains
several conditions meant to express that log-likelihood admit approximate lin-
ear—quadratic expansions. This is usually done assuming that ©, is a finite-
dimensional vector space. One writes that A, (¢+ 8,0) is approximately
t'V, — 1¢’M,¢t. In the LAN conditions M,, is nonrandom. In the LAMN condi-
tions M, is random, the pair (V,, M,) has a limiting distribution £(V, M),
where, conditionally given M, the variable ¢'V is A°[0, t’Mt]. The case where
this restriction on conditional distributions is omitted has been considered by
Davies [9] as the case “when the amount of information is random.” For these
conditions see Basawa and Prakasa Rao [4], Basawa and Scott [5], Feigin [11]
and Jeganathan [17].

Note that all these conditions imply a relation between the linear structure of
©, and that of the log-likelihood. Our quadratic control condition is different. It
does not rely on any particular structure, linear or otherwise on ©,. To under-
stand it, let us consider experiments & = {P,; § € 0} that do not depend on n at
all. Suppose that © is the real line and that P, is the distribution of a
two-dimensional vector (X, Y), jointly normal with covariance matrix the iden-
tity and expectations E,X = 0, E,Y = sinh . Then & does not satisfy the LAN
or LAMN conditions on ©, yet it is controlled by a quadratic I' such that
I'(8, — 8,) = |t — s|? + |sinh ¢ — sinh s|? for the Dirac masses §, and §,. This is
typical of Gaussian shift experiments where the shift parameters are not linearly
related to the original 6.

However, the quadratic control places a strong restriction on the log-likeli-
hood. For instance, let P, be the ordinary gamma distribution with density
(B%/T(a))e~#*x*~1, The log-likelihood is a linear function of the vector {8, a,
log I'(a)} but the experiment &= {Py; 6 € O} with 6 = («, B) does not admit
quadratic control.

The following results say that linear relations are preserved by going from the
product I[1;6; , to the weaker I1;%; ,

THEOREM 2. Let {&;,} be a bounded mﬁmteszmal array of experiments
= {p; (0); 0 €6,}. ‘Let % , be weaker than &; ,
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If the products &, admit weak Gaussian approximations, they are under the
control of quadratic forms T, and the weaker products &%, are under the control
of quadratic forms I,* such that T, — I'* is positive semidefinite.

PrOOF. Select a point s, € ©, and let

X5.n8) = ;p, 'Z( )>

Let Y, (¢) =1 A X (). It is easy to see that, under the conditions given, for
any sequence {,, the difference between A,(¢,,s,) and XY, .(t,) —
sx;varY; (t,) tends to 0 in P(s,) probability. (See for instance [22] or [27].)

On the space of measures .#,, define T, (p) as the variance under s, of
J[Z,Y; (£)]p(dt). Then the integral

J{Au(t,5) + 3T, [8, = 8, ] Jmalat)

differs from [[XY; f A)]p,(dt) by a quantity that tends to O in probability as
long as ||p,|| remains bounded and as long as the supports of the p, have
bounded cardinality. Thus the assertion that &, is under the control of the
quadratic form T, is equivalent to the statement that [[X;Y; ,(¢)]u,(dt) tends
to 0 in probability whenever its variance tends to 0. However, the contiguity
restrictions involved in the Gaussian approximability imply that the distribution
of a term such as XY, (¢) is approximated by a Gaussian distribution with
expectation 0. Hence the first assertion,

To obtain the second result, let us use again the transformations T; . With
T, . pj, o(t) = g, ,(t). Under some technical regularity conditions, these 7} , can
be represented by Markov kernels. If we look only at finite subsets of ®, and
only at distributions of likelihood ratios for the F;, n» these technical conditions
can be assumed to be satisfied. Thus the situation can be described as follows.
Let o, , and %, , be, respectively, the o-fields of &; , and & ,

Let K A B, ) be the Markov kernel of T; evaluated at B 1n B; n Deﬁne
measures by M, [t AX B] = [,K; (B, )dpJ At). Their marglnals on
are the g; ,(¢) and their likelihood ‘ratios are &Z; ,-measurable, equlvalent to
those of the p; ,(t). Now replace our previous Y; ,(¢) by the equivalent

dM; ,(¢)
dAlj, n(sn)

with M/ (t) = M; (t) A 2M; ,(s,). Let Z, (t) be the conditional expectation
(under s,) of Y; ,(¢) given &, ,.. This differs from

dq Js n( t)
dq Js n( S n)
by an amount that can be neglected. It is thus possible to show that

Zzn, A(t) = %vwzzn,j(t)

1.

_1,

_1’
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is an approximation to the logarithm of

dQ,(2)

dQn( sn ) ’

for the product %,. For the same reasons given previously, the &, are under the
control of the quadratic forms defined by I *(p) = var/[X;Z, (t)lp(dt). How-
ever, since Z, (t) is the conditional expectation of Y; ,(¢), the variances are
smaller so that I*(u) < I (p) for all p € #,. This completes the proof of the
theorem. O

REMARK 1. The forms T, and I,* used here are nonrandom. We shall see in
Section 8 experiments that are under the control of random quadratic forms.
Under some supplementary restrictions (contiguity for pairs {P,(s,)}, {P.¢,)}
convexity of O, if imbedded in the Hilbert space), one can show that control by
nonrandom quadratic forms is equivalent to weak Gaussian approximability.

REMARK 2. The assumption that we have products with bounded infinitesi-
mal arrays {&; ,} and {Z, ,} and with &; , weaker than &, has been used
very forcibly in the preceding proofs. The results might be extendable to some
other cases, as shown, for instance, in Section 6. However, they are not true
without restriction. One can have an experiment &% weaker than a Gaussian &
with & remote from Gaussian. For instance, let & be the family A4°(4,1) of
normal distributions with variance unity on the line. If X is the observable
variable let Y be the integer closest to X. It does give a family of distributions
F= {Qy 0 € 0,} weaker than &. However, the log-likelihood ratios for the @,
have discrete distributions that are far from Gaussian.

5. Preservation of the LAN conditions, part I. The contents of the
present section bear aon two separate questions. The first is that, for the bounded
infinitesimal arrays of Section 4, the LAN conditions are preserved under loss of
information if this loss occurs on the individual components. The second refers to
the construction of estimates by adding to our auxiliary estimate a correction
calculable from likelihood ratios. Here many different procedures may be used.
We describe some that can often be easily carried out in practice. An explicit
example is given in Section 9, Example 1.

The first recorded instance of the conditions called LAN that has come to our
attention is that of [20]. Since then conditions called LAN have been used by
many authors. (See [9], [10], [13], [14] and [34], for instance.) Unfortunately, the
statements used by various authors differ in some aspects that are sometimes
incidental and sometimes important. Because of this we shall first give two sets
of agsumptions, and show that they are equivalent if the index sets ®, are
sufficiently rich. Then we shall show that they are preserved by passages from a
product &, to the weaker &, of Section 2. We end by a description of a method
of construction of estimates.
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The LAN (for “locally asymptotically normal”) assumptions used in the
references listed previously differ considerably from the asymptotic Gaussian
approximability conditions of Definitions 1 and 2 of Section 4. They involve a
finite-dimensional vector space V and a sequence of norms |- |, on V. The
sequence of norms is used for two purposes: (a) to indicate the size of sets on
which Gaussian approximability is contemplated; and (b) to relate the linear
structure of V to that of the Gaussian experiments used as approximations. The
relations will be described in detail in the following discussion.

For the typical LAN assumptions one considers a fixed finite-dimensional real
vector space V and a sequence {| - |,} of norms on V. The parameter set ©, that
indexes the experiments &, = {P,(0); 0 € ©,} is mapped into V by some
function, say 7,. The assumptions usually refer to some particular 6, , € 0,
called the true value. The norms are often obtained from a single norm | - |
on V by using either multiplication by some numerical factors or more compli-
cated matrix manipulation. Think of the fairly common renormalizations
la - 00, nln = ‘/Elo - 00, nl or lo - 00, n‘n = |Mn(0 - 00’ n)l for matrices Mn‘ These
M, are often selected to “stabilize” the image of ®, in V making it tend to some
limit.

These renormalization and stabilization operations may be convenient in
practice, but they distract attention from the main statistical arguments, Thus
we shall not consider them.

In fact, for simplicity, we shall just assume that ©, is a subset of V and that
0y, , is the origin of V. _

Consider then experiments &, subject to the following requirements.

(R.1) Each ©, is a subset of the fixed space V and the origin of V belongs to ©,.

