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CONDITIONAL PROPERTIES OF INTERVAL ESTIMATORS OF
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By JoN M. MAATTA AND GEORGE CASELLA!

University of Missouri and Cornell University

Both one-sided and two-sided interval estimators are examined using
conditional criteria and we find that most common intervals have acceptable
conditional properties. In the two-sided case we further examine three well
known intervals and find the shortest-unbiased (Neyman-shortest) interval
possessing the strongest conditional properties, with the minimum-length
interval a close second. In the one-sided case we have the somewhat surpris-
ing result that the lower confidence interval (which results from inverting the
UMP test of Hy: ¢ < g,) has weaker conditional properties than the upper
interval (where a UMP test does not exist).

1. Introduction. The frequency theory of statistics provides a framework
for making unconditional confidence statements about a random phenomenon.
Recent research pertaining to frequentist set estimation has raised some disturb-
ing questions about the validity of such unconditional statements. In particular,
even though frequentist confidence statements are constructed unconditionally,
there is a temptation (often fulfilled) to interpret them conditionally. In some
cases this conditional confidence is very different from the unconditional con-
fidence.

If C(X)is a 1 — a frequentist confidence set for a parameter § based on an
observation X, that is,

(1.1) Pl0eC(X)] 21-a foralld,
but for some set . (in the sample space) and some positive &,
(1.2) PloeCc(X)XeF]l <1-—a—¢ foralld,

then the statement that we are 1 — a confident with respect to the proposition
0 € C(X) seems questionable when X € &. Fisher (1956a) first called the subset
& a recognizable subset and contended that one should be no more than
1 — a — € confident in intervals based on outcomes in &.

Since Fisher’s first statements on conditional evaluations, many researchers
have examined these properties. Buehler (1959) defined desirable conditional
properties of confidence intervals. He based his definitions on a two-person game
and showed how such a framework could be used to make conditional state-
ments. Kiefer (1977) approached conditional inference from a slightly different
viewpoint, working with a concept of estimated confidence. This approach, while
addressing many conditional concerns, is somewhat tangential to what we
consider here.
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Robinson (1979a, b) further advanced and refined Buehler’s theory. In par-
ticular, he logically laid out the definitions for a variety of betting procedures,
different types of conditioning sets and more general ideas.

We use the notation %, x and X to denote a sample space, a point in the
space and a random variable, respectively. The symbols ® and 6 will denote a
parameter space and a point in the space. The indicator function of a set A is
denoted by I,(-).

As in Buehler (1959) and Robinson (1979a), we state the conditional defini-
tions and properties using the betting game setting for two players, Peter and
Paul. The game proceeds as follows: Both players observe X and Peter quotes an
interval estimator consisting of the set function C(X) and confidence function
1 — a(X), which states the degree of confidence in the proposition § € C(X).
Paul’s goal is to bet for or against coverage with a strategy that can be expressed
as a real-valued function K(X), called a betting procedure, with the following
properties:

(i) If K(X) > 0, Paul places a bet of size K(X) that § € C(X), risking
1 — a(X) to win a( X).
(ii) If K(X) < 0, Paul places a bet of size —K(X) that § &€ C(X), risking
a(X) towin 1 — a(X).
(iii) If K(X) = 0, Paul places no bet.

Paul’s expected gain from the preceding betting procedure can be written as

(1.3) Ey[{Ioxy(8) — [1 - «(X)]}K(X)].

To evaluate the conditional properties of a statistical procedure is to de-
termine whether or not Paul can find a winning betting procedure. For a given
set function C(X) with confidence function 1 — a(X), denoted by (C(X),1 —
a( X)), the betting procedure K(X) is said to be

semirelevant, if

(1.4) Ey[{Iox)(8) = [1 - «(X)]}K(X)] 2 0 forall 8

and strictly positive for some 6;
relevant, if for some ¢ > 0,

(15)  Ep[{Ioxy(0) - [1 - a(X)]}K(X) — elK(X)|] 20 forall 4.

A set estimator that admits a relevant or semirelevant betting procedure
admits a winning strategy against it. The distinction between relevant and
semirelevant is not trivial, however, and seems to closely correspond to a
distinction between proper and generalized Bayes procedures. In general, only
proper Bayes procedures are free of semirelevant betting. Generalized Bayes (or
limits of Bayes) procedures tend to allow semirelevant but not relevant betting.
There are exceptions to these statements however: A rigorous treatment of these
relationships is given in Robinson (19794, b).
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There is little restriction on the form of K(X), the function that defines
Paul’s betting procedure. The one major requirement is that K(X) be bounded
since, as Robinson (1979a) points out, unbounded betting is not statistically
interesting (one can beat proper Bayes procedures).

