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THE NONEXISTENCE OF 100(1 — a)% CONFIDENCE SETS OF
FINITE EXPECTED DIAMETER IN ERRORS-IN-VARIABLES
AND RELATED MODELS

By LEON JAY GLESER! AND JIUNN T. HwANG?
Purdue University and Cornell University

Confidence intervals are widely used in statistical practice as indicators
of precision for related point estimators or as estimators in their own right. In
the present paper it is shown that for some models, including most linear and
nonlinear errors-in-variables regression models, and for certain estimation
problems arising in the context of classical linear models, such as the inverse
regression problem, it is impossible to construct confidence intervals for key
parameters which have both positive confidence and finite expected length.
The results are generalized to cover general confidence sets for both scalar
and vector parameters.

1. Introduction. Confidence intervals are widely used in statistical practice
as indicators of precision for related point estimators or as estimators in their
own right. Suppose we observe data Y obeying a parametric model whose
probabilities Py{Y in A} are indexed by a parameter 6, where 6 is an element of
a parameter space 0. A confidence interval [ L(Y); U(Y)] for a scalar function
¥(0) of 8 is defined by (measurable) functions L(Y), U(Y) of Y. For each 6 in 6,
the coverage probability p(8) of [L(Y), U(Y)] is defined by Pp{L(Y) < y(0) <
U(Y)} and the confidence (confidence level) of the confidence interval by

(1.1) l1-a= (}ggp(ﬂ).

If the confidence of the interval is large (e.g., 1 — a = 0.95) and the expected
length E,[U(Y) — L(Y)] is small for all 8, then the interval [L(Y), U(Y)] is
regarded as a good frequentist interval estimator of y(#). Alternatively, the high
confidence and small expected length of the interval [ L(Y), U(Y)] can be used as
evidence of the accuracy of any point estimator §(Y) for which L(Y) < %(Y) <
Uy).

Similarly, for any m-dimensional vector function y(8) of §, m > 1, we might
seek to simultaneously estimate the components v,(8),..., y,(8) of y(8) by a
confidence set C(Y). In this case, the coverage probability p(0) of the set equals
Py{y(8) € C(Y)} and the confidence 1 — a of C(Y) is defined by (1.1). The
diameter d(Y) of C(Y) is defined to be the maximum (supremum) distance
between any two points in C(Y).
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1352 L. J. GLESER AND J. T. HWANG

In many parametric and nonparametric problems, it is possible to find 1 — «
confidence intervals of finite expected length for parameters or parametric
functions of interest. However, there are important exceptions.

For example, consider the simple linear errors-in-variables model [Anderson
(1984)] in which we observe pairs (y;, x;) of random variables satisfying the
model

¥i=Bo+ Bu; + ey,
1.2 .
( ) X;=Uu; + ey, 1=1,2,...,
where (e,;, e,;) are ii.d. with common mean vector (0,0)’ and common covari-
ance matrix =, = o2l,. Here, 1, represents the q-dlmensmnal identity matrix
and B,, B; and o2 are parameters of basic interest in the model. The quantities
u,; are usually assumed to be either fixed constants ( functional case) or i.i.d.
random variables with mean p and variance o2 (structural case). For both the
functional and the structural cases of the model, it can be shown (Section 3) that

(a) any 1 — a confidence interval for 8, (0 < a < 1) must have
infinite expected length;
(1.3)

(b) contrariwise, any confidence interval for 8, of finite expected
length must have confidence 1 — a = 0.

The key to a proof of (1.3) is that (1.2) by suitable choice of the ‘“nuisance
parameters” u, (in the functional case) or 6?2 (in the structural case) can be made
arbitrarily close to the model

Y, =Byt Bin + ey,
X, =p+ ey, 1=1,2,...,n,

for which B, and B, are not identifiable. This suggests that more general results
are possible.