(R.2) If |6,|, remains bounded, the sequences {P,(6,)} and {P, (4, ,)} are con-
tiguous.

(R.3) For any set S, ¢ @, such that sup(|s|,; s€ S,, n=1,2,...} < oo, the
experiments {P,(f); § € S,} admit weak Gaussian approximations accord-
ing to Definition 2, Section 4.

To state the remaining conditions proceed as in Section 3 and introduce the
set # , of finite signed measures p carried by finite subsets of ©, and satisfying
1(0,) = 0.

For subsets S, C 8, let .#,(S,) be the subspace of .#, formed by measures p
whose support is in S, [with u(S,) = 0].

The existence of Gaussian approximations ¥, = {G, ,; 0 € S,} implies the
existence of corresponding quadratic forms I, g defined on .#,(S,). For p €
A (8S,) and for

dG, ,
dG, .’

,n

A%(¢,s,) = log

the value T, s(m) is the variance of [A%(¢, 8, )u(dt).
The link between the linear structure of V and that of the Gaussian ap-
proximations is as follows.
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(R.4) Consider sets S, c ®, such that sup{|s|,; s€ S,, n=1,2,...} < o0 and
such that the cardinality card S, remains bounded. Then there are
Gaussian approximations with the following property:

If u,eA#,(S,) is such that sup,||p,|| < co and such that
|/spn(ds)|, tends to O, then T, ¢(p,) — 0.

It should be clear that the role of the norms in (R.3) is to indicate the size of
sets on which Gaussian approximability is contemplated. The role of (R.4) is to
link the vector structure of V to that of the Gaussian approximations.

This set (R.1)-(R.4) of assumptions is often described in a manner that looks
very different as follows:

Let

dP,(t) °

dP,(0)

A,(t) =log

(L.1) There are random vectors W, (with values in V') and Euclidean norms || - ||,,
such that if sup,|t,|, < oo, then

A(t,) = W, + 3lit,17

tends to 0 in P,(0) probability.

(L.2) Let F, be the distribution under P,(0) of the vector W,. There are joint
Gaussian distributions G, such that the dual Lipschitz norm ||F, — G,||,,
induced by | - |, tends to 0. [The dual Lipschitz norm is

[tdF,~ [tda,|,

for a supremum taken over functions f such that |f| <1 and

If(x) = F(3)| < | = 3,.]

nln

|F, — G,llp= sgp

The sets (R.1), (R.2), (R.3), (R4) and (R.1), (R.2), (L.1), (L.2) are technically
very different. To relate them, one encounters technical difficulties due to the
fact that the sets ©, may be very sparse subsets of V. However, the two systems
are known to be equivalent (see [27] for instance) under the following restriction.

(R.5) Let k& be the dimension of V. There are sets {s; ,, 51 ,.-., 5 ,} €O,
with the following properties:
(i) Supi,nlsi, nln < 0.
(i) If ¢, € ©, is such that sup,|t,|, < o, then there are numbers c, ;
i=1,2,..., k, such that

k
tn ~ So,n = E cn,i(si,n - sO,n)
i=1

and such that }_|c, ;| remains bounded.

[If one requires more, for instance, that the simplex spanned by the s, , be
contained in ®,, then condition (L.2) is already a consequence of (R.1), (R.2),
L.1).]
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As seen in Section 4, it is not true that replacing an experiment &, by a
weaker one will preserve the Gaussian approximability. Thus the LAN condi-
tions (R.1)—(R.4) are not preserved either. However, for product experiments one
can assert the following.

THEOREM 3. Let {&; ,} be a bounded infinitesimal array of experiments and
let {#; ,} be another double array all indexed by sets ©,. Assume that &, , is
less informative than &, and consider the products &,=T11,6;, and %, =
%,

If é" satisfies the conditions (R.1), (R.2), (R.3), (R.4), so does &, If, in
addztzon the requirement (R.5) is satisfied, one can replace the condztzons (R.1),
R.2), (R.3), (R4) by (R.1), (R2), (L.1), (L.2).

ProoF. The preservation of the conditions (R.1), (R.2), (R.3), (R.4) is an
immediate consequence of Theorems 1 and 2, Section 4: Contiguity, Gaussian
approximability are preserved and so are the linear relations satisfied by the
Gaussian approximations. Under (R.1), (R.2), (R.5) the pairs (R.3), (R.4) and
(L.1), (L.2) are always equivalent. Hence the result. O

To be complete, we should prove the stated equivalence of (R.3), (R.4) and
(L.1), (L.2). However, for bounded infinitesimal arrays, one can use a number of
other relations. Since these are important for the possible construction of
asymptotically sufficient estimates, we shall now proceed to state some of them.

Suppose, for instance, that (R.1)-(R.5) are all satisfied. For i = 1,2,..., & let
X, . ; be the random variable

Js
dp; ,.(s;
X, .- b nl8in) |
Y dpj n(sO n)
Let Y, ; be the sum X . X; , ;. Suppose that ¢, € @, is such that sup,|¢,[, <
Then, by (R.5), there are numbers such that

tn - sO,n = ch,i(si,n - sO,n)
13

and such that sup,X,|c, ;| < co. Let D,(¢,) be the difference

Dn(tn) = El:dﬂ’-’_'it_”_)_ - 1} - f cn,iYn,i

j ), a( So, n) i=1

We claim that, under (R.1)-(R.5), the difference D,(¢,) will tend in probability
to 0. Indeed, let p, be the measure that assigns mass (—c, ;) to s; , for
i=12,...,k mass1to ¢, and mass (X% ,c, ;) — 1 to s, ,. By definition of the
C, ; one has ftu,(dt) = Consuder then the logarithms

dP,(t)

dP,(0)

and the integrals fA ,(¢)u,(dt). According to (R.1)—~(R.3), these integrals have a
distribution that is approximately Gaussian with a certain variance I',(¢,). Since

A,(t) = log———=
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ftp,(dt) = O this variance I,(p,) must tend to 0, by (R.4). However, D,(t,) is
approximately equal to [A,(¢)u,(dt) recentered by subtracting the expectation
of the Gaussian approximation. Hence the assertion.
The same conclusion can be obtained if one uses (L.1), (L.2) instead of (R.3),
(RA4).
To see how this may be used for the construction of estimates, consider the
weaker #. , = {q; ,(0); 0 € ©,} and the same sets S, = {s; ,, S, 4s--» S, n}-
An estimation technique that is often successful is to maximize a smooth
approximation to the logarithms
(t
L,(£) = log o ont?)

8 3Q.(500)

Note that we said to maximize a smooth approximation, not the L,(t)
themselves. Let

VA dq}, (

n)
Gomei = dQ,(o n) -1

aIld ].et Zj’,kn,i = Zj n,i A 1
Under the conditions of Theorem 3 for by = Son=Lt10, (Sin—Son) @

possible approximation to L,(¢) is
L(l)(t )_ ZZ n i j,n i —Var[zz n,i j,n l]

This consists of a random term that is linear in the vector v} = {v, ;
i=1,...,k} and a nonrandom term that is quadratic in that vector. In many
cases, the variances are not readily computable. Then one may prefer to use the
approximation

LO(t,) = ZZ On,iZj,n,i — [2 ™ J’“r.

In matrix notation this may be written as follows. Let Z, be the column vector
whose coordinates are the ¥,Z; , ;. Let M, be the matrix whose («, B) entry is
YiZ; n oZj n g Then

Lg)(tn) = Dr,zZn - évr,zMnDn‘
When M, is invertible this can also be written in the form
Lg)(tn) == %{(Un - M;lzn)’Mn(vn - Mn_lZn) - Zr:Mn— IZn}'

from which it follows that the maximum of this approximation is reached at the
point 6, = M, 'Z,.

To carry out the preceding operations, one needs to know the sets
{S0,n>S1,ns+++» 5k, n} (and to be able to obtain good approximations to the
likelihood ratios). Of course, if the purpose is to estimate 6, one will not know
what set (s, ,,..., S, ,} to use.

The technique proposed in [20] and variously expounded in [22] and [27] is to
replace the set {s; ,,..., S, ,} by a suitable estimate of it.
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As explained in [20], the validity of the technique seemed to depend on
curious cancellations mvolvmg the difference between s, , and an estimate 3, ,.
However, the basic reason is very simple: The points that maximize L,(¢,) are
the same as those that maximize L,(t,) — L,(3, ,). This remains approximately
true for the approximations of the type L® or L®.

Note, however, that for the validity of the argument the following must hold.

(1) The auxiliary estimate §; , must with large probability be in the range where
the approximation holds.