We will be particularly concerned with betting procedures that have straight-
forward statistical interpretations: betting strategies that have either positive
or negative bias. A positively biased strategy is one in which 0 < K(X) <1
and corresponds to always betting that the interval covers 6. In particular,
if K(X) defines a subset of the sample space, say K(X) = Ig(X) for some
set S c %, then the relevance of K(X) implies the existence of ¢ > 0 such
that Py € C(X)|IX€S)=1—-a+ ¢ V 6. We have a corresponding defini-
tion for a negatively biased betting procedure: —1 < K(X) < 0. In a similar
manner, a negatively biased relevant set, say K(X) = —Iy(X), gives us that
Py6 € C(X)Xe8S)<1— a— ¢forsome ¢and all 6.

Based on work to date, it has been agreed by some authors [see, for example,
Bondar (1977)] that a confidence procedure that allows a negatively biased
relevant betting procedure should not be endorsed. Existence of such a betting
procedure means that the conditional confidence can be bounded strictly below
the nominal level for all parameter values, casting doubt on the validity of the
frequentist assertion. The existence of positively biased betting procedures is, we
feel, not statistically troublesome, only pointing out that the confidence asser-
tion may be conservative [a situation that has long been accepted, although see
Seidenfeld (1979, 1981) and Mayo (1981) for another view].

Between 1959 and 1979, a number of results were established. Buehler and
Fedderson (1963) showed that for two normal observations, the usual ¢-interval
for the unknown mean p allowed positively biased relevant subsets and Brown
(1967) extended this result to any size sample. However, Robinson (1976) showed
that no negatively biased relevant subsets of any kind can exist for the ¢-interval.

Other major results deal with the t-interval and Scheffé’s simultaneous
confidence intervals. Buehler (1959) showed that the ¢-interval, conditional upon
rejecting the null hypothesis that the mean is zero, results in the existence of a
negatively biased semirelevant subset. The same was shown to be true of
Scheffé’s simultaneous confidence intervals for the unknown treatment means in
an analysis of variance [Olshen (1973)].

A few results are known about statistical procedures involving two normal
populations. Fisher (1956b) showed that negatively biased relevant subsets exist
for Welch’s (1947) intervals. Robinson (1976) showed that no negatively biased
relevant subsets exist for the Behrens—Fisher two-means interval.

Robinson’s (1979b) paper dealing with Pitman estimators established results
for the location parameter case. It was shown that the best invariant interval
allows no relevant subsets. Thus, it has recommendable properties both condi-
tionally and unconditionally. Since a scale parameter family of distributions can
be transformed into a location parameter family of distributions by a log
transformation, this case of an interval estimator of 0% reduces to that for a
location parameter. That is, no relevant subsets exist for variance intervals if the
mean is known.
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In this paper, we deal with the more practical situation of interval estimators
for the normal variance when the mean is unknown and consider estimators of
the form

(1.6) C(s?) = {0% o € (vs?/b,, vs%/a, )},

where » is the degrees of freedom of s?=X(X,— X)?/v and a, and b, satisfy
P(a,<x2<b)=1-a, where x2 is a chi-squared random vanable with »
degrees of freedom. Note that (1.6) can define either a one-sided or two-sided
interval.

For the one-sided intervals, the constants are uniquely determined by the
probability constraint, but the situation is more complicated for two-sided
intervals, where a second constraint is needed to uniquely specify an interval
[see, e.g., Tate and Klett (1959) for details].

Intervals of the form (1.6) depend on X only through its appearance in s2 and
more recent works [Cohen (1972) and Shorrock (1982)] have shown that one can
uniformly increase coverage probability by allowing a more explicit dependence
on X. These intervals will not be dealt with here, but will be the topic of future
work.

In the next section, we deal with the general interval estimator (1.6) and show
that there are no relevant betting procedures against this interval. This result
applies to any choice of a, and b, that satisfies P(a, < x2< b,) =1 — a and,
hence, shows that most commonly used intervals are free from major conditional
defects.

The situation with respect to semirelevant betting is more complex, however,
and in Section 3 we examine two-sided intervals in some detail. We show that a
common interval, the equal-tailed interval, allows negatively biased semirelevant
(NBSR) betting. However, two lesser-used intervals are free from this defect.

In Section 4, we consider one-sided confidence intervals, both upper and lower,
where we show that no NBSR betting procedures exist for the one-sided upper
confidence interval, while for the one-sided lower confidence interval there does
exist an NBSR betting procedure. This result is, perhaps, contrary to intuition
since the lower confidence interval results from inversion of the UMP test of H,:
0 <o, and no UMP test exists for the opposite case (although the test is
UMPU). Section 5 contains some discussion and conclusions and there is also an
Appendix with some technical details.

2. Relevant betting procedures. This section contains the main results for
relevant betting procedures against confidence intervals of the form described in
(1.6). We show that no relevant betting procedures exist for these intervals,
showing that they are free of serious conditional defects.

As mentioned in Section 1, procedures that possess good conditional proper-
ties are those that are some type of Bayes procedures, either proper Bayes or
limits of Bayes procedures. Thus, the goal of the proof is to show that the usual
interval estimators of variance, those of the form in (1.6), are limits of Bayes
procedures. We use a hierarchical structure of priors that allows us to accomplish
our goal.
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THEOREM 2.1. Let X,,..., X, be iid N(p, 02) with p and o both unknown.
Then for intervals of the form (1.6), no relevant betting procedures exist for the
confidence procedure (C(s*),1 — a), where 1 — a = P(a, < x2 < b)).