Thus, let Y be a random element of a probability space (¥, %), with # a
sigma-field of measurable subsets of #. Let { be a sigma-finite measure on
(%, %) and let Y have probabilities determined by one of a parametric class of
densities f(Y|@) relative to {, with common support * C . Thus ¥* = {Y:
f(Y|6) > 0}, all 6, and

R{Y € 4} = [ (¥I0) d¥(Y).
Assume that 8 = (0,, 0,) takes values in

©=0,x80,,

where 0, is a subset of p-dimensional Euclidean space E” and 0, is a subset of
g-dimensional Euclidean space E 9.
The following theorem is the main result of our paper.
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THEOREM 1. Let y(0,) be a scalar function of 6, € ©,. Suppose that there
exist a subset OF of ©, and a point 0;* in the closure O, of ©, such that

(1.4) v(8,) has unbounded range over 0, € O ¥
and such that for each fixed 0, € O}, Y€ %,
(15) i f(Y)(6,,6,)) = F(Y165)

exists, is a density for Y relative to { and is independent of 6,. Then every
confidence set C(Y) for y(8,) with confidence 1 — a > 0 satisfies

(1.6) Pg, 0,)(d(Y) = o0) >0

for all (6,,0,) € ©, where d(Y) is the diameter of C(Y). [Consequently,
E,[d(Y)] = o forall 8 = (8,,6,) € ©.] Contrariwise, if C(Y) is a confidence set
for y(8,) whose diameter is finite with probability 1 for some 6 € O, then the
confidence level 1 — a of C(Y) equals 0.

Theorem 1 deals with confidence set estimation of scalar parametric functions.
However, this theorem is also applicable to vector-valued parametric functions
v(8,) because of the following theorem.

THEOREM 2. Let Y be a random vector whose distribution depends on an
unknown vector parameter 0. Let v(0) be an m-dimensional vector-valued
function of 8. If for some constant m-dimensional vector a it can be shown that
no confidence set for a’y(0) with positive confidence and finite expected diameter
exists, then the same conclusion holds for any confidence set C(Y) for v(8).

Theorems 1 and 2 are proven in Section 2. That section, which is technical in
nature, can be skipped by anyone interested only in applications of the main
results.

In Section 3, it is shown how Theorems 1 and 2 apply to linear and nonlinear
errors-in-variables models, estimation of principal component vectors and to the
problem of estimating ratios of slopes in classical linear regression. Section 4
shows how Theorem 1 can be extended to cover estimation of parameters y(4,)
which have a finite range [a, b]. There, under the assumptions of Theorem 1, it
is shown (Theorem 3) that any confidence interval for y(6,) with confidence
1 — a > 0.5 must contain the interval [a, b] with positive probability for all 6.
That is, for all @ there is positive probability of obtaining a noninformative
interval. Two examples of the applicability of Theorem 3 are given in Section 4:
estimation of mixing proportions in mixtures of distributions and estimation of
the location parameter in the von Mises distribution on the circle.

Finally, Section 5 comments briefly on the implications of the results of this
paper for the use of large-sample theory in determining properties of point and
interval estimators and for the sensitivity of Bayesian inferential methods to
choice of the prior distribution.
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The problem of constructing confidence intervals or confidence regions for
parameters of interest in errors-in-variables regression models and in inverse
regression (calibration) problems has a long and controversial history. See, for
example, Fieller (1954), Neyman (1954), Creasy (1956), Miller (1981), Brown
(1982) and Schneeweiss (1982) for discussions of such problems and proposals of
possible methodology.

2. Proofs.

PRrOOF OF THEOREM 1. By (1.5), for every 6, € OF,

o) 02121;2* f@f(Yl(al, 02)) d¢(Y)=1= f@f(Yl%*) dg(Y)
= fwzlgr; f(Y1(6,, 6,)) d¥(Y).

2*
Also, since O} C 0,
O*=0F%x0,C 0, X0,=0.
It follows from (1.1) that

L-a= inf Py, 0(v(6) € C(Y))
1 Y2

= @ })n)fee*P(o,,oz)(Y(oo € C(Y)).
1,72

Fix 8, € ©*. Since C(Y) is asserted to have positive confidence,

- inf 0
0<l-acx< (ol,ég)ee*P(ol’%)(Y( ) € C(Y))

IA

e2) i Bo,o,(x(01) & C(Y)
. 202

Jm f I({v(8)) € C(Y)})1(¥1(6:, 8,)) &(Y),
where I(A) is the indicator function of the set A. Note that for any set A in %,

0 < I(A)[(Y|(6,,6;)) < f(YI(8,,6))-

Thus by (2.1), (2.2) and a generalization of the Lebesgue dominated convergence
theorem [Billingsley (1986), Exercise 16.6 (a)], for each 6, € O},

0<1-asx lim [I((x(0)) € C(V))I(¥I(6,,6,)) dE(¥)
(2.3) e
= [I({x(8,) € C(Y))1(716) d(Y).

