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TAIL ORDERING AND ASYMPTOTIC EFFICIENCY OF
RANK TESTS!

BY PHILIPPE CAPERAA

Université Laval

In this paper we consider a partial ordering that is “between” the
stochastic ordering defined by Lehmann (1955) and an ordering associated
with the monotone likelihood ratio property. A tail ordering deduced from it
is applied to the comparison of the asymptotic efficiencies of rank tests in the
two-sample problem. In particular, we show that the asymptotic relative
efficiency of two rank tests preserve this tail ordering if one score function is
“‘more convex” than the other.

1. Introduction. Partial orderings between univariate distributions are used
extensively in mathematical statistics. We mention first the stochastic ordering
introduced by Lehmann (1955), which is defined by ¥ >, G (F is stochastically
larger than G) if and only if F(x) < G(x), —o0 <x < +00. An equivalent
definition is F >,G if and only if E[a(X)|F]> E[a(X)|G] for all nonde-
creasing functions a, which are integrable with respect to F and G, where
Efa(X)|F] = [a(x)dF(x). A partial ordering associated with the monotone
likelihood ratio is defined for two absolutely continuous distributions F' and G
by F >, G if and only if f/g is nondecreasing, where f and g are the densities of
F and G, respectively.

This paper studies a partial ordering that is “between” the >, and >,
orderings. It is defined by ¥ > ., G (F is uniformly stochastically larger than G
in the positive direction) if and only if (1 — G)/(1 — F') is nonincreasing, in the
sense that the numerator vanishes if the denominator vanishes. Another similar
ordering is F' > _) G if and only if G/F is nonincreasing, where defined. It is
easy to prove the following implications: ¥ >,G = F >, G (F>_,G) = F >,
G [Keilson and Sumita (1982)].

In Section 2, we show that F> )G can also be defined in terms of
inequalities between expectations (with respect to F and G) of functions belong-
ing to a well-specified set. In Section 3 a partial ordering that reflects the tail
heaviness of distributions is deduced from > ,,. An application of this tail
ordering is made to the comparison of the asymptotic efficiencies of rank tests in
the two-sample problem.

2. The main result. Let C be the set of nondecreasing functions defined on
R and C, the set of nonnegative and nondecreasing real-valued functions
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defined on R. Let F be a distribution function on R and
C.(F) = {be C,;0 <E[b(X)F] < +).

The partial ordering > is then defined by F >, G < E[a(X)b(X)|F] > 0 for
all functions a € C and b€ C, (G) such that E[a(X)b(X)|G]=0 and
E[a(X)b(X)|F] is defined.

THEOREM. Let F and G be two distributions on R. Then F >, G < F >, G.

Proor. Define the cdf F, by [the integrals are over half-open intervals
(a, Bl or (a, + o), —00 <a<f < +00]

F(0) = [' b(@)dR()/ [ “b(x) dF(),

where b € C (F) N C_.(G). The cdf G, is defined in a similar way.

We first show that F, >,G, for all functions be C (F)Nn C,(G) is a
necessary and sufficient condition for F >, G to hold. To prove the necessity
part, suppose that there is a function b€ C_(F) N C.(G) such that the
distribution F, is not stochastically larger than the distribution G,. It follows
that there exists a function a € C with -

- < E[a(X)|F,] < E[a(X)|G,] < + 0.
If
a(x) =a(x) - E[a(X)G,], Vx€eR,
then
E[a(X)IF,] < E[a,(X)|G,] = 0.

This contradicts F > G.

Now we prove the sufficiency part. Let a be a function of C and b a function
of C,(G). Suppose that E[a(X)b(X)|G] = 0 and E[a(X)b(X)|F]is defined.
To show that E[a(X)b(X)|F] is nonnegative, as it was to be proved, we
distinguish the three following cases: (i) b € C_ (F), (ii) E[b(X)|F] = 0 and (iii)
E[b(X)|F] = +o0. Only the last two cases can cause b & C,(F).

(i) Suppose that b is a function of C,(F'). Since F, >, G;, then

E[a(X)b(X)IG] = E[a(X)IG,] =0
implies E[a(X)|F,] = 0.