PROOF. Suppose that a relevant betting procedure exists; then, from (1.5)
there exists an ¢ > 0 and a betting procedure K(X, s?) such that
(2.1) E{[Icwr(0%) - (1 - @)| K(X, 5%)} = eE|K(X, s?)|

for all p and o2, with strict inequality for some (, 62), where the expectation is
taken with respect to the joint density of X and s2. Multiply both sides of (2.1)
by the prior distribution

1

(22) a(wo?lr,a) = | oy

and integrate with respect to both p and o2 If K(X, s?) is a relevant betting
procedure, then it follows that

f f [Ic(sz)(o )—(1- a)]K(X 32)}w(u,o Ir, a) dp do?

>ef j E|K(X s?)\m(, 0?r, a) dp do>.

The proof proceeds by showing that (2.3) can be violated in the limit as
r— oo and a — 3. We first normalize by multiplying both sides of (2.3) by
(nr + 1)/2 and consider the inequality

lim (nr+ 1)‘/2/ j {[Tews(0?) - (1 - @)] K(X, s%))

1/2
_ ) e (W2 /rat)/2
2nro

ar:1°72
(2.4) X 7(p,0%r, a) dp do?
>¢ lim (nr+ 1)1/2f f E|K(X s)\7(p, 0?|r, a) du do?.
a—>1°/°2

If we can contradict (2.4), this in turn will contradict (2.1) and, hence, no
relevant betting procedure can exist.
We consider two separate cases, depending on whether

® °°|K(f, 82)'
2.5 ———— ds?dx
(2.5) [ [ —
is finite or infinite. ‘

Case 1. If (2.5) is finite, then we show that the Lh.s. of (2.4) is identically
equal to zero. Expanding and interchanging the order of integration allows us to
write the Lh.s. of (2.4) as

rlingo f f / f [IC(Sz)(o )-(1 —a)]K(x s¥)a(plx, 82,02, 1, a)
(2.6) a—1/2
7(o?%, s%, r, a)m(x, s*r, a) dp do’ ds? dx,
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where
nrx ro?
= .2 2 N =
m(ul, 8% 0% r, a) nr+1’nr+1)’
v+1 2(nr+1
7(o?x,s% r,a) = IG +a-1, ( 2) = |,
v(nr + 1)s® + nx

the inverted gamma distribution, and
n 1/2 ,,v/z(sz)v/?-’—l
2a(nr + 1)) I'(v/2)

m(%, s?|r,a) = (

v+1 2(nr +1) (r+1/2+a-1
XF + a — 2 -9
v(nr + 1)s® + nx
We first integrate out the density of u, then note that
- M
(2.7) (nr+ 1)m(x, s¥r,a) < z;g)—l/—zjg

for some constant M. The finiteness of (2.5), together with (2.7), allows us to
apply Lebesgue’s dominated convergence to pull the limit inside the integral in
(2.6). It is then straightforward to calculate
f”zz/a” lim 7(o%Xx,s% r,a)do®=1-q,
vs’/b a— 10;)2
which gives us zero for the value of (2.6). This contradicts (2.4) and, hence, our
assumption of a relevant betting procedure existing.

Case 2. If (2.5) is infinite, then we only need show that the Lh.s. of (2.4)
remains finite as r = o0 and @ — ;. To deal with this integral we split the range
of integration into three pieces: A; = {(%, s?): |x| < N, s2 <8}, A, = {(&, s?):
|X] > N, s?> 8} and A, = {(%, s%): |x| > N, s?> 0}, where N < 00 and § > 0
are constants.

The integral over A, can be dealt with by an argument similar to that used in
Case 1; hence, in the limit, it is equal to zero. For the integral over A, by using
the bounds |Ip:((0%) — (1 — @)] < 1, |K(X, s?)| < 1 and integrating out p, o*
and s?, we have that the integral over A, is bounded above by

0
/ m(x|r, a) dx,
N
where m(X|r, a), the marginal of X, is an improper density,

©28) m(E)r. a) = (%)I/Z(M a—1(%)(2a—1)/2r( 2a2— 1).
a-1/2

n
Straightforward calculation gives
a(nr+1
(2.9) lim (nr+1)"? fwm(flr, a)dx = lim 2 ( )
r— o0 N

r— o N2a
a—1/2 a—1/2
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By letting @ — 1 faster than r — oo, (2.9) can be made finite and, hence, so can
the limit of the integral over A;.