Since the range of y(8,) over 8, € O} is infinite, we can find a sequence of values
of 6, in O; such that either y(6,) - o or y(#,) = —oo. Assume that we can
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take y(6,) — oo [the proof when y(6,) > — oo is similar]. Let
U(Y) = max{g: g€ C(Y)},
L(Y) =min{g: g€ C(Y)}.

Then by (2.3) and the Lebesgue dominated convergence theorem,

0<i-as< lim /@I({y(ﬂl) e C(Y)))f(Y163) de(Y)

IA

tim [ 1({1(6,) < UDID(¥I6) dg(¥)

¥(0,)— 0

f@I({U(Y) = 0 })f(Y6) d§(Y)

< [I((U(Y) - L(Y) = 20))(¥165) &(Y).

Let
S={Y:U(Y) - L(Y) = o0},
24) T = {Y: f(Y|6;) > 0}.
We have shown that
(2.5) 0<1-ax [f(VI63)&(Y) = [  F(¥I65)d5(Y)

and it follows from (1.5) that the support T of f(Y|6;*) is contained in the
common support #* of the f(Y|(6,, 6,)), (6, 0,) € ©. Hence, it follows that for
any (0,,6,) € ©,

Py, 0,(S) = fs F(Y1(6,,6,)) d¥(Y)

F(Y1(61, 6,)) .
> SmT[w}f(Ylez )df(Y)
> 0.

This completes the proof of the first part of Theorem 1. The “contrariwise” part
of Theorem 1 follows directly as the contrapositive of the first part of Theorem
1. Hence, the proof of Theorem 1 is complete. O

REMARK. If we do not require that f(Y|@) has common support for all
6 € O, then the conclusion (1.6) of Theorem 1 can be shown to hold for any
(8,, 8,), such that 6, € O and 0, is in the intersection of a certain neighborhood
of 6 (possibly depending on 6,) and ©,.

ProOF oF THEOREM 2. Let C(Y) be a confidence set for y(#) with positive
confidence 1 — a > 0. Let

C(Y) = {a'g:g € C(Y)}.
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That is, C,(Y) is the Scheffé projection [Scheffé (1959)] of C(Y') for estimation of
a’y(0). Clearly,

0<1-a= inf B(v(0) € C(Y)) < inf B{ar(0) € C(Y)).

By assumption, every confidence set for a’y(#) having positive confidence 1 — a
must have infinite diameter with positive probability for all §. The diameter of
C,(Y) is obviously no larger than that of C(Y'), and thus the proof of Theorem 2
is complete. O

3. Applications.

3.1. Errors-in-variables models. The simple linear errors-in-variables model
(1.2) is a special case of the following nonlinear errors-in-variables model. Let

(38.1) (yi)=(h(’8"u"))+ei, i=1,2,...,n,

x; ;
where y, is a p-dimensional vector, x; and u; are g-dimensional vectors and
further

(i) A(B, u) is a known p-dimensional vector function of 8 and u which is
continuous in u for all fixed S;

(i) the e;’s are (p + q)-dimensional random vectors with zero mean vector 0, ,
and positive definite covariance matrix Z,.

The u;’s can be unknown vector parameters (functional case) or random vectors
with unknown mean vector p and unknown covariance matrix 2, (structural
case).

To apply Theorem 1 to the model (3.1), let

Y= (o1, %0, %, %5, n %)
0, = B and
0, = (uy, uy,...,u,,2,) (functional case),
0,=(p,=2,,=,) (structural case).
Let 65 be defined from 6, by letting

u,=u,= -+ =u,=t (functional case),
(3.2)
p=t  2,=0,, (structural case),

where the g-dimensional vector ¢ is at our disposal. Finally, let
(3.3) of = (B: h(B,¢) = b)
for b a fixed p X 1 vector. Note that ©; defines a surface in the p-dimensional
range 0, of 8.
If the scalar function y(8) of 8 is unbounded in range over 8 € @} for some ¢

and b, Theorem 1 applies to show that no 1 — a confidence set (1 — a > 0) for
v(B) with finite expected diameter can exist. Giving general methods for finding
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t and b is beyond the scope of this paper. For particular cases, this is usually
easy. Two examples, the multivariate linear errors-in-variables model [which
includes (1.2) as the special case where p = ¢ = 1] and a simple nonlinear model,
are given in the following text.