(ii) Suppose, now, that E[b(X)|F] = 0, which implies P[b(X) = 0|F] = 1.
Consider b*(+) = b(+) + 1. The function b* belongs to the set C (F) N C,.(G)
and hence F,. >;G,.. Moreover, E[b(X)|G] > 0 implies P[b(X) > 0|G] > 0.
Define the function a* by

a*(x) = {0’ if b(x) = 0,

1, if b(x) > 0.
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Then a* € C and we have
0= E[a*(X)b*(X)IF] < E[a*(X)b*(X)IG],

which contradicts Fy. >; G,.. Then the case (ii) E[b(X)|F'] = 0 cannot occur.

(iii) Suppose that E[b(X)|F] = + co. First, assume P[a(X) < 0|G] = 1. For
¢ > 0, let b, be defined by

b(x) = min{b(x),c}, Vx€eR.

Since b, is a function of C (F) N C,(G) and that E[a(X)b(X)|G] =0, it
follows that F, >, G, and hence E[a(X)b(X)|F] > 0. Thus, by the monotone
convergence theorem, we have

Ela(X)b(X)F] = lim E[a(X)b(X)F] > 0.

Next assume that P[a(X) > 0|G] > 0. Since a and b are nondecreasing func-
tions, we have

E[(a(X)b(X))"IF] = + oo,

where (a(x)b(x))*= max{a(x)b(x),0}, —o0 < x < +oo. Moreover, we know
that E[a(X)b(X)|F] exists, thus we conclude that E[a(X)b(X)|F] = + oo.

Finally, we prove that F > ,, G is a necessary and sufficient condition for
F, >, G, to hold for all functions b € C_(F) N C (G).

To prove the sufficiency it suffices to consider the functions b€ C (F) N
C.(G), which are continuous from the right and verify lim,_, __b(x) = 0. To
see this, consider a function b € C_(F) N C,(G). By the Vitali-Carathéodory
theorem [Rudin (1966), page 54] there exists a sequence of functions {g,} such
that, 0 < g, < b, g, is upper semicontinuous for all » and

@) ~ =) d(F + @)(x) < ey,
with lim g, = 0.

n— + oo

Define the sequence {b,} by
b,(x) = supg,(x — a)l;_, . (x), VxeR,
a=0
where 1, is the indicator function. One verifies easily that b, is nondecreasing,
lim, ,__b,(x)=0,0<b,<band
+
lim [ (b(x) - by(x)) d(F + G)(x) = 0.
n—>+ovY_-g
Moreover, since each discontinuity of b, is a discontinuity of g,, this implies
that b, is continuous from the right. Thus there exists a sequence of functions
{b,} such that b, € C_(F) N C,(G) and is continuous from the right, with
lim,,__b(x)=0,b=1lim,, b, (F + G)ae. and b, < b. By the dominated
convergence theorem, if
F > G implies F, > G, ,
( +) n i n

then
F > G implies F, > G,,.
(+) i
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Let b be a function of C, (F) N C(G), which is continuous from the right and
verifies lim, _, _  b(x) = 0. We can write

b(x) = [ db(p)
and -
[ bx)drx) = [* (F() - F(p7)) db(p).
Thus to prove the sufficiency we have to show

[ _F@ - Fp)yde(p)/ [ (1~ F(p7)) db(p)

) < [ (6 - a(p)}av(p)/ [ "(1- G(p7)) db(p)
=F> @G.
(+)
Now
@) F(i)Gel—G(p)= {1-F(p)}i(p), VPER,

with [ nonincreasing. Furthermore [see Keilson and Sumita (1982)],
(3) F>Ge {G(t) - 6G(p)}/{1 - G(p)} = {F(¢) - F(p)}/{1 - F(p)},

for all (¢, p), t = p.
Noticing that

{F(¢) = F(p)} {1 - F(p)} = m/(p)

is nonincreasing in p, for all ¢ < p, then, by (2) and (3) the inequality in (1) is
verified if

[ mdp) (1= F(p)}yab(p)/ [ {1~ F(p7)) db(p)

@) < [' m(p )P (1 - F(p)) db(p)

= [upT) (- F(p7)) ().
Since m, is nonincreasing, (4) holds, if for all ¢,
[ - Fp))an(p)/ [ (1~ F(p7))db(p)

< [* up") - Fp )y ab(p)/ [ Hp )1 - F(p7)) db(p).
This inequality, in turn, is satisfied because [ is nonincreasing and, for all s, ¢
in R,

[ _a-Fe)yaee)/ [ (1~ Fp)} ab(p)

< [M00 - Ry ab(p)/ 1 (1~ F(p7)) db(p).

