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MULTIVARIATE ADAPTIVE STOCHASTIC APPROXIMATION!?

By C. Z. WEI
University of Maryland

Herein we study a multivariate version of the adaptive stochastic ap-
proximation developed recently by Lai and Robbins. An adaptive procedure
which involves a Venter-type estimate of the Jacobian of the response
function is proposed and shown to be asymptotically efficient from both the
estimation and the control points of view.

1. Introduction. Consider the regression model
(11) Y, =f(X,) +e,, n=12,"..,

where f: R? —» RP is a Borel function, Y, is a p X 1 observable random vector
and ¢, are i.i.d. p X 1 random vectors with mean vector zero and covariance
matrix 2. Let Y, = f(0) be a known optimal response vector and 6 be the
unknown desired factor level which is to be estimated. The classical
Robbins-Monro (1951) stochastic approximation, when p =1, is as follows:
Initialize X, and then choose X, by the recursion

Xn+1 = Xn - an(Yn - YO)’

where {a,} is a sequence of positive real numbers such that YX%_,a, = co and

®_,a2 < oo. After n observations, the estimate of 6 is X, ;. By minimizing the
asymptotic variance of (X, — 0), it is known [Chung (1954) and Sacks (1958)]
that the asymptotically optimal choice of a, is (n(df/38))!. However, in
practice df/d8 is usually known. This raises the question of estimating df/36

and also leads us to consider the adaptive stochastic approximation procedure
An
(1'2) Xn+1 =Xn_ 7(Yn_ YB),

where A, ! is an estimate of 3f/30 based on the data already observed. Venter
(1967) proposed a modified Robbins—-Monro procedure (cf. Section 4) with a
strongly consistent estimate A ', Since then an extensive literature was devoted
to the Robbins-Monro procedure and its generalization [cf. Nevelson and
Hasminskii (1973a) and Kushner and Clark (1978)].

Recently, however, Lai and Robbins (1978a, 1979) started investigating the
adaptive stochastic approximation not only from the estimation (of 8) but also
from the control point of view. As pointed out by Lai and Robbins (1979), in
applications where X, is the dosage level given to the nth patient and Y, is the
corresponding response level, minimum asymptotic variance of (X, — 6) is of
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interest only for future patients, and the cost [defined as X(X; — )X, — 6)’]
to the patients already treated should also be taken into consideration. Under
smoothing conditions on the response function f, the minimization of
M X; — 0)(X; — 0) is asymptotically equivalent to the minimization of 7YY/
which arises in adaptive control problems in econometrics [Lai and Robbins
(1982)] and in the feedback control schemes for linear dynamic systems [Good-
win, Ramadge and Caines (1982) and Lai and Wei (1982)].

For the linear regression function f(X)= B(X — ), where B is a p X p
known matrix, if we use the least-squares estimator,

(1.3) 0r=X,-BYY, (=6-B7'%,),

to estimate @, then irrespective of how the levels X; are chosen, whether
preassigned or sequentially determined, ’

(1.4) E[(6x-06)(6x-0)] = %3-12(3-1)’
and
(1.5) Vn(8F — 8) » N(0, B-'=(B~')’) in distribution.

It follows from (1.3) and (1.4) that the expected cost of the adaptive procedure,
(1.6) X,.,=X,-BY, (= X, - %B‘IY,, ,
at stage n is of the order of log n, i.e.,
E i(Xi -0)( X, - 0)'] = (logn)B~'=(B~ 1) + 0(1).
1

In ignorance of B, it is natural to try using a stochastic approximation scheme of
the form (1.2). Of course, we want A;! in (1.2) to be a strongly consistent
estimator of B. For the regression model (1.1), under the assumptions that p = 1
and B = 3f/36, Lai and Robbins (1979) established some sufficient conditions
on A;' to ensure such a scheme has the following asymptotically optimal
properties:

(1.7) Vn(X, - 8) » N(0, B"'=(B7')’') in distribution;
P[set of limit points of
(1.8) {(X,—0)[n/(2Pglog n)]"* n>3} = K] =1,
where K = {X: X'B7'S(B™')'X < 1};
1 n
. i —0)(X;—0) =B '=(B7') as.
a9 lim e (%= 0)(%-0) (B as

" Furthermore, they showed that a modified least-squares estimate of B as well as
a modified Venter’s estimate satisfy the required conditions.