The multivariate linear errors-in-variables model is given by

(3.4) ( x ) - ﬁ" ?1

q q

+ u; + e, i=12,...,n,

where B is an unknown p X 1 vector and B, is an unknown p X ¢ matrix. Note
that (3.4) implicitly defines (B, u;) = B, + B,u; as a function of 8, where

B= Vec(BO’ Bl)

is the vector composed by stacking the columns of (8,, B,). Suppose that we
wish to estimate the unbounded scalar function

(3.5) v(B)=¢(By,By)a e:px1, ai(g+1)x1,

of B. Choose ¢ in (3.2) so that (1, ¢') and a are linearly independent. It is then
easily seen that the function (3.5) is unbounded for 8 € ©*, where © * is defined
by (3.3), while the distribution of Y when 6, = 6,* and 8 € ©} depends only on
b and Z,. Consequently, Theorem 1 applies to show that no 1 — a (1 — a > 0)
confidence interval with finite expected length exists for y (8) defined by (3.5). It
then follows from Theorem 2 that nontrivial (1 — a > 0) confidence sets for
(B, B,) with finite expected diameter do not exist.

As an example of a nonlinear errors-in-variables model to which Theorems 1
and 2 apply’ let b=qg= ]-v B = (BO’ :Bl)’ and h(B, u) = Boexp{,Blu} in (3'1)' If
¥(B) = B,, then ¢t =0, b =0 in (3.2) and (3.3) can be used to show the nonex-
istence of a nontrivial (1 — « > 0) confidence interval for 8, with finite expected
length, while if y(8) = B, then =1, b = 1 will suffice.

The preceding assertions hold whether 2, is assumed known or unknown. [In
the latter case, we may need conditions on 2, to make the model (3.1) identifi-
able.] However, 2, must be assumed to be positive definite in order that the
model (3.1) does not degenerate to a standard nonlinear regression model, where
nontrivial confidence intervals for individual elements of B8 having finite ex-
pected length can exist. Since our results hold for known =, it follows that our
nonexistence assertions about confidence sets for scalar and vector functions of 8
also hold in the context of generalizations of the model (3.1) which permit
replications or use of instrumental variables in order to estimate =,. [For
examples of such models in the linear errors-in-variables case (3.4), see Anderson
(1984) and Gleser (1983).]

Note that use of Theorem 1 in this context does not require us to make any
parametric assumption about the joint distribution of the errors e; in (3.1). The
e;’s do not have to be normally distributed or independerit or even identically
distributed. The e;’s do not even need to have common covariance matrix 2. Of
course, the more assumptions we make, the more striking are our nonexistence
results! Still it is worth remarking that for Theorem 1 to apply in the functional
case of the model (3.1), it is sufficient that the joint density f(e) for e =
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(e}, e},...,e.) satisfies the following conditions:

(i) f(e) is functionally independent of B;
(ii) f(e) is continuous in e (permitting the limit as 6, — 65 to‘hold and be a

density);
(iii) the support of f(e) is n(p + q)-dimensional Euclidean space E™P*9 (so
that the densities for Y for all values of the parameters B, u,,..., u, have

common support).

In the structural case the u;’s are random vectors independent of the e;’s. The
u;’s are usually assumed to be i.i.d. with a common g-variate normal distribu-
tion, but such an assumption is not needed in order to apply Theorem 1. The
u;’s can be dependent and even have nonidentical marginal distributions. In fact,
the u;’s need not have common mean vector p nor common covariance matrix
2. For Theorem 1 to apply in the structural case, it is sufficient that the class of
distributions of the u;’s permit taking the limit 6, — 6; and that the density
f(e) of the vector of errors e has the listed properties (i), (ii) and (iii) for the
functional case. [Of course, it is also implicit in our assumptions that the mean
vector(s) and covariance matrix (matrices) of the u,’s do not depend functionally
on B.]

The key to our arguments in both the functional and structural cases of the
model (3.1) is that we can find a sequence of parameters tending to a limit for
which the variability of the u,’s is equal to zero. Note that in the functional case,
this limit lies in the interior of the parameter space, while in the structural case,
the limit =, = O,,, is on the boundary of the parameter space.

NoTeE. Hwang (1986) considers a simple errors-in-variables model with a
multiplicative error [rather than additive, as in (1.2), (3.1) or (3.4)]. Theorems 1
and 2 can be applied in the context of his model to show the nonexistence of
nontrivial (1 — a > 0) confidence sets with finite expected diameter for linear
combinations of the essential parameters.