(2) Similarly, the correction term ¢, = M, 'Z, must be in the range where the
approximation holds.

In the present situation this calls for the following comments. The existence of
estimates that converge rapidly enough for &, does not imply existence of similar
estimates for #,. The fact that, in Theorem 2, the difference I, — I* is positive
semidefinite implies that the matrix M, will typically be smaller than the
corresponding matrix calculated on ¢&,. The fact that this latter would not
degenerate is no guarantee that M, will not. These properties must be checked
for &, itself.

The matrix M, can be adjusted to a certain extent by modification of the
basis §; , — 8o, i =1,2,..., k. It may be wise to check that a change of basis
does not modify the end result too substantially.

In spite of all these warnings, we shall describe, in Section 7, a situation where
the necessary verification can be carried out rather easily.

To terminate this section, note that the approximations LY and L® are not
the only possible ones. There are many more. In [27] one of the present authors
suggested estimating what takes the place of M, by parallelogram differences
calculated on the log-likelihood. For the situation covered by Theorem 3, one can
use instead of the

dq B n(si, n)
dq /'y n(so, n)

a variety of functions of them, in particular, their logarithms or their square
roots. For instance, if
- (fote) } .

dq s (SO n)

Jon,t
then
2
Ls?)(tn) = Z Zci, nu/;', n,i %Z [Zci, ani, n, i]
J U J 11

is.an approximation to ;L(t,).

The estimates {§, ,,...,8; ,} used in [20], for instance, were assumed to
satisfy certain discreteness conditions. This is for technical reasons: They should
not seek for singularities in the likelihood functions. That can be achieved by
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methods other than discretization. If the likelihood functions are sufficiently -
regular, one does not need to worry about this particular point. A referee pointed
out that the estimates described here may display a severe lack of robustness.
This is particularly true if the approximation called LY is used with untrun-
cated variables. Fortunately, one can often detect easily forms of misbehavior of
the variables Z; ,, ;. Possible methods for doing so and for correcting the system
are too complex to be described here. We shall return to this matter elsewhere.

Finally, instead of using differences one can sometimes use derivatives and the
Newton-Raphson procedure. However, to show that this particular technique
will work, one needs assumptions that are much more restrictive than the ones
used here.

The reader will note that in Sections 4 and 5 we replaced each component &; ,
by a weaker #; . This is essential in the proofs. The next section expounds on a
result of Davies in which the loss of information occurs in a very different
manner.

6. Preservation of the LAN conditions, part II. Davies ([8] and [9]) has
observed that the LAN conditions are preserved under circumstances that are
rather different from the ones described in Section 5: No product structure is
assumed. Even if it is there, the loss of information occurs by passage to
sub-o-fields that do not preserve the product structure. To describe the situation,
we shall consider a sequence {&,} of experiments {P,(0); 6 € O}, where the
P,(0) are measures on some o-field «,. The weaker experiment %, = {Q,(9);
0 € 0,} is obtained by taking the restrictions @,(8) of the P,(6) to some subfield
B

e
We shall show that the LAN conditions are preserved if the weaker experi-
ments admit “distinguished” statistics whose joint distributions with the log-
likelihood of the initial experiment are asymptotically normal. The relations
with Davies’ work are complex. They are described at the end of the section.

We shall assume that the experiments &, satisfy the requirements (R.1), (R.2)
and (L.1), (L.2) of Section 5. Recall that (L.1) involves certain random vectors W,
and Euclidean norms || - ||,

Consider also statistics 7, defined on the experiment %, and taking values in
a fixed Euclidean space RY. Recall that the sequence {7} is called distinguished
for the sequence {.%,} if the following property holds. Let F,(8) be the distribu-
tion of T, for Q,(6). Take pairs (s,, t,) of elements of ©,. This gives a pair
{F(s,), F(t,)} of measures on R? and a binary experiment %’ =
{Qn(sn)’ Qn( tn)}’

Compactifying R? by adjunction of points at co, one can extract subsequences
{v} C {n} such that (i) the experiments %, have a limit %", and (ii) the measures
E(s,) and F,(t,) tend in the usual weak sense to certain limits, say F, and F,.

The sequence {T,} is distinguished if for all such subsequences the experiment
formed by the limiting distributions { F;,, F}} is as strong as the limit experiment
. (The definition of [24] involves more than pairs, but it is shown in [27] that
it is enough to look at pairs.) For the purposes of our next theorem, we shall
metrize V X R? by the square norms || - ||2 + | - |2
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THEOREM 4. Consider experiments &, = {P(0); 0 € O} given by measures
on a o-field </, and their restrictions %, = {Q,(0); 0 € O} to subfields %, C «,.
Assume the following:

(i) The &, satisfy the LAN conditions (R.1), (R.2), (L.1) and (L.2).

(i) The joint distributions L[W,, T, |P,(6, ,)] admit Gaussian approxima-
tions in the sense of condition (L.2) and, in this approximation, the variable T,
is centered at 0. ,

(iii) For the sequence {#,} the sequence {T,} is distinguished.

Then the %, satisfy conditions (R.1), (R.2), (L.1) and (L.2). Furthermore,
there are nonrandom matrices A, and B, such that

d@,(t,)
& dQn( 00, n)

is approximable by t,A,T, — it.B,t, (for the inner products of the initial
norms || - ||,)-

lo

Proor. Take a Gaussian approximation to the joint distribution
L[W,, T,|P(6, ,)) Let C, be the covariance matrix of 7, and W, in that
approximation. (Take C, in the form C, = ET, W) If G,(6, ,) = #(0, K,) is a
centered approximation to Z[T,,|@,(6, ,)], then, by [20], G.(¢,) = #/[C,t,, K, ]
is an approximation to Z[T,|Q,(t,)]

The assumption that 7, is distinguished insures that %, satisfies (R.1), (R.2)
and (R.3) for the approximating Gaussian experiments ¢, = {G,(0); 6§ € ©,}.
The contiguity condition of (R.2) shows that, for n large, the G,(8), § € 0, are
mutually absolutely continuous. Thus they are all carried by the smallest linear
subspace L, of R? that carries G,(, ,). Also, restricted to that subspace, K,
must be nonsingular and the values C,¢,, ¢, € ©, must all be in L,. It may
happen, of course, that L, is reduced to the origin of RY. In that case the final
statement of the theorem is true with matrices A, =B, =0. If L, is not
reduced to 0, then the log-likelihood

g Gults)
dG,(8, )
has on L, the form
8T, 1) = = H{[T, - Ct VKT, - Cot, ] - TYK;'T,)

and the ¢,C./K;'C,t, must remain bounded. Here again, if for all choices of the
t, € ©, the t;C,/K;'C,t, tend to 0, then the final assertion of the theorem holds
with A, = B, = 0. Thus we shall assume that some of these sequences do not
tend to 0.

Now return to R?. It was assumed to carry a Euclidean norm, say | - |, used,
in particular, to describe the approximability of distributions £[T,|Q,(6,, ,)] by
Gaussian ones. Let II, be the orthogonal projection of R? onto L, for that
norm. Note that the difference between £[7,|@Q,(6, ,)] and L[I1,T,|Q,(6,, ,)]
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must tend to 0. However, a theorem of [25] shows that in such a case the
difference between g,(11,7,, t,) and

dQ,(t,)
dQ,(6,,,)
must also tend to 0. Hence the result. O

log

The result presented here is related to a result of Davies ([8] and [9]). His
assumptions differ considerably from ours. Davies is interested in the situation
where the restricted experiments %, do not necessarily satisfy the LAN condi-
tion but only what we have called “quadratic control” by random quadratic
forms. This corresponds to the approximability of the log-likelihood as in
condition (L.1) of Section 5 but with random norms || ||,. He assumes that the
conditional distributions #{W,|%,, P,(0, ,)} are approximately Gaussian. To
prove this in particular cases, he uses local limit theorems and an argument
previously used by Steck [37].

We have limited ourselves here to the case of control by nonrandom quadratic
forms. For that particular case our assumptions are weaker than those made by
Davies in that joint asymptotic normality of W, and T, does not necessarily
imply asymptotic normality of the conditional distributions (W, |T,,, P(6, ,)}-

For instance, it is highly visible that the vectors Z, used in Theorem 3 and
further on to describe the construction of estimates are distinguished. Thus one
could prove the required joint asymptotic normality as in Section 4 and then
apply our present Theorem 4 to obtain an alternate proof of Theorem 3, Section
5. This does not require examination of conditional distributions.