This proves the sufficiency part.
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The necessity is proved by considering F, >; G, with b defined by
_ [0, forx<p,
b(x) = {1, for x > p.
Then by (3) the result follows. O

REMARK. A partial ordering equivalent to > _, is obtained if, in the
definition of > , one replaces b is a nonnegative and nondecreasing function by
b is a nonnegative and nonincreasing function.

The following corollary completes the results obtained by Bickel and
Lehmann (1975), Lemmas 1 and 2, pages 1060-1061.

COROLLARY. Let F and G be two distributiors on R. Then F> ., G is a
necessary and sufficient condition for

(5) JXZa(x) dF(x) . [f®a(x) dG(x)
J12B(x) dF(x) = [*2B(x) dG(x)

to hold for all functions a and B, integrable with respect to F and G, such that 8
is nonnegative, a/f3 and B are nondecreasing.

ProoF. Writing
e= [ “a(@)da(x)/ [ ) da(),
we have
6) = [ “(alx) - eB(x)) dF(x) 2 0.

Then the result follows from the theorem above, with a(x) = a(x)/B(x) — e
and b(x) = B(x).O

3. Application. This section is concerned with partial orderings on symmet-
ric distributions (with respect to zero), which reflect the relative heaviness of
tails, and their applications to the comparison of rank tests. These partial
orderings are scale-free. The first ordering of that type is the s-ordering <, of
van Zwet (1964) who defined F' <,G by (f o F~')(u)/(g e G~')(u) nondecreas-
ing for u € (3,1). Another ordering of distributions (r-ordering <, ), which
reflects the property of the heaviness of a tail was introduced by Lawrence
(1975). He stated that G has heavier tails than F (F <, G) if G u)/F~Y(u) is
nondecreasing for u € (3,1).

This ordering is weaker than van Zwet’s. In Rivest (1982) and Loh (1984a),
there are many examples of distributions ordered by the r-ordering. In particu-
lar, if ¢, is the t-distribution with n degrees of freedom, then ¢, <, t,, if m < n.
These orderings have found several applications in mathematical statistics [see,
for example, Bickel and Lehmann (1975), Singh (1977), Yanaglmoto and Sibuya
(1980), Benjamini (1983) and Loh (1984b)].



TAIL ORDERING AND RANK TESTS 475

In this section we are concerned with the comparison of the asymptotic
relative efficiencies of pairs of rank tests T and 7" (ARE(T, T"|F)) for the
location parameter in the two-sample problem. van Zwet has compared the
Wilcoxon rank sum test (W) to the normal-score test (N — S). He proved that
F <,G = ARE(W, N — S|F') < ARE(W, N — S|G). For the same problem
Gastwirth (1970) obtained more general results on the comparison of AREs of
rank tests, using an ordering stronger than the s-ordering. Hajek (1969) also shed
some light on this problem. It appears from these papers that a good rank test
for a light (heavy) tail distribution places more (less) weight on the extreme
ranks than on the central ones. We now give necessary and sufficient conditions

- for these results to hold.

First, we define a new ordering on the tails of distributions that have square
integrable densities on R (assumption A,). Let F* be the distribution on (3,1)
defined by

) = [ (1P dus [ (1P )@ s, ee ()

and let G* be the corresponding distribution for G. Then the relation <, ,
defined by
F<,,GoF>_, G*

is a scale-free partial ordering weaker than the s-ordering since F' <,G « F* >,
G*.