3.2. Estimation of principal component vectors. It is well known that the
structural form of the linear errors-in-variables model (3.4) is related to principal
component analysis. Suppose that y,, ¥,,..., ¥, are ii.d. p-dimensional continu-
ous random vectors with support E”, mean vector p and unknown positive
definite covariance matrix 2. Let A, > A, > -+ > A, > 0 be the eigenvalues of
2. Suppose that it is assumed that A, > A,, so that the eigenvector x corre-
sponding to A, is uniquely defined up to a scalar multiple. Also suppose that the
first component of x is not zero. If we scale x so that

[}

where B is a (p — 1)-dimensional vector, then the elements of 8 are the slopes of
x relative to the last p — 1 axes of p-dimensional Euclidean space and serve to
define the first principal component of Z. It is frequently desired to estimate the
elements of B. In particular, confidence intervals for the elements ,,..., 8,_, of
B or a confidence set for 8 may be desired.
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However, letting 6, = 8, 0, = (A,,...,A,), 0¥ =0, and 6 = (A, A\, A,..., \)
for some A > 0, it is easily seen that Theorems 1 and 2 apply. Thus, no nontrivial
confidence sets with finite expected diameter for elements of 8 can exist.

3.3. Ratios of regression parameters and inverse regression. Consider the
classical multiple regression model

p
(36) Yi=B+ ZBjxij+ei, i=12,...,n,
j=1

where the e; have mean 0, variance ¢? and a joint distribution having the

properties (i), (ii) and (iii) mentioned in Section 3.1. For any given jj,, 0 < j, < p,
define the ratios 8, = 8-8;, j=0,..., p.
Applying Theorems 1 and 2 with
0,=(8,....8,) O,=(B,02) 87=(0,02),

<5 0p

we see that no nontrivial confidence sets exist for §;, j # j;, which have finite
expected diameter. A special case of this problem (with p = 1) is the inverse
regression (discrimination, calibration) problem [Miller (1981), page 117; Brown
(1982); Seber (1977), Chapter 7].

4. An extension of Theorem 1. The results so far in this paper have
concerned scalar functions y(8,) of 6, having infinite range. Suppose, instead,
that we are interested in a scalar function y(8,) which has a finite range [a, b]
over the domain ©;,, —o0 <a < b < . Since [a, b] itself is a confidence
interval for y(6,) with confidence 1 and finite length b — a, we cannot obtain the
conclusion reached in Theorem 1. However, since the range of y(6,) is a finite
interval, it makes intuitive sense to restrict attention only to confidence sets for
y(6,) which are intervals [ L(Y), U(Y)]. In the context of Theorem 1, it is then
possible to show that any confidence interval for y(#,) with confidence 1 — «
exceeding 0.5 must have positive probability of containing the entire range [a, b]

of v(6,).
THEOREM 3. Suppose that there exists a subset © of ©, and a point 65 in
the closure ©, of ©, such that
the closure of {g: v(0,) = g,0, € 0} equals [a, b]

and such that for each fixed 0, € OF, Y € ¥, the limit (1.5) exists, is a density
for Y relative to { and is independent of 0,. Then, every confidence interval
[L(Y),U(Y)] for y(8,) with confidence 1 — a > } satisfies

(4.1) Py o){L(Y)<a<b<UY)}>0
for all (6,,6,) € ©.

Proor oF THEOREM 3. The proof of (4.1) follows the steps of the proof of
Theorem 1 in Section 2 until we reach (2.3). Now we find a sequence of values 6,
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in ©F such that y(6,) > a and a sequence of values 6, in O such that
v(8,) — b. Using (2.3) and the Lebesgue dominated convergence theorem,

F<1-as [I((L(Y) = ) {(YI67) dK(Y),

0O =

<1-ax [I{U(Y) = b})F(YI6}) dS(Y).
24
Hence, 1‘
(42) [I(L(¥)sa<bs U(Y)})*(ng*) &(Y)>1-1-1—o,
|

Let T be defined by (2.4) and let
S* = {Y: [L(Y), U(Y)] contains [a, b]}.
Then (4.2) yields |

0< [ f(V65)ds(Y) = [ f(V162)d5(Y).
S* S*AT
The remainder of the proof is similar to that of the first part of Theorem 1. O