Next consider the integral over A,. Making the transformation u = s%/x2,
t = X2, this integral can be expressed as

(2.10) [/:/NZLNZK * f;,vzf:/" fow] [Ion(0?) — (1 - o))

xa(o?|t,u, r,a)K(t, u)m(t, ulr, a) do®dtdu,
where

2 ) = 16 v+1+ ) 2(nr + 1)
m(e%t,u,r,a) = 2 N "tv(nr + u + n]

and

v/2—-1
vora-1 1 u

m(t, u|r,a) = M(nr + 1) = oG & D +

](v+l)/2+a—l

and M is a positive constant that can be ignored. We consider the second triple
integral first. Since |Ip2(0%) — (1 —a)| <1 and |K(X, s?)| <1, substitute
these bounds and integrate out o2 and ¢ in the second term of (2.10). Multiply-
ing by (nr + 1)!/2, the limit of this second term is finite if

© uv/2+a—2
(2.11) lim M du < .

1)/2 -1
25, (it n/(ar + )TV

The denominator of the integrand can be bounded below by (vu)*/2*e~1/2
and again letting a — ; faster than r > oo shows that the limit in (2.11) is
finite.

Thus, we are left to show that the first triple integral in (2.10) is finite. We
will show that as r - oo and a — , the integral goes to zero. Using the
transformation & = vut/0? and writing 1 — « as a chi-squared integral, the first

integral in (2.10) can be written as
B(v+l)/2+a—1

8/N? (N?| (b, (r+1)/2+a=2,—Bo g
fo fo l-[a,I‘((v+1)/2+a—l)w ¢

(2.12) _ fb" 1 wl’/2—le—w/2 dw
Jo, T(v/2)2"72

X K(t,u)m(t, u|r,a) dtdu,

where 8 = J[v(nr + 1)u + n]/[v(nr + 1)u]. Finally, we note that
e—w/2

lim B(v+1)/2+a—1e—ﬂw =

r— o 2v/2
a—1/2

and since this is a bounded continuous function of u on the compact set
0 < u < 8/N?, the convergence is uniform in u. Therefore, for sufficiently large r
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and a close to j, the difference of the two integrals in (2.12) can be made
arbitrarily small independent of u. Therefore, as r — o and a — 1, (2.12) goes
to zero. )

Combined with all previous results, we find that the Lh.s. of (2.4) is finite,
which contradicts our original assumption. Therefore, a relevant betting proce-
dure cannot exist for the variance interval estimator of the form (1.6). O

Though we have not yet addressed the subject of whether semirelevant
betting procedures exist for these intervals, certainly the absence of relevant
betting procedure is a favorable property of these intervals and shows that the
variance intervals of (1.6) have acceptable conditional properties. In particular,
the absence of negatively biased relevant procedures implies that the conditional
confidence levels cannot be bounded strictly below 1 — a for all parameter
values.

3. Semirelevant betting against two-sided intervals. In this section, we
focus on two-sided intervals, starting with the equal-tailed interval I, for the
normal variance. The interval is given by (1.6) with the additional requirement
that a, and b, satisfy

(3.1) P(x’<a,)=as2, P(x>b,)=a/2

The results of the preceding section show that there are no relevant betting
procedures against this interval. However, in this section we show the existence
of a negatively biased semirelevant subset. That is, we find a subset A of the
sample space satisfying

(3.2) Plo® € Igl(X,s?) €Al <1-a Vp,o?

The set A identifies a portion of the sample space in which the conditional
probability of coverage can be bounded below 1 — a, showing that Iy is not the
most desirable interval based on conditional evaluations. Define

(3.3) K(X,s?) = -1, if X%/s%<q,,
=0, otherwise.
There exists a g, > 0, such that

(3.4) E{[Igr(s?) - (1 - a)]K(X,s?)} =0  Vp,o?

with strict inequality for some parameter values, showing that (3.3) defines a
negatively biased semirelevant betting procedure. The details are given in the
Appendix.

It is tempting to apply some intuition as to why (3.3) should produce a
negatlvely biased betting procedure for Ir. The procedure bets against coverage
if X2/s2 < constant, which can be interpreted as betting against coverage if s2
is “large.” Other authors [Brown (1967) and Robinson (1979b)] have noted that
s? has a tendency to “overestimate” 02, so we might interpret the working of the
betting procedure (3.3) as follows: If s? is large, it is an overestimate of 62 and
the interval Iy is too far away from zero to cover o2.
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Other common intervals, for example the minimum-length interval, are closer
to zero than the equal-tailed interval and do not suffer from the same condi-
tional defects as Iy;. We consider the performance of two other two-sided
intervals: I, the minimum-length interval and I, the shortest-unbiased
interval.

The interval I,y is constructed by minimizing the length of the interval
a,; ! — b ! subject to the constraint that P(a, < x2 < b,) = 1 — a. The solution
is to choose a, and b, to satisfy f,,(a,) =f,.b,), where we still use the
notation f, for the density of a X?, random variable. The shortest-unbiased (or
Neyman-shortest) interval is constructed by minimizing length over all unbiased
confidence intervals, and results in the constraint f, ,(a,) = f,.(b,).