However, it can also be argued that, under the conditions of our Theorem 4,
Davies’ conditions are almost satisfied. Indeed, it can be shown (see [27],
Chapter 7, Section 3) that the assumption that the sequence {7)} is dis-
tinguished is equivalent to an assumption to the effect that the likelihood ratios

d@,(t,)
dQn( 00, n)
can be approximated by smooth functions of 7,,. To state that more specifically,
take a fixed k independent of n and sets {t, ; i = .k} in O,. Let Z, be

the k-dimensional vector formed by the densities of the Qn( L i) with respect to
their sum p,. It is shown in [27], Chapter 7, Sectlon 3 that {T,} is a dis-
tinguished sequence if and only if for each set (¢, ; i = .. k} there is a fixed
finite set {y,; » = 1,2,...r} of continuous functions from Rq to the unit simplex
of R* such that

n:fflzn - Yv(Tn)ldp‘n

. tends to 0. (Here the norm is the maximum coordinate norm.) The proof of that
statement is rather involved. Under the contiguity restrictions used here, one can
replace the sum p, by @,(6, ,). Suppose then, in addition, that the sets ©, are
sufficiently rich in that, for instance, they contain a fixed open subset of V.
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It is then possible, usmg Laplace transforms, to conclude that the conditional
distributions of W, given 7T, are approximable in @ (6, ) probability by
equicontinuous functlons of the T,. If the joint distributions converge to normal
limits, Steck’s theorems will then imply that these equicontinuous approxima-
tions will also converge to normal limits. This is all that would be required for
the application of Davies’ theorem.

Thus, modulo a rather lengthy and complex argument and for sufficiently rich
sets ©,, one can say that our assumptions imply those made by Davies. It should
be noted, however, that to derive Theorems 2 and 3 from Theorem 4, one still
needs to carry out a good part of the arguments previously described in Sections
4 and 5. As already pointed out, to derive Theorem 4 from Davies’ results, one
needs a considerable amount of work. This is also true for Theorems 2 and 3.

A further remark is that the proof of Theorem 4 does not actually depend on
the fact that the spaces V and R? have a fixed finite dimensionality. One can
carry out a similar proof in infinite-dimensional spaces. This is useful in nonpara-
metric situations and will be published elsewhere.

7. Differentiability in quadratic mean and the i.i.d. case. Let ©® be a
subset of a Euclidean space and let {p(#): 6 € ©) be a family of probability
measures on a o-field /. A condition often used to study the i.i.d. case is a
condition of differentiability in quadratic mean expressible as follows. At a point
0, let £%(s), £&(s) = 0, be the density dp(s)/dp(8,) of the part of p(s) that is
dominated by p(4,).

(DQM). (i) There are random vectors X such that as |t| — 0,
1
By, 560 +£) = £(8) = ¢X [ > 0.
(i) Let B(8, + t) be the mass of p(6, + t) that is p(6,) singular. Then

ItI"’B(o" +t)—>0, as|t|—0.

Now replace the o-field & by a smaller o-field # and let g(6) be the
restriction of p() to #. We shall show that, if { p(6); 6 € 0} satisfies (DMQ) at
0y, so does {g(); 6 € ©). For this we shall use an indirect proof, using the
asymptotic properties of the likelihood ratios when the number of observations
increases indefinitely. A direct proof can be carried out, but it is less informative
than the indirect proof for the standard i.i.d. case that can be described as
follows.

Let & be the system of measures { p(0), 0 € O} on a o-field < carried by a
set Z. For each integer j, let {Z &, &} be a copy of (%, ,&). The
experiment camgd out at stage n is the direct product é’ IT}_,&; of n copies
of &. That is, &, is the experiment that consists of observmg n independent
variables w,, w,,...,®, with common distribution equal to a certain p(6,),
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0, € ©. As n tends to oo, we assume that the “true” 6, stays fixed independent
of n. (For certain purposes, for instance, to prove uniformity of convergences,
one makes the “true” value of the parameter depend on n. If so, the situation
one encounters is more restricted than the general situation covered by the
infinitesimal arrays of Section 4. However, the restrictions are not as drastic as
one could presume.)

For the experiments &; , = {p; (0); 0 € ©,} of Sections 2-5, we shall take
the copy &; , = {p(0); 6 € ©,} with 0 restricted to lie in a subset ©, of ©.
Finally, we shall consider only the case where the @, are of the form @ (D) =

{0 € ©; Vn |0 — ;| < b) or perhaps of the form 8,(b) = {8 € ©; a,|0 — 6| < b}
for some other coefficients a,, that tend to oo.

It is well known that, in such situations, the condition (DQM) implies that the
products &, satisfy the LAN conditions on sets of the form ©,(b) = {0 € ©;
Vn |0 — 6,| < b). It is also known (see, for instance, Example 4, Section 9) that
cases occur where (DQM) is not satisfied but where the LAN conditions are
satisfied, for instance, on sets {§ € ©; \/nlogn |0 — 6,| < b}. Even if one sticks
with the sets ©,(b) and the speed of convergence Vn, the validity of the LAN
conditions does not imply that of (DQM). (An example is given in [23], page 816.)
Thus the preservation of the LAN conditions by passage from the o-field & to a
smaller o-field # does not logically imply that (DQM) w111 also be preserved. We
shall now show that it is preserved.

It is known (see [27], Chapter 17, Section 3) that the (DQM) requirement is
equivalent to the following. For a pair (s, t) let A,(t, s) be the logarithm of
likelihood ratio

0
*®ap(s)’
for the product measures P,(s) = I1;p; ,, where p; , is the jth copy of p;.
(DQM'). There are random vectors X; defined on (%, ;) with the following
properties:

(i) The X; are copies of a given X,.
(i) E, X;=0 andforte Vv, E,,(t'X)2 < 0.
(iii) If |t | remains bounded, then

t 1 2
A6+ —=,6,|-¢ X.| +1E, (2 X,)?
n( 0 ' ‘/E 0) n(‘/ﬁjgl J 2 00( n 1)

tends to 0 in P,(8,) probability.

In other words, for any fixed b let
0,(b) = {6 € ©; Vn|0 — 6| < b}

and let &, be the product experiment indexed by ©,(b). The (DQM’) condition
is equlvalent to the requirement that the &, satisfy the LAN conditions (R.1),
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(R.2), (L.1) and (L.2) of Section 5 with the further specification that the linear
term ¢, W, of condition (L.1) have the special form ¢,((1/Vn)Z7., X)).
Instead of using the logarithms A (6, + ¢,/ Vn, 6,), one can use the sum

S(t)= X [g’iﬁ - 1},

j =1 j 3 00
where 6, = 6, + t,/Vn . The condition is then that

1 n
Sn(t_‘n) tn( ﬁ _1;1 Xj)
tends to 0 in probability.

Now let us consider experiments %, , that are weaker than our &, ,. Passage
to weaker experiments need not preserve the ii.d. structure. For instance, it
could be obtained by passing from the o-field «/; to a o-field #; , C «/; but in
such a way that the %, ,, are not copies of each other. An example can be readily
constructed by looking at the counting processes described in the Introduction.
They might be i.i.d. on the total observation period [0, L] but on the weaker
experiment the isolated times at which the patients are observed may depend on
the patient.

We shall consider only the situation where there is a o-field # C &« with
copies #; C o«/; and where the jth experiment %, is obtained by restricting the
Dy of & to & and copying the result on %..

One immediate result is

PROPOSITION 4. If the p,; 0 € O, satisfy (DQM) at 6, so do their restric-
tions q, to the o-field # C .

PROOF. Use the variant of (DQM’) that says that S,(t,) — ¢,((1/ Vn)Z", X))
tends to 0. According to the argument of Theorem 2, the corresponding sums
S,x(t,) for the weaker experiment will be such that

n
Sx(¢t,) — t;,((l/»/r?) Y X,.*) -0 for X* = E,(X,|%,). o
j=1

(The preservation of (DQM) is no surprise in view of its relation to Lipschitz
conditions or to the rate of separation vn . See [23].)

In the present case, since the rate of convergence yn for estimates is about as
bad as can be, one can also hope that the weaker experiments will still give
suitable estimates. This need not be so. However, here is a usable result.

Consider the expectation E,(¢'X )? used in (DQM’). It may be written
t'T'(8,)t for a certain matrix I'(f,) called the Fisher information matrix.

PROPOSITION 5. Assume that the p, satisfy the following requirements:

@) If 6, — 0, then the total variation || p,, — py| tends to 0.
(i) If t # s, then ||p, - p,|| > 0.
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Then there exist estimates T, based on n observations such that Vn (T, — 6)
stays bounded in P(8) probability for any 8 € © that satisfies (DQM) with a
nonsingular information matrix I'(9).