4.1. Estimation of mixture proportions. Let g(y|n), n € H, be an identifiable
parametric family of density functions indexed by the g-dimensional parameter
7. Let

f(y|01» N, Mg) = 01g(y|"l1) +(1-6,)g(yn),

Where 01 € [0’ 1], ™ #* Mg M MNe € H' Let Y = (yll’ y2” ey yr:),, Where
Yi> Yor--+» Y, 18 @ random sample (i.i.d.) from f(y|0,, n,, n,). Here, the mixing
parameter 6, 0 < 6, < 1, is unknown, as is the “nuisance” parameter 0, =
(n, my). If for each y, g(y|n) is continuous at n,, then Theorem 3 applies
[with 6 = (np, np)'] to show that every 1 — a confidence interval for 6,
(with 1 — a > 3) has positive probability of containing [0, 1], all 8 = (6,, 7}, 75)".

Similar results clearly hold for the estimation of any mixing proportion 6, ; in
the model

f(ylol’ M n2""’n;n) = Z Hljg(ylnj)’
j=1
where 0, = (0,,,...,0,,,), m=>2,0,;>0,all jand X760, = 1.

J=1"1

4.2. Estimation of the location parameter of the von Mises distribution on the
circle. Let y have density

(4.3) f( 310y, 0,) = k(8,)exp{O,cos(y — 6,)}, y<[0,27),
where 6, €[0,27), —o00 <6, < 0, 0, # 0. Then for Y= (y{, 55,..., %)), a
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random sample (i.i.d.) from the density f(y|d,, 6,), we conclude from Theorem 3
(with 6% = 0) that every 1 — a confidence interval for §,, with 1 — & > 7, must
contain [0, 27) with positive probability, all 8, € [0,27), —c0 < 6, < o0, 8, # 0.

5. Comments. In each of the examples in Sections 3 and 4, our results are
not due to lack of identifiability of the parameters. [In the functional errors-
in-variables models, we can delete the line ¥, = u, = -+ = u,, from the param-
eter space and our conclusions still hold. The value 6;* simply becomes a
boundary value of the parameter space.] Even after we impose identifiability
restrictions on the parameters, the phenomenon persists. The reason for this
phenomenon is stated in the discussion preceding the statement of Theorem 1:
For fixed n, the confidence level of any confidence set is bounded above by the
limit of coverage probabilities as 6, — 6;*.

On the other hand, in each of our examples one can exhibit large sample
approximate 100(1 — a)%, 0 < a < 1, confidence intervals of finite length (almost
surely) for any y(6,). For example, a large sample confidence interval for 8, can
be constructed in the context of the model (1.2) [Anderson (1984)]. Although for
each fixed (4,, 6,) in ® = @, X O, the coverage probability of the large sample
confidence interval for y(6,) converges to 1 — a as n — oo, Theorem 1 shows
that for fixed n, no matter how large, the confidence level of this large sample
confidence interval must equal 0. The technical reason for this apparent con-
tradiction is that the limits as n'— oo and as 6, — 6,* cannot be interchanged.
The practical conclusion from our arguments is that large sample approxima-
tions (asymptotic theory) fail to uniformly approximate the finite sample distri-
butions over the parameter space 0. To use large sample approximations for the
models discussed in Sections 3 and 4 (and more generally in Theorems 1, 2 and
3), one must have some information about the location of (6,,6,) in the
parameter space (particularly how close 8, is to the points 6;*). This casts doubt
upon the usefulness of large sample approximations in such models, at least
when used for the purpose of forming confidence sets or assessing the accuracy of
point estimators.

The models and inference problems mentioned in Sections 3 and 4 have wide
applicability. Consequently, the nonexistence of nontrivial finite-expected-length
confidence intervals is of concern, at least to those statisticians who use con-
fidence intervals as frequentist indicators of precision or as estimators in their
own right. Since confidence sets (particularly confidence intervals) follow from a
frequentist approach to inference, our discussion in this paper has been confined
to frequentist measures of accuracy (coverage probability, confidence, expected
length or diameter). No attempt has been made to take a Bayesian perspective
on this problem. However, the results of this paper do serve as a warning to
Bayesians that Bayesian methods of inference will be sensitive to the amount of
prior probability mass or density for 6, in neighborhoods of the values 6;*.

Acknowledgments. We wish to thank the referees for their helpful com-
ments. In particular, Theorem 3 and the examples in Section 4 were added as a
result of their remarks.
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