In this paper we shall consider the multivariate versions of the theory
developed by Lai and Robbins. Blum (1954) is the first one who established the
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strong consistency of a multivariate version of the Robbins—Monro procedure,
Xpi1 =X, - a,(Y, - Y,),

under the assumption that for all £ > 0,

(1.10) inf{(X —8)'( f(Xf -Y):e<|| X[ <e ) >0.

This is a quite restrictive assumption for it implies that we know how to adjust
the direction of X after observing f(X). Although, for the case p = 1, there are
only two possible directions; for p > 1, there are infinite possible directions to be
chosen. A theory which does not require (1.10) seems more desirable. Nevelson
and Hasminskii (1973b) (using a Venter-type estimate) showed that an adaptive
stochastic approximation of the form (1.2) has the asymptotically optimal
property (1.7) under the less restrictive assumption

of (1), , 31 (31),
(1.11) dx\ dy dy\ dx
is positive definite uniformly with respect to x, y € RP.

Condition (1.11) is satisfied by any linear function f(X)= BX + C with
det(B) # 0. A recent attempt along this line is due to Ruppert (1985). However,
neither Nevelson and Hasminskii nor Ruppert had considered the problem from
the control point of view. In fact, the procedures proposed by Nevelson and
Hasminskii (1973b) are rather inefficient in the sense that the associated costs
grow algebraically instead of logarithmically (cf. Remark 4 of Section 4). In
Section 3, sufficient conditions are imposed on A, so that the optimal properties
(1.7)~(1.9) can be achieved. In Section 4, a generalized Venter estimate is
proposed and the corresponding procedure is shown to be optimal under the
assumption (1.11). For the sake of completeness, a short discussion on the
optimal choice of A in the stochastic approximation scheme,

A
(1'12) Xn+l = Xn - —’:Yn,

is also included in Section 2. Note that Y, is assumed to be zero in (1.12). This
can be done without loss of generality and will be assumed throughout the
sequel.

2. The optimal choice of A in the stochastic approximation scheme
(112). Let B be a nonsingular p X p matrix, § a p X 1 vector and ¢, a
sequence of i.i.d. p X 1 random vectors with Ee; = 0, Ee;e; = Z. In order to find
the root of the linear function B(X — @) based on the observations,

Y,=B(X,—-0)+e,, n=12,...,

we consider stochastic approximation procedures of the form
A
Xn+1 = Xn - ;Yn’

where A is a p X p nonsingular matrix. In view of the identities (1.3) and (1.6),
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the asymptotic variance of (X, — ) is of the order 1/n when A = B~!. In order
that the bias of X, (as an estimate of #) be negligible relative to the covariance
matrix of X, it is natural to restrict to the class of matrices A for which

lim n'2E( X, — 8) = 0.

As shown by Nevelson and Hasminskii (1973b), this is true iff all eigenvalues of
the matrix C = I/2 — AB have negative real parts. We denote this class of
' matrices by 2. It is known [Nevelson and Hasminskii (1973b)] that if A € 2,
then

n**(X, - 6) - N(0,0(A)) in distribution,
where

(2.1) o(4) = [“eaz A" dt.
0

In order to get the optimum choice of A, we have to “minimize” the matrix
6(A) in the sense of the following

THEOREM 1. If A € 9, then ¢(A) — o(B™!) is nonnegative definite.
Before proving Theorem 1, we quote a lemma from Daleckii and Krein (1974).

LEMMA 1. Let G, H,Y be p X p matrices such that all eigenvalues of G and
H have negative real parts. Then the equation

GX+XH=Y
has a unique solution

X=-— f “eCtyeHt gy,
0

ProOOF OF THEOREM 1. Let
Ae®, C=1/2-AB, D=o0(A) —o(B™1).
Apply Lemma 1 to the case G = C, H = C’. Then by (2.1),
(2.2) Co(A) +6(A)C’ = —AZA".
Now,
o(B™") = [~ WDBIZ(B 1) e/ gt
(2.3) ‘ 0
=B 'X(B7!).