ProoF. This is a known result. See for instance [22]. O

Now consider the weaker experiments with measures restricted to the copies
%, of a o-field # C /. Let g4 be the restriction of p, to %.

It is obvious that whenever condition (i) of Proposition 5 is satisfied by the p,,
it is also satisfied by the g,. Condition (ii) need not be preserved. That p, # p,
does not necessarily imply q, # q,. However, that s # ¢ implies g, # g, is often
easy to check.

Thus we are essentially left with the question ‘of nonsingularity of Fisher
information matrices. A technique that often works is the following. If the g, are
complicated, there may be o-fields € C & on which their restrictions r, are quite
manageable. It is sufficient to verify the nonsingularity of information matrices
for the r,.

8. An extension to a dependent situation. The proofs of Sections 4 and 5
depend very strongly on the independence assumptions made there. However,
they suggest a possible extension to a dependent situation.

It often happens that an experiment has the following structure: It is given by
measures P (0) on a o-field «/, but there is a filtration &, ,Cc &, ,C --- C
;  C oy, C 00 CH, formed by a finite or infinite mcreasmg family of
sub o-fields. Smce our purpose is not to attain maximum generality, we shall
assume that the filtration is a finite sequence with =/, being the last one of the
sequence.

Except for technical details that are annoying but not so important, one can
describe such a situation in a more intuitive manner as follows.

One starts by performing the experiment with the Fj restricted to </, ,. If
everything has been carried out up to and including the jth step, one performs
an additional experiment &, ,, where the probability measures depend on the
observations seen up to and including the jth step. One continues until the end of
the sequence has been reached.

To retain a notation similar to that used previously, we shall let p; ,(8) be
the conditional distribution used at the jth stage when the value of the
parameter is 8. It is a function of the previous observations, measurable with
respect to /;_, ,. Just as in Section 2, one can define quantities 4; , by

12 (s, 8) = 3 [[doy, (5) = o, (B) |

for integrals taken conditionally given %/;_, ,. Now the A; , are &/, , , mea-
surable functions. The joint distributions w111 be denoted P (0) as before

By analogy with the requirements imposed in Section 4, we shall assume that
the following conditions are satisfied for all possible choices of pairs (s,,¢,)
in O,
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(A) As n — o the quantities sup;h; (s, t,) tend to 0 in P (s,) + P(t,)
probability.
(B) There is a number b < oo, independent of (s, t,), such that

Eh‘?,n Sps n) <b.
J

(C) For every fixed &€ > 0 the sums
lepj,n(tn) - [(1 + e)pj, n(sn)] A pj, n(tn)“
J

tend to 0 in probability.

Note that here conditions (A)—(C) are no longer sufficient to imply asymptotic
normality of the logarithms
dp, n(n)

n(tn’s )— Zl J n( n)

As far as we have been able to determme, necessary and sufficient conditions
for the asymptotic normality of A,(¢,,s,) are not known, even under the
restrictive conditions (A) and (B). In particular, it is not known whether (C) is
necessary. We have written it by analogy with the conditions that are necessary
and sufficient in the independent case. The literature does contain necessary and
sufficient conditions for the asymptotic normality of the likelihood process
considered as a function of § and of a time parameter corresponding to the index
Jof oZ; .. These are the so-called “invariance principles,” for which see Aalen [1],
Rebolledo ([32], [33]) or Shiryayev [35]. However, that is a different matter.
Here we are interested only in the behavior of the likelihood ratios on the final
o-field «7,.

Under conditions (A)-(C), the Taylor expansion argument that gives an
approximation for the log-likelihood A ,(Z,, s,) is still valid. Therefore, it is still
true that the difference

dp;, .(t,) dp; (t,) T
A,.(tms,.)—):[dp”( 5 - ] 12[ b, (o) 1}

tends in probability to 0. This suggests the introduction of quadratic forms T', as
follows. Let .#, be the space of finite signed measures with finite support on 6,
and total algebraic mass 0 as before. Select some s, € 0, and let

2

L(n) = Z /[é?—%(s—t-)-)- - l]p.(dt) .

Consider also the forms

Ko(p) = —4Z [[B3, (s, )u(ds)u(ap).

THEOREM 5. Let the &; , satisfy conditions (A)-(C). Then the experiment é,
defined by the &;, is controlled by the quadratic forms K,. Also if the
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cardinality of the supports of measures ., remains bounded and if sup,||p || < oo,
then K (p,,) — T,(p,) tends to 0 in probability.

PROOF. According to condition (C), there is no real loss of generality in
assuming that the conditional distributions p; ,(6), 6 € ©, are mutually ab-
solutely continuous. A standard truncation argument shows also that one can
proceed as if the martingale differences

dp;, n(ts)

Xj,n(tn)_dp ( )

were all bounded by unity. The integrals [X; ,(¢)p,(dt) are also martingale
differences under P,(s,). Their sum will tend to 0 in probability if their
quadratic variation T,(u,) tends to 0. This quadratic variation can also be
replaced by the sum

-1

L [t

where E;_, denotes an expectation taken conditionally given the past at j — 1.
(For these relations, see Neveu [29].)
A Taylor expansion argument shows that if Y; () = /1 + X; ,(¢) — 1, then
X ,(¢) can be replaced by 2Y; ,(¢) in the preceding formula. Thus we are led to
consider the expressions

A, [%, (0, a)]| = 4B,y [[%,.(), (0m(do ()

= 4f[[1 - B (s, 8)] ma(ds)n,(dt)

=K, (1),
yielding the desired result. O

The fact that the experiments &, are quadratically controlled can often be
used to construct estimates that possess asymptotic minimaxity or asymptotic
sufficiency properties. A theory to that effect has been expounded in [27],
Chapter 11. The technique of [27] requires for its validity a number of additional
restrictions such as existence of well-behaved auxiliary estimates and dimen-
sionality restrictions on the parameter spaces ©,. For such conditions we can
only refer the reader to [27] and to the work of Jeganathan ([16] and [17]).

Now let us pass to the situation where there is another filtration %, ,,
J=12,..., with%;, , %, ,c - c%,.1{% ,Ccs;, forevery j, it may
happen that the condltlonal experiment .9" . carrled out at the jth stage is
always weaker than the corresponding &; . This is far from automatic. It is also
. plain that conditions such as (A) or (C) have no reason to be inherited by the
conditional distributions q; ,(6) used on the weaker filtration. Note that the
conditional measures q; () are #,_, ,-measurable, whereas the p; ,() are only

&/;_, ,measurable. We shall restrict our attention to cases where the experi-
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ments {q; ,(0); 0 € ®,} are always weaker than the {p] n(0), 0e€0,} no
matter what may have happened in the passage from i to #;_, , This
may seem to be a very strong restriction, and it really is. However there do exist
interesting situations of that type.

For an example, consider a finite state Markov process {X(¢): ¢ < [0, L]}
observed during the entire interval [0, L]. One can obtain the type of structure
described previously by dividing the interval [0, L] by times t; such that
0=ty<t <.+ <t;<t,,< -+ <t,= L. The conditional experiment &, ,
is then obtained by observing the process during the entire interval (-1 tl]
One obtains a weaker &; , by observing X(¢) only at the end point t,.

Another example is that of “aggregated Markov chains,” for wh1ch see [19]
and the references therein. It occurs as follows. Let {X, () J=12,...k
s =1,2,...m} be m independent identically distributed ﬁm‘oe state Markov
chains.

At time ¢; the fully informed observer sees the actual states for all the
individual processes X (¢;). The restricted observer looks at each possible state i
and is given the number N(¢;, i) of processes that are in state i. Here, in spite of
the fact that </; , , can be cons1derably larger than %, —1,m the fully informed
observer can carry out his conditional experiment 6 usmg only the informa-
tion in Qj 1n but he keeps track of who goes where, whereas the restricted
observer is given only summary information.

In view of such examples the following result may be useful.

THEOREM 6. Let the &; , satisfy conditions (A)—(C). Assume that no matter
what was observed in the é”, n T <J — 1, the conditional experiment %, , is
always weaker than &; , . Then the % » also satisfy conditions (A)- (C) The
global experiment %, deﬁned by the .97 is under the control of quadratic
forms K * such that the differences K, K * are positive semidefinite.