Let <7 be the set of rank tests T' with a score function ¢, antisymmetric with
respect to %, nondecreasing and convex on (3,1). We assume that ¢, is a
square-integrable essentially nonconstant function on (0, 1) and has a derivative
ar a.e. Let F be the distribution of the combined sample, which is assumed to
have a finite Fisher information (assumption A,). We can write after some
manipulations [see, for example, Puri and Sen (1971), Chapter 3, or Lehmann
(1983), Chapter 5] the squared efficacy of T € &7 as

WE )| arla)(fo B ) d)

where k(T, F') is a positive constant depending on T and F.Let #= {((T,T")
A X o lap(u) = c(u)ap(u), c(u) positive and nondecreasing for u € (3,1)}.

We note that if ap(u) = c(u)ar(u) with c(-) positive and nondecreasing,
there exists a nondecreasing convex function % such that
(6) ¢r(u) = (ko or)(u).
We interpret this relationship as ¢, is “more convex” than ¢, because (6)
implies

d2¢T(u) d¢T(u) d’pp(u) [dor(u)
R du ’

if the second derivatives exist. Now, [d2pp(u)/du®]/[dér(u)/du] can be con-
sidered as a scale-free measure of convexity for ¢.
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PROPOSITION 1. Let F and G be two symmetric distributions with respect to
zero, satisfying the assumptions A, and A,. Then

ARE(T, T'|F) > ARE(T, T'|G), V(T,T)e% e F<,,G.

The proof of this proposition is analogous to the proof of the corollary of
Section 2. ‘

REMARK 1. Another interesting expression for the Pitman asymptotic
efficiency allows us to highlight the s-ordering in the comparison of rank tests.
We have [see, for example, Hajek and Sidak (1967), page 268]

ARE(T, T'|F) > ARE(T, T'|G)
o Jippr(@)(=1"/f)o F~Y(u) du
Jiysbr(u)(—f'/f) o F~(u) du
Jiybr(u)(—g'/8)° G~ (u) du
" Sl (u)(—8'/8)° G N(u) du’

We consider now 7/, the set of the locally most powerful rank tests for the
strongly unimodal distributions. These rank tests have a nondecreasing score
function. Let '

# = {(T,T) e ' X ' \pr(u) = c(u)dr(u),

¢(u) positive and nondecreasing for u € (,1)}.

PROPOSITION 2. Let F and G be two unimodal symmetric distributions with
respect to zero, satisfying the assumptions A, and A, and such that
limu—vl(f ° F—I)(u) = limu_’l(goG"l)(u) =0. Then

ARE(T, T"|F) > ARE(T, T"|G), V(T,T)e®  F<G.
s

PrOOF. Note that
1= [* (=f/8) F"(u)du/ [* (=1'/f)e F~X(u) du = (f°F)(t)/1(0),
1/2 1/2

and apply the corollary of Section 2. O

This result is more general than Gastwirth’s (1970) because the s-ordering is
weaker than his information ordering.

REMARK 2. For the Wilcoxon rank sum test we have a, () =1,0<u<1.
Then

PrOPOSITION 3. Let F and G be two symmetric distributions with respect to
zero, satisfying the assumptions A, and A,. Then F* >,G* is a necessary and
sufficient condition to have

ARE(T, W|F) > ARE(T,W|G), VTe«.
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The proof follows from the definition of stochastic ordering. This result
extends van Zwet’s result (1964) on the comparison of the Wilcoxon rank sum
test to the normal-score test.

REMARK 3. It seems difficult to compare the r-ordering and the ordering
defined by <,.. The former is more intuitive and easier to verify than the
latter. On the other hand, some distributions, which are intuitively comparable
with respect to their tails heaviness, are ordered by the latter but not by the
former. For example, we know [see Loh (1984a)] that the double exponential (F')
and Cauchy (G) distributions are not r-ordered. Since

(foF ') (u)=(1-u) and (g°G')(u)=1/mcos’m(u~}),
we have
F <,,Gif and only if 7(1 — u)sin7(u — 1) — cos m(u — 1) <0,

for u € (,1).

This last inequality is satisfied because (1 — u)sin m(z — ) — cos w(u — 3)
is nondecreasing for u € (3,1) and its maximum value is zero on this interval.
Thus F and G are ordered by <,,.

REMARK 4. It is possible to apply the corollary of Section 2 to other
problems than to the one of the location parameter in the two-sample problem.
For example, similar results can be obtained for the one-sample problem.
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