These two constraints for Iy, and Igy are similar in that they define highest
density regions from chi-squared distributions, giving us an interpretation of I,
and Ig; as Bayes highest posterior density regions against (improper) priors
which result in x2,, and xZ2,, posterior densities, respectively. It will turn out
that this property is enough to insure the nonexistence of NBSR betting. We
now show that no NBSR betting procedures exist for Iy, and Igy. Further, we
show that no positively biased semirelevant betting procedures exist for Igy.

The method of proof mimics the proof of Theorem 2.1. We assume that an
NBSR betting procedure exists and then we reach a contradiction. If there exists
an NBSR betting procedure, then by definition there exists —1 < K(X, s?) <0
such that

(3.5) E{[Ige(0?) - (1 - )| K(X,s?)} 20 Vp,0?,

with strict inequality for at least one (., 62). We will show that the expression in
(3.5) must be negative for some parameter values, contradicting our assumption
of the existence of an NBSR procedure.

THEOREM 3.1. Let X,,..., X, ~ iid N(u, 6%) with p and ¢* both unknown.
For the intervals Iy, and Iy, no negatively biased semirelevant betting proce-
dures exist.

PrOOF. Assume that a negatively biased semirelevant betting procedure
exists; that is, assume there exists a function K(X, s?) with -1 < K(X,s%) <0
satisfying (3.5). Multiply (3.5) by

1
(3.6) w(u,02|r) = z02—),.dp.d02

and integrate with respect to both g and o2 If K(X, s?) is an NBSR betting
procedure, then

(3.7) fowf_wwE{[IC(sz)(oz) — (1 - @) K(X, 5%) (1, 0%r) dp do® = 0.

Manipulating the densities in a manner similar to that used in the proof of
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Theorem 2.1 and integrating out u will establish that the Lh.s. of (3.7) can be
written as

(3.8) f f K(x, 32)['[” /n(0?z, s, ) do? — (1 —a)] %, s%r) ds?dx
where

v 2
7r(o2|.f,s2,r) = IG(E +r—- 1,@),

(39) v\»/2T(v/2 +1r—

i S2Ir)=(§) T(v/2) D (g2yr- ‘(

Each of the intervals I, and Igy will be handled separately, as each will
have a specific value that » must approach. Both I, and Iy are defined by

(3.10) fy+k(ay) = fy+k(bv)’

where k = 4 for Iy; and k = 2 for Ig;. We want to specify the values of r so
that the marginal distribution of o2|%, s2, r of (3.9) has its first parameter
v/2 + r — 1 equal to » + k. In case of Iy, we need r = 3, while for Iy, r = 2.

The same limiting forms of posterior densities exist in Theorem 3.1 as in
Theorem 2.1. Therefore, we can pass to the limit in (3.8). The key step in the
proof is to show that the limit of the bracketed term in (3.8) is greater than or
equal to zero. If we show this, then we contradict our assumption of a negatively
biased semirelevant betting procedure existing.

To show that the limit of the bracketed term is greater than or equal to zero,
we use the following lemma.

2 v/2+r—1
)

LEMMA 3.1.
(3 11) P(a <Xv<b)_2[fv+2 b) V+2 v)] +P(av<x3+2<bv)’
where x?% represents a chi-squared random variable with v degrees of freedom
and density f(+).

ProoF. Integrate the Lh.s. of (3.11) by parts. O

Using Lemma 3.1, we see that for I,

(3.12) 1-a=Plagy<x2< béu) = P(agy < x2,5 < bgy)

for agy and bgy satisfying f,, o(agy) = f,+2(bsy). For Iy, applying Lemma 3.1
twice, we see that

1—a=Play, <x2<b
(3‘13) (ML Xy ML)

= 2[ frio(bme) = frio(ane)] + P(aML < x4 < bML)

for ayy, and by, satistying f,, (am) = £+ «(bmr)-
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It is also easy to verify (again integrating by parts) that
(3.14) Playy < x24<byp) > Play, <x2<byp) =1-a.

Reconsider the bracketed term of (3.8), where a, and b, are defined to yield
Ipy, or Igy. If we let ¢ = vs%/02, then this term is equivalent to

(3.15) P(a, < x}i2r-1<8,) = (1 - a).

If we let r - 3 for Iy, and — 2 for Iy, it follows that the limit of (3.15) is
greater than or equal to zero. Using (3.14), we have for I);; that the limit of
(3.15), as r — 3 is strictly greater than zero. For Iy, using (3.12), the limit of
(3.15) as r — 2 is identically equal to zero. Therefore, we have reached a
contradiction. No negatively biased betting procedures exist for the intervals I}
and Igy. O

The absence of NBSR betting procedure for I, is clearly a plus for this
interval. However, our result is actually stronger for Ig;. Since we have shown
that the limit of (3.15) is identically zero, this also implies that no positively
biased semirelevant betting procedures exist for Ig;.