ProOOF. This can be proved exactly as for the independent case, using
Lemma 2 of Section 3 on the conditional distributions. O

A corollary is that if the c?n satisfy the LAMN conditions, then, under the
restrictions of Theorem 6, the log-likelihoods for %, will possess the same kind
of linear-quadratic expansions. All the arguments of Sections 4 and 5 remain
applicable, except that we have said nothing at all about asymptotic normality.
The construction of estimates described in Section 5 remains feasible. The
resulting estimates will still be asymptotically Bayes, asymptotically minimax,
etc., as shown by Jeganathan [16]. Together with estimates of the quadratic
forms, they will be asymptotically sufficient.

As to the matter of asymptotic normality, standard martingale limit theorems
(see [33] or [35]) show that the sums ¥ ] X o()u,(dt) used in Theorem 5 will be
asymptotically normally distributed 1f the quadratics I'(p,) or K,(pn,) differ
from nonrandom quantities by amounts that tend to 0. It would be convenient
if that property was inherited by the weaker ;. »- However, it need not be. To
give an example, consider the case where one has n independent identically



510 L. LE CAM AND G. L. YANG

distributed variables, £, &,,..., §, and where &, , consists of observing §;. Let
N, be a stopping time of the sequence £, §,, ..., §, with N, < n. Let & ,=6;,
if j<N, If j>N, let %, be the trivial experiment where nothing is
observed.

Suppose that the &; ,, satisfy the differentiability in quadratic mean condition
of Section 7 with nondegenerate detivatives. Then, if the N, /n have distribu-
tions that do not degenerate as n — co, the &, will not be asymptotically
normal. :

We have already observed that conditions such as (A) and (C) have no reason
to be inherited in the passage from o-fields &, , to smaller &, ,. Condition B)is
of a different nature. Something like it is inheritable. Indeed, conditions (A)~(C)
imply the contiguity of pairs { P,(s,)}, { P(t,)}. It has been shown by Greenwood
and Shiryayev ([12], Theorem 4, page 48) that contiguity is equivalent to the
conjunction of two conditions, one of which is that the sum ¥ 2 (8ns t,)
remains bounded in P(s,) + P(t,) probability. Since contiguity is inherited by
the weaker experiments, if (A)—(C) holds for the &; ,, then the corresponding
sum of conditional square Hellinger distances for the weaker experiments %; ,
will still be bounded in probability whether or not they satisfy (A), (C) or the
conditions of Theorem 6. ,

In Section 6 we mentioned the work of Davies [9]. He considers a supercritical
Galton-Watson branching process, where the observer sees for each j <n the
size Z; of the jth generation. This can correspond to our experiment % ..
Davies studies the properties of the experiment %, obtained from the & , by
introducing stronger experiments &; , as follows. Label the Z;_, individuals of
the (j — 1)st generation by integers i = 0,1,2,...,Z;_,. For individual i, let &;
be the size of his progeny in the jth generation. Record the §; for i=
0,1,...,Z;_,. Letting j vary from 1 to n, this yields our experiment é,. The
situation so described is analogous to the situation we mentioned earlier for
Markov processes except that here the loss of information from &, t0F, i
due to a different cause.

However, the theorems given in the present section do not apply directly to
Davies’ situation. The negligibility condition called (A) here is not satisfied. A
fortiori (C) is not satisfied. To see this, it is enough to note that for n large, the
passage from the (n — 1)st generation to the nth one gives a large fraction of the
information contained in the entire set of observations from 1 to n. This is so
because of the exponential increase in the size of the population.

The reasons for the validity of Davies’ procedure were described in Section 6.

9. Illustrative ethples.

ExampLE 1. The problem that motivated us to write the present paper arose
from stochastic modelling of the activity of nerve cells [39]. The membrane of
such a cell contains numerous channels responsible for exchanges between the
interior of the cell and the surrounding medium. In the experiments reported in
[2], a nerve cell was electrically stimulated every second for a total of approxi-
mately 500 s and the behavior of sodium channels was monitored on a micro-
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scopic patch of the membrane. Opening of a sodium channel results in an influx
of sodium ions and in a measurable change of the electric potential between the
interior and the exterior of the cell.

Experimenters try to isolate patches containing very few channels. The actual
number m of such channels on a patch is a number that can be ascertained by
neurophysiological means.

The channels can be in several different states. In the experiments described
they always start in a closed resting state and end in an inactivated absorbing
state. The actual states are unobservable; however, every passage through an
open state results in a measurable voltage change. For each stimulus, the number
of passages through the open state is recorded. The actual activity lasts about 15
ms. It has been modelled by Markov processes as follows.

It is assumed that the various sodium channels in the patch behave indepen-
dently of one another. For a given stimulus, one channel has a probability p of
responding. If it responds, it moves through various states according to a
homogeneous Markov process, the total number of passages through the open
state being random, distributed according to a geometric distribution. This gives
a variable W such that P[W=0]=1—p and P[W = k] = p6*~'(1 — ) for
k > 1. Since there are m channels on the patch, the result actually observed at
the jth stimulus is a sum Y X W, ; of m independent replicates of W.

The relevant density is glven by P[Y( 0]=(1 —p)®and for k= 1,2,.

O L s e

which is a mixture of negative binomials with binomial weights.

There are three parameters p, § and m. However, for the data described in
[2], m was supposed to be equal to 4. In addition, p had been estimated from
other considerations and could be taken equal to 0.4. Thus we were left with the
problem of estimating 6. In view of technical complications that arose in the
experiments, it was decided to use the conditional probabilities

q(k,8) = P[Y; = k|Y; # 0].

It is a simple matter to obtain an auxiliary estimate 6* by the method of
moments and to compute g(k,8*) and q(k,8* + 1/ Vn) for all values of k
actually observed in the sample. In the particular set we used, 2 never ex-

ceeded 7.
Let N, be the number of times the value & was recorded and let Z, be equal
to

q(k, 62 +1/Vn)
Y a(k,8;
Compute the sums S, = ¥,N,Z, and 82 Y,N,Z} The recipe suggested in

Section 5 yields the estimated value T, = 6,* + (1/ Vr)S,/S,.

The operation was duly carried out. Unfortunately, a chi-square test showed
that the fit was not acceptable. The fit from maximum likelihood was even
worse. Thus we carried out the procedure described in Section 5 estimating both
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p and 0 from a data set of n = 560 observations. The method of moments gave
starting values p* = 0.457 and 6* = 0.159. To compute the approximation L?
of Section 5, one needs to select incremented values p* + k,/vVn and 6* +
hy/Vn. This was done for various values from A;= —1 to h;= +1. The

estimates p so obtained varied only in their fourth decimals. The estimates §
varied in their third decimals, from 0.1635 to 0.1665. This value § = 0.1665 with
P = 0.4535 gave the best fit, as judged by chi-square.

For comparison, the maximum-likelihood estimates were p = 0.4538 and b=
0.1649, giving a slightly larger, but acceptable chi-square.

The technique also provides automatically approximate values of the covari-
ance matrix of (J, §) from the estimated M ! of Section 5. Here the estimated
covariance matrix is

_4f 1.88 —1.42)~
10 (-—1.42 4.32)°

ExAMPLE 2. This is similar to Example 1 but intended to show that, often,
one must proceed with due caution. Consider a two-dimensional parameter
0 = (p,06) with p € (— 00, +0) and ¢ € (0, ). Let f(x, 8) and g(x, #) be two
densities on the real line and let a be a known number a € (0,1), say a = 1/10.
(The case where a is also unknown is very important. It can be treated by
extensions of the arguments given here. However, many complications can occur.
They would take us too far afield.)

Let us suppose that a refined experimenter could observe n independent pairs
(X}, I;), where I, takes value 0 with probability 1 — @ and value 1 with
probability a.

Assume that if I; = 0, then X has the density f(x, §). If I; = 1, then X; has
the density g(x, 8). For this observer, the likelihood function takes the form

L,(6) = jfll[(l = a)f(x,,0)]" " [ag(x;,0)]".

If both f and g satisfy the (DQM) condition of Section 7 with respect to 8, so
does the density of (X}, I,).

Now consider a restncted observer who sees only the variables X;. His
likelihood function takes the form

L(6) = T1{(0 = )1(x,,0) + a(x,0)).

According to Section 7 if (DQM) is satisfied for the refined observer, it is also
satisfied for the restricted one. Thus one can proceed to the construction of
estimates as in Section 5 at least whenever the Fisher information matrix does
not become singular.

Now consider the two special cases where f(x, #) is the ordinary normal,

f(2,0) = =exp( - 3 - ),
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and where, for case 1,
1 1
’ 0 = 7 T 9 - 2} ’
a0 = o] (e w)

whereas for case 2, g,(x, 8) is the Cauchy,

1 1

x,0)=— .
g2( ) o 1+ 0_2(x - ”)2

In both cases, supyL,(6) < co unless ¥7_,I; < 2. Thus sup,L,(6) < o except
for cases having a total probability at most

1+ (n-1a]1-a)""

By contrast (see Kiefer and Wolfowitz [18]), sup, L*(#) = oo always. The infinite
value can be achieved by taking p equal to any one of the observed x; and taking
o = 0. This does not contradict the inequalities of Section 3, since
E{supyL,(0)|x,,...,x,} = o even though the probability that sup,L,(8) be
large tends to 0 exponentially fast as n — oo.

As a result of this state of affairs, one can assert the following. Any procedure
that attempts to select, iteratively or not, a value 6, such that L}(d,) =
sup, L ¥(0) will either get trapped at or near a local maximum or it will be such
that the 6, of 6, = (ji,, 6,) tends to 0, or it will not achieve any maximum local
or not.

This is particularly visible in the Cauchy contamination case (called case 2 in
the preceding discussion). There, an appealing auxiliary estimate of p is the
median m, of the observations. However, if n is odd, sup,L}[(m,,0)] = .
Thus an iterative procedure that starts with an estimate (m,, 0,*) of 8 = (g, 0)
may readily be trapped into a path where L* goes to 0. In spite of this, the
arguments of Section 5 remain applicable. One can prevent the auxiliary esti-
mates from searching for singularities in the likelihood function by a variety of
procedures: discretization, smoothing, etc. If so, the one-step estimates of Sec-
tion 5 are guaranteed to work “asymptotically.” (Contrary to common advice, it
may not be safe to iterate!) This, of course, does not guarantee good behavior for
a fixed finite n. As is the case for most statistical problems, we do not have any
general recipe that always avoids all troubles for all finite n. The only general
recommendation that comes to mind is to exert due caution and at least check
that the estimated model fits the data.

The general theme of the present example can be applied to many cases where
the densities are mixtures of smooth families. This remains true even if the
mixing proportions are unknown. However, in this more general situation, due
care must be exercised in the selection of auxiliary estimates. Also identifiability
problems may make life even more complicated (as is the case in the mixture of
Gaussian distributions of our case 1. If ¢ =1, the mixing proportion «a is
‘estimable for the refined observer but not for the restricted one. Neighborhoods
of the form {a: Vn |a — a,| < b} are then inappropriate. We shall return elsewhere
to what happens on the neighborhoods described in Section 2).
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ExamPLE 3. Consider, for each integer j < n, an homogeneous Markov
process {Z(t),t < [0,1]} with three states S;, S,, S; and an infinitesimal
generator A. Let the experiment &; , consist of observing the Z(¢) for the entire
intervat [0, 1], the Z; being mutually independent. Let #; , be the experiment
in which the values of Z(t) are seen only at times 0 and 1 Assume, for instance,
that the initial dlstnbutlon of Z,0) is uniform over the three states. The
problem is to estimate the generator A.

The transition probabilities P[Z(1) = S;|Z(0) = S,] are the entries in the
matrix exponential exp{A}. For any fixed matrix A, it is fairly easy to compute
the exponential exp{A}, but carrying out a maximum likelihood procedure is
another matter. However, one can look at the matrix M, that gives the observed
frequencies of transitions, take its logarithm and take the generator A* closest to
that logarithm. If A is unrestricted, there are six parameters. Application of the
method of Section 5 will necessitate computation of exp{A}*} and of six exponen-
tials of the type exp{A} + u, ;} for suitably selected deviations u,, ;, i = 1,...,6.

Often the generator A is assumed to belong to a parametrized family. For
instance, one could consider a one-dimensional family A(8) of the type A(6) =
1 — 8)A, + A, for fixed generators A, and A, and for § € [0, 1]. In such a case,
one would take the A(6*) closest to log M, in the model. It would be enough to
compute two exponentials of the type exp{A(6,*)} and exp{A(6* + u,)}.

Here several complications may occur.

The matrices A may have complex eigenvalues. Thus the determination of
log M is an uncertain affair. It may also be that several different generators yield
the same transition probabilities. (See [7] and [36].) Here is an example of a
parametrized family A(0) = (1 — 0)A,+ A,, where exp{A,} = exp{A,} but
where exp{A(r)} # exp{A(s)} for any pair (r,s), r#s in (0,1). Let A, =
—al + aM — 3w/2)® and A, = —al + aM + (37/2)®, where a is the number
a = 3m/3 /2, the matrices I and M are, respectively, the identity matrix and the
matrix whose entries are all equal to 1/3 and the matrix @ is

0 172 -1/2
®=|-1/2 0 1/2.
172 -1/2 0

The same type of example can be used to illustrate the results of Section 8.
Instead of observing n independent replicates Z,(t), ¢ € [0, 1], observe just one
process Z(t), t € [0, n). Let &; , be the observatlon of the process in (j — 1, j]
conditionally on the value at ] — 1. The restricted experiment %, , consists of
observing only Z( j). The same kind of analysis will apply as long as all the states
communicate with one another.

EXAMPLE 4. Let X, j=1,2,..., n, be iid. with density [1 — |x — §|]* on
the line. Let U;, j = 1,..., n, be ii.d. Independent of the X; with a fixed known
distribution, say N(0,1). Let &; , consist of observing X; and let &; , consist of
‘observing X + U,

For the &; , the LAN conditions are satisfied in neighborhoods of the type
V, = {ynlogn|d — 6y| < b}. Thus, by Section 5, the &%, , will also satisfy the
LAN conditions in these same neighborhoods. However, this is no great consola-
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tion since in these V, the product %, degenerates. The %, do satisfy the LAN
conditions in neighborhoods of the type {Vn |0 — 6y| < b}. This is immediate
from the fact that the distributions satisfy the (DQM) condition of Section 7.
However, it is not a consequence of the results of Sections 4-7. It could be
deduced from the arguments of Section 6 if one already knew of the existence of
distinguished sequence of estimates for the local problems.

ExXAMPLE 5 (Method of moments). Let w,, w,,..., w, be independent ran-
dom elements with values in a set £ and a common distribution p,; 6 € 0,. The
method of moments consists of selecting a measurable function ¢, from @ to a
Euclidean space R™ and estimating § by minimizing the Euclidean norm

z [6a()) — Eoto(,)]

We shall assume that 0, is a convex subset of a Euclidean space R* and that
the origin of R* belongs to ©,.

The passage from w; to the vector ¢,(«w;) can result in a loss of information. It
is subject to the results of Sections 4 and 5. Let

P0,n =$[w1v Woy ooy c"nlo]’

Q0, n= &£ [¢n(w1)’ ey ¢n(wn)10] *
If &, = (B, ,; 0 € ©,} is asymptotically Gaussian, so is %, = (@ ,; 0 € 0,}. If
&, satisfies the LAN conditions, so will %,.

The passage from the n-tuple {¢,(w,),..., ¢,(w,)} to the sum T, = X7_,¢,(w))
can also result in a further loss of information. Here the results of Sections 4 and
5 do not apply. The situation is complex. We shall discuss only a special case for
which we need an appropriate affine invariant distance between measures on R™.
We shall use the half-space distance. A half-space is any set of the form
{x: t'x > a} or {x: t'x > a} with a real and with ¢’ in the dual of R™. The
half-space norm of a signed measure p is

el = sgplu(H)l,

.
.

for supremum taken over all half-spaces.
We shall use the following restrictions.

(a) The experiments %, satisfy the LAN conditions.

Let us call “outliers” any one of the ¢,(«;) selected by the statistician after
inspection of the n-tuple {¢,(w;); j = 1,2,..., n} by any measurable criterion he
pleases. '

(b) Let T,* be the sum T, with one outlier removed. Then no matter what the
choice of outlier the difference
Z(T.*|0) — £(T,|0)
tends to 0 for the half-space distance.
This is a commendable form of robustness. By a result of Lévy, it is equiv-

alent to the assertion that there exist Gaussian measures G, , such that
""g(TnIO) - GO, n"H tends t0 0.
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The following condition can always be insured by restricting oneself to an
affine subspace.

(¢) The support of £(T,|0) is not contained in any proper affine subspace of R™.

If (b) and (c) are satisfied, one can renormalize T}, so that G,, , is the standard
A°(0, I) distribution on R™. We shall do so.