4. Semirelevant betting against one-sided confidence intervals. We
now turn our attention to one-sided confidence intervals, which are slightly
easier to deal with. We consider one-sided upper confidence intervals

(4.1) Cy(s?) = {o?: 0% € (0,75%/a,)}
and one-sided lower confidence intervals
(4.2) Cy(s?) = {o%: 0® € (vs2/b,,0)},

where s? is the sample variance, » equals the degrees of freedom associated with
s” and a, and b, are the appropriate 1 — « cutoff points of the x2 distribution.
Note that in the one-sided case, the requirement of confidence level 1 — a
uniquely determines the constant a, or b,.

Theorem 2.1 applies to C, and C, and, hence, no relevant betting procedures
exist. However, an argument similar to that in Section 3 produces an NBSR
betting procedure for C,(s?), the lower confidence interval, and a modification of
the proof of Theorem 3.1 shows that no NBSR procedures exist for C,(s?), the
upper confidence interval.

THEOREM 4.1. Let X,,..., X, ~ iid N(p, 6%) with both mean and variance
unknown. Then there exists q* > 0, such that

(4.3) K(X,s?)= -1, if X%/s%< q*,
=0, otherwise,

is a negatively biased semirelevant betting procedure for the one-sided lower
confidence interval Cy(s?).
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Proor. The proof follows the argument given in the Appendix with the
following changes. Expression (A.1) must be modified to

v2 72 2
(1—a)P£<*—Pﬁ{(—<*£<02<oo
s2 9 s2 A

nX?

2 nX_2 2 2
<gqx,| - P 7<qu,0<xy<by ,

-(1- a)P(

where ¢ = g*n /v, with n and » being the degrees of freedom associated with X
and s?, respectively. With similar modifications to the subsequent equations in
the Appendix, we can show the existence of an NBSR betting procedure if we
show that we can choose ¢ > 0, so that

P(O < X3+1+2w < b,,(q + 1)) - (1 - a) <0

for w=10,1, ....Since P(x2<b,) = (1 — @) and x? is stochastically increasing
in w, it follows that for w = 0,1,...,

P(X3+l+2w < br) = P(x%'*'l < bl') <l-a
This implies there exists a g’ > 0, such that

02

P(xf+l <b(q+ 1)) <l-a forO<g<gq'.
Therefore, (4.3) is an NBSR betting procedure. O

THEOREM 4.2. Let X,,..., X,, ~ iid N(, 0?) with both mean and variance
unknown. No negatively biased semirelevant betting procedures exist for the
one-sided upper confidence interval C,(s?).

Proor. The proof of Theorem 3.1 will apply to Theorem 4.2, if we can show
that the limit of

(4.4) [(1 -a) — f()”sz/a’w(ozlf, s%,r)do?

is negative, where 7(¢?|X, s, r) is defined in (3.9). If we make the transforma-
tion ¢ = vs%/0? then t ~ x2, ,,_,. With this transformation, (4.4) can be written
as

(4.5) (1-a) = P(x%, ,>a,).

Since P(x2> a,)= (1 — a) and x? is stochastically increasing in », (4.5) is
negative for any r > 1. With this modification, we have shown that the limit of
(4.4) as r — 1, is negative. Thus, the proof of Theorem 3.1 applies in this case
and no NBSR betting procedures exist for C,(s?). O

The same intuition applied to the equal-tailed interval can be applied here.
The form of the negatively biased semirelevant betting procedure (4.3) implies
that we are betting against C,(s?), the lower confidence interval, when s? is
large. This suggests that the interval is overestimating the lower confidence
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limit. This lower limit is, again, too far from zero and we can win by betting
against the interval when s? is large. For the one-sided upper confidence interval
our intuition is consistent. For large observed s2, the interval C,(s?) guards
against overestimation of o2 just by its form: It covers everything from zero to
the upper limit.

We have a somewhat remarkable dichotomy between usual Neyman-Pearson
optimality and conditional properties in the one-sided case. The lower confidence
interval Cy(s?) can be derived by inverting the UMP test of H,: o < o, (making
it uniformly most accurate), but no UMP test exists for Hy: ¢ > o,, so C;(s?)
cannot be derived in a similar manner (although it is uniformly most accurate
unbiased). So, the interval with the stronger classical property C,(s?) actually
has a weaker conditional property. We have no rigorous explanation for this,
other than reiterating that good conditional properties are possessed by intervals
with some type of Bayesian interpretation (as Iy, and Igy) and classical
unconditional optimality gives no conditional guarantees.

5. Discussion. Faced with a choice of which interval estimator to use, an
experimenter must take many factors into consideration, including both condi-
tional and unconditional performance. The results of Section 2 show that all
intervals of the form (1.6) are free from major conditional defects, so a choice will
be based on more subtle conditional performance and unconditional perfor-
mance.

In the one-sided case, of course, the choice of interval is dictated by the
problem at hand; however, the two-sided case is more complex. The equal-tailed
interval has the advantage of ease of construction: Tables in common textbooks
will often suffice. However, ease of construction seems to be its only advantage.
The equal-tailed interval possesses no optimality properties, either conditional or
unconditional.

Both I,;; and Igy have attractive unconditional properties. In addition to
being minimum length, Cohen (1972) shows that I is strongly admissible
[among procedures of the form of (1.6)] using the definitions of Joshi (1970). This
result also implies that I,y is minimax among these procedures. The interval
Iy, on the other hand, is shortest-unbiased (all the others are biased). It can be
constructed by inverting the uniformly most powerful unbiased test and is,
therefore, uniformly most accurate unbiased, hence minimizing the probability of
covering false values [Lehmann (1959), Chapter 5]. Iy can also be obtained in
two other manners. It can be derived by assuming invariance of the confidence
limits with respect to the usual translation group and considering uniformly
most powerful invariant tests. In addition, Ig results if we minimize the ratio of
the right endpoint to the left endpoint. This particular measure of size may be
more appropriate than the usual length for the scale parameter case [see, e.g.,
Berger (1980), Chapter 6].

When choosing a two-sided confidence interval, we have to weigh both
unconditional and conditional characteristics. If overall length of the interval is
of importance (as it is in most location parameter cases), then the combination of
strong admissibility and the nonexistence of negatively biased semirelevant
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betting procedures would suggest Iy, . However, if the minimization of the ratio
of right endpoint to left endpoint (the natural measure of size for scale parame-
ters) and unbiasedness are 1mportant the exceptionally good cond1t10nal proper-
ties suggests that I, is the superior interval.

APPENDIX

A negatively biased semirelevant betting procedure against the equal-
tailed interval. Using the definition of K(X, s?) in (3.3), we can write the
expectation in (3.4) as

nX? , nX? ) )
(A’l) (1 - a)P 02 < QXI' - P 02 < QXI" av < Xv < bv 2

where g = gyn/v, with n equaling the number of observations in X and »
equaling the degrees of freedom of s2, as before.

The distribution of nX?/¢? is a noncentral x> with 1 degree of freedom and
noncentrality parameter 1u?/02. Let 7 = 1pu?/0” and let x2(7) = nX2/0® Then
(A.1) can be written as

(A2)  (1-a)P(xi(r) <qx3) = P(xi(7) <qx}, a, <x: <b,).
Expression (A.2) can be evaluated further by making use of the well known fact

that if Z|W ~ x%, ., and W ~ Poisson(8), then Z ~ x%(20). We can now write
(A.2) as

io[(l — a)P(x} 10, < ax2)

(43) = P(X}20 < ax3 @, < X < b,)| P(W = w)
def
= M(r).

Since M(7) =0 when ¢ =0, if we can show that g,> 0 can be chosen
independent of w so that the quantity in square brackets is nonnegative for all w
and 0 < g < g, then it will follow that M(7) > 0 for all 7. To meet this end, we
will show that g, can be chosen independent of w, such that the derivative of
M(7) is nonnegative uniformly in 7, for 0 < g < g,

Denoting the quantity in square brackets in (A.3) as M,,, we have, after a
little algebra

(1—‘1)[ t/q<X f1+2w(t)dt_(1_0‘)fq vf1+2w(t)dt
_j::v t/q<x;' <bv)f1+2w(t)dt,

where f,,,,(t) is the central x%,, density. Taking the derivative of M,, with
respect to ¢ and making the transformation y = t/q yields

d ©
(A4) 5-M, = (=) [“L()3h @) dy = ["()raa) .
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Since we are only interested in the sign of the derivative, the positive
constants involved in the density functions in (A.4) do not matter. (They are the
same for each integral) We can also normalize appropriately so that
fA)¥f1+2.(qy) is a gamma density with parameters » + 1 + 2w and 3(1 + q),
denoted by g,(y). With this normalization, the first integral in (A.4) is equal to 1
and we have the sign of (A.4) equal to the sign of

bl‘
(1-a) - [“g,(y)dy.
It follows that if T ~ g, (y), then (1 + ¢)T ~ x2,,, 2., SO that the sign of
(d/3q)M,, is equal to the sign of

(A.5) (1-a) = P(a,(¢+1) <x}i1:20 < b(g +1)).

To show that the derivative of M(7) is nonnegative, we want to find a value
of g, say q,, to make (A.5) negative for all w = 0,1, ... . First, choose a value q’,
then find the smallest value of w for which P(x2%,,,5, <b/(q¢' +1)<1—a.

TABLE 1
Numerical verification that NBSR betting procedures exist for Iy,
p="Pla,(g+1) < x}r1+20 < b(go + 1]

w p w p

v=4,1—a=095 a, = 0484, b, = 11.143, g, = 0.01

0 0.945 6 0.156 For wy, =2, ¢’ = 0.5
1 0.871 7 0.085
2 0.741 8 0.042 PIX21 1420, < b(q" + 1)] = 0946
3 0.577 9 0.019
4 0.410 10 0.008
5 0.265
v=151—a =095 a, = 6.262, b, = 27.488, q, = 0.005
0 0.949 6 0.515 For wy = 6, ¢’ = 0.5
1 0.926 7 0.409
2 0.879 8 0.312 PIX21 1420, < b(g" + 1] =0948
3 0.811 9 0.228
4 0.723 10 0.159
5 0.622
v=28,1-a=095 a,=15.308, b, = 44.461, g, = 0.001
0 0.949 6 0.673 For wy =11, ¢’ = 0.5
1 0.936 7 0.591
2 0.909 8 0.507 PIXZs 142w, < b(g’ + 1)] = 0930
3 0.868 9 0.423
4 0.814 10 0.344
5 0.748
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Call this value w,. We have that