Let A, (0) = log(d®y, ,/dQ,, ,)- Condition (a) implies the existence of random
variables V,, ;, functions of ¢,(w;) and the existence of matrices M, such that

A(0)-06) V. j+ 30'M0
j=1
tends to 0 in probability. Furthermore, let V, =% =1V, j» Under conditions
(a)—(c) with the renormalization indicated, the Jomt distribution Z[V,,T,|0]
admits a Gaussian approximation for the Lévy or Prokorov distance. Indeed,
£(V,|0) and Z(T,|0) admit separate Gaussian approximations and the joint
distribution £(V,, T,|0) admits an infinitely divisible approximation. It follows
that there are matrices B, such that if §, € ©,, then

""?[Tnlon] - ‘/V‘[Bnen’ I] "H

tends to 0. These matrices can be obtained as covariance matrices in the normal
approximations to Z[V,, T,|0].

This suggests that the experiments %, = {Q, » 0 € 0,} with Q,, - =2[T,0]
will also be asymptotically Gaussian. Indeed we do not presently have any
examples to the contrary. It does not follow, however, that if the .9" are
asymptotically Gaussian they are approximable by the ¢, = (G, ,; 0 € @} with
Gy , = A'[B,0, I, as will be shown.

To enforce such a property, one needs to add further restrictions. To state
them consider the following possible modifications of T,. Let ¢, be independent
random vectors independent of T,. Let T = T, + ¢,. Also, consider an integer
»(n) and let T, be obtained as follows. Write the coordinates of T, in decimal
expansions. Then T,” has the same decimals as T, up to »(n). The remaining
ones are all put equal to 0. Consider binary experiments %, {Qo s Q,, ,,}

= {Qq, w Q,, ) and B ={(Qq,,Qf ,} with 6,€0, and with Q,,
3 [T'W], =2[T,"10].

(d) For any arbitrar:y choice of noises e, if |@0 n— Q0 nll n tends to 0 so does
the  Lévy distance between the distributions ,,Sf’[dQ, ,,/on #l0] and
£1dQ;, ,/dQ; )01

(d’) Assume that Z(T,|0) has been normalized as mentioned previously. Then,
for any choice of cut-off »(n) such that v(n) - oo, the Lévy distance
between :?[dQ,, ,,/dQO 0] and £[dQy’  ,./dQq, ,|0] tends to 0.

Conditions (d) or (d’) can be taken as expressing the fact that the information
contained in T, occurs there in a robust sort of a way.

Under conditions (a)—(d), the 7, form a distinguished sequence for the
experiments .%,. Thus Theorem 4 of Section 6 becomes applicable. The same
holds true if (d) is replaced by (d’).
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This is not difficult to prove. If (d) is used, one can find noises ¢, such that
ZL[T;|0] — #°(0, I) tends to 0 in total variation. The same will then be true of
Z(T;6,] — ¥ (B,0,, I). If (d) is used instead, one can obtain a similar type of
effect by considering discretizations of 47(0, I) that match #(7,”|0) in total
variation norm except for a difference that tends to 0 as n - . The argument
is given in [27], Chapter 7, Section 3, Theorem 2. Condition (d’) suggests a
construction to obtain sums T, that satisfy (a)-(c) and are such that the
corresponding experiments %, are asymptotically Gaussian but significantly
more informative than the .

To do this, suppose for simplicity that the ¢, are real valued and that they
and the the V,, ; have been truncated so that |¢,(w;)| < 1and |V, , < 1. Under
(a)—(c) and the normalization described earlier, thls can be done w1thout modify-
ing the asymptotic behavior of the distributions or experiments concerned.

Let ¢n ;) be ¢,(w;) with all its decimals beyond the nth one put equal to 0.
Let ¢:(w)— oW )+ 1072, ;

Then the sum T+ PR (wj) defines an experiment % that admits a
Gaussian approximation ¥, such that the difference between %, and ¥, tends
to 0. Indeed, the sum V, is asymptotically sufficient and distinguished for %,.
The asymptotic behavior of distributions is not changed for the half-space
distance. However, ¥ can be considerably more informative than &,. This can
be seen, for instance, in the gamma density [['(a)] "'e *x*~! if one estimates a
by (1/ n )E_]-l

A further remark is as follows. In the method of moments, one estimates @
globally, whereas our conditions (a) and (b) are meant to be applied locally in
small sets ©,. In the local situation it is tempting to replace the expectation
E,T, by the centers B,f of the Gaussian approximations. This can be done
under suitable 1ntegrab1hty requirements. Then minimizing the Euclidean norm
|IT,, — B,08|| becomes a linear problem. It will have a point solution b, only if the
dimension m of T, is at least equal to the dimension % of § and 1f B, has full
rank. The solutlon is then 5 = (B.B,) 'B,T,. If m > k, passage from T, to ﬁ
will often lose information. If m =k, no mformatlon is lost. However, unless
conditions such as (d) or (d’) are satisfied, information may be lost in the passage
to approximate solutions. This can happen in particular in the minimization of
"Tn - E0Tn"

ExaMPLE 6 (Grouping data). Let X;, j=1,2,...n, be iid. with densities
f(x, ), 6 € ©, on the real line. For &; , one observes X itself. For & , one sees
only the integer Y, nearest to X. (If X; happens to be equal to £ + } one takes
k or k + 1 by tossing a coin.)

Even for fairly simple functions f(x, #), it is usually obnoxious to deal with
integrals of the type [* *Y2f(x, 0) dx. However, let us assume, for instance, that
© = R! and that the f(x, 0 ) satisfy (DQM) of Section 7. It is often fairly easy to
verify that the %; , satisfy the identifiability conditions of Proposition 5,
Section 7. Assuming this, and assuming that one can find suitable auxiliary
estimates 6,*, the method described in Section 5 will require only computation of
the integrals [£*!/2f(x, s) dx for g + 1 values of s and for those k that have
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been seen in the sample. Note that the results remain applicable to situations
where the grouping classes are made dependent on the number » of observations.

For grouping in classes that are random, dependent on the observations, other
arguments are required.

ExaMPLE 7 (Censoring). Consider independent pairs (X;,Y;) of positive
random variables with a joint density f(x, y, 6) that depends on a Euclidean
parameter 6. The refined experiment &; , consists of observing the pair (X}, Y)).
In the restricted experiment %, ,, one sees only min(X;,Y;) and an 1nd1cator
variable I; equal to 0 if X; > Y, and to unity if X; < Y Assume that the &
yield a product expenment é, that satisfies the LAN condltlons on sets of the
form {0: Vn |0 — 6, < b} ’I‘hen the restricted product %, will also satisfy the
same LAN condition. If, in addition, the densities f(x, y, 0) satisfy the differen-
tiability in quadratic mean condition of Section 7, the same will be true of the
distributions of {min(X; o 16), [}

In such a situation it is well known (see [30] and [38]) that a @ that is
identifiable on the complete experiment may become unidentifiable on the
restricted one.

However, most of the examples dlscussed in the literature satisfy conditions
analogous to the following.

(1) The densities f(x, y, #) have the form f(x, y,0) = g(x, 0)h(y, 6) so that X;
and Y; are independent.

(2) The supports of X; and Y, are the same.

(3) Let G(x,0) = [2g(¢,0)dt and H(y,0) = [°h(t,8) dt be the survival func-
tions attached, respectively, to g and A. There are two positive numbers a
and B such that |0, — 6,] > a implies sup,|G(x, 8,) — G(x, 6,)| > B.

(4) The family {g(x,0); 8 € O} satisfies (DQM) with nonsingular covariance
matrices.

Under such conditions, @ is identifiable. Also one can get auxiliary estimates
6, that converge at the Vn rate. A possibility is to start with some nonparamet-
ric estimate G of the survival function, for instance, the Kaplan—Meier estimate
or the Nelson—Aalen estimate from cumulative hazard functions. Then apply a
minimum distance technique as in the procedure that yields Proposition 5,
Section 7.

A direct verification that nonsingularity of Fisher information matrices is
inherited by the weaker experiment seems awkward. However, this nonsingular-
ity is implied by the properties of the estimate just described.

(In the most standard case, where & does not depend on 6, verification is
trivial.)

Thus the results of Section 5 can be applied here. The density of Z; =
min( X}, Y;) has the form

g(z,0)H(z,0), onI;=1
and
h(z,0)G(z,60), onI;=0.
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Assuming that these formulas can be computed for the observed values (Z;, I;)
and a few values of the parameter 6, Section 5 will yield asymptotically efficient
estimates.

Acknowledgments. We are indebted to the referees who pointed out a gap
in our discussion of the method of moments and the possibility of applying the
results of Section 8 to the aggregated Markov chains situation.
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