P[av(q + 1) < x3+1+2w < bv(q + 1)] < P(x3+1+2w < bu(q + 1)) < 1 -«
for all w > w,, q¢ < q’,

since x2, .o, is stochastically increasing in w.
Therefore, we now have a finite problem, which can be solved numerically.
This is, for w = 0,..., w,, find a value g, < ¢’ such that

(A6) Pa,(go+1) < xli1s2w < blgo+ 1) <1-a

If we can find such a g,, this means that the sign of the derivative of M, is
nonnegative for all integers w and implies the derivative of M(r) remains above
zero as a function of g, that is M(7) > 0 for all = and g, such that 0 < q < q,.
Thus (3.3) is a negatively biased semirelevant betting procedure or, in terms of
conditional probabilities,

Plo? € Ig|X%/s? < q,| <1 —a, forall p,o?.
ET 0

Table 1 contains the numerical verification that NBSR subsets exist for Iy of
(2.2). For » = 4, 15 and 28 degrees of freedom and 1 — a = 0.95, we give the
value of Pla,(qy+ 1) < X2, 1420 < b(go + 1)] for g, = 0.01, 0.005 and 0.001
(respectively for the degrees of freedom) as w goes from 0 to 10. Each of these
values is less than 1 — a, which shows that (A.6) holds.

Acknowledgment. We thank the reviewers for their valuable comments on
an earlier version of this paper.

REFERENCES

BERGER, J. O. (1980). Statistical Decision Theory. Springer, New York.

BONDAR, J. V. (1977). A conditional confidence principle. Ann. Statist. 5 881-891.

BROWN, L. (1967). The conditional level of Student’s t-test. Ann. Math. Statist. 38 1068-1071.

BUEHLER, R. J. (1959). Some validity criteria for statistical inferences. Ann. Math. Statist. 30
845-863.

BUEHLER, R. J. and FEDDERSON, A. P. (1963). Note on a conditional property of Student’s ¢. Ann.
Math. Statist. 34 1098-1100.

COHEN, A. (1972). Improved confidence intervals for the variance of a normal distribution. J. Amer.
Statist. Assoc. 67 382-387.

FISHER, R. A. (1956a). Statistical Methods and Scientific Inference. Oliver and Boyd, Edinburgh.

FISHER, R. A. (1956b). On a test of significance in Pearson’s Biometrika tables (No. 11). J. Roy.
Statist. Soc. Ser. B 18 56-60.

JosHI, V. M. (1970). Admissibility of invariant confidence procedures for estimating two location
parameters. Ann. Math. Statist. 41 1568-1581.

KIEFER, J. (1977). Conditional confidence statements and confidence estimators (with discussion). <.
Amer. Statist. Assoc. 712 789-827.

LEHMANN, E. L. (1959). Testing Statistical Hypotheses. Wiley, New York.

Mavyo, D. G. (1981). In defense of the Neyman—Pearson theory of confidence intervals. Philos. Sci.
48 269-280.

OLSHEN, R. A. (1973). The conditional level of the F-test. J. Amer. Statist. Assoc. 68 692—698.

RoBINSON, G. K. (1976). Properties of Student’s ¢ and of the Behrens—Fisher solution to the two
means problem. Ann. Statist. 4 963-971.

RoBINSON, G. K. (1979a). Conditional properties of statistical procedures. Ann. Statist. 7 742-755.



1388 J. M. MAATTA AND G. CASELLA

RoBINSON, G. K. (1979b). Conditional properties of statistical procedures for location and scale
parameters. Ann. Statist. 7 756-771.

SEIDENFELD, T. (1979). Philosophical Problems of Statistical Inference. Reidel, Dordrecht.

SEIDENFELD, T. (1981). On after-trial properties of best Neyman-Pearson confidence intervals.
Philos. Sci. 48 281-291.

SHORROCK, G. (1982). A generalized Bayes confidence interval for a normal variance. Ph.D. disserta-
tion, Dept. Statistics, Rutgers Univ.

TATE, R. F. and KLETT, G. W. (1959). Optimal confidence intervals for the variance of a normal
distribution. J. Amer. Statist. Assoc. 54 674-682.

WELCH, B. L. (1947). The generalization of Student’s problem. Biometrika 34 28-34.

DEPARTMENT OF STATISTICS

UNIVERSITY OF MISSOURI
COLUMBIA, MISSOURI 65211

DEPARTMENT OF PLANT BREEDING
AND BIOMETRY

BIioMETRICs UNIT

CORNELL UNIVERSITY

ITHACA, NEW YORK 14853-7801