In view of (2.2) and (2.3),

CD+ DC’'= —AZA’ - (1/2 - AB)B™'=(B Y
—-B™'E(BY)'(1/2 - B'A’)
—AZA’- B 3(B7 ') + AZ(B™') + B 'zA’
-(A-B H)Z(A-BY).
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By Lemma 1, again,
D= ["e®(A - B )3(A-B") e at
0

L]

is nonnegative definite. O

REMARK 1. Nevelson and Hasminskii (1973b) have proved Theorem 1 by
using the Cramér—-Rao inequality. Since Lemma 1 is true even for the Banach
space case [cf. Daleckii and Krein (1974)], our algebraic approach has the
advantage that it can be generalized to the corresponding case where the order of
the operators is defined. For possible applications along this line, we refer to
Walk (1977).

3. Some lemmas. Throughout the sequel, we denote the norm of a PXp
matrix A by

Al = sup{||AX||: X € R, | X|| = 1}.

LEMMA 2. Let B be a nonsingular p X p matrix and A,,, B, two sequences of
random p X p matrices such that B, — B as. and A, > B! as. Let Z, be an
arbitrary sequence of random p-dimensional vectors and X,, X;* two arbitrary
random p-dimensional vectors. Suppose X,, X,* are defined recursively by

(3.1) Xn1=X,— (A/n)(BX, + Z,),

(3.2) X, =Xx-(I/n)X}-(A,Z,)/n, forn>1.
Suppose that

(3.3) (n/loglogn)?X* = 0(1) a.s.
Then

(3.4) (n/loglogn)/*(X,— X*) = 0o(1) a.s.
Furthermore, if we add the assumptions

(3.5) 1B, — BJ|* = o(1/loglog n),

(3.6) A, — B7Y% = o(1/loglogn) a.s.,
then

(8.7) 1 X, — XXl = o(1/n).

ProoF. Let C,=A,B,, D,=I-A,B,, Y,=X,— X}, for n>0.By (3.1)
and (3.2),

Yn+1 = Yn - (Cn/n)(Xn - Xn*) + (I_ Cn)Xn*/n
= (I - Cn/n)Yn + (I_ Cn)Xn*/n
(38) =(I-Cyn)---(I-Cyk)Y,

n—1
+ Y (I-Cyn)---(I-C,,,/m+1)D,/mX* + D,X}*/n.
m=k
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Since B, = B, A, > B™! as.,, P(2,) = 1, where €, denotes the event {C, — I }-
For each w € Q,, there exists N = N(w) and d, = d(w) such that lim d,=1
and

(3.9) d, <1, |I-€,/n|<1-d,/n, forn>N.
Let
o= [ =dy/n) - (1= dy/N)] !
and
8, =1D,ll, forn> N.
Then, in view of (3.8), (3.9) and the trigonometric inequality,

(3.10) Varall < v YN+ X v vadil Xk /.
k=N

Note that d,, — 1 implies that v, is a regularly varying s :quence with exponent
1 and consequently [cf. Bojanic and Seneta (1973)],
(3.11) n 2y Yl = o(1).
Now, in view of (3.3),
D) Yl X2t/
(3.12) BN
<ay; ' Y vi(loglog k/k%)'?s,, forsome a > 0.
k=N

In order to show (3.4), by (3.10)~(3.12), we need only show that

n

&, = (n/loglogn)"*y;* Y. v,(loglog k/k%)"* = 0(1),
k=N

since 8, = o(1). This can be demonstrated by the relation
n
0<g,<n’2y ' ¥ n/(k)* -2
k=N

[cf. Bojanic and Seneta (1973)]. Now we are going to show (3.7). Let
b, = (loglog n)"?s,.
By (3.5), (3.6) and the definition of §,,
b, < (loglog n) *(IBI| B ~ A,|| + 1™ = B,|||A,])
= o(1).
In view of (3.3) and (3.10),

n 2

Yorall® < 2 2 W01% + 2e| v, ' X vbu/k*2 ),
k=N

for some e > 0.
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By (3.11) and the same argument which shows (3.4) above,
1Y, .4ll” = o(1).
This completes the proof. O

LemmMA 3. Let u,, u,,... be a sequence of i.i.d. random variables such that
Eu,=0, Eu?=0%< 0. Let &%, be the Borel field generated by u,,...,u,
(&%, = trivial o-field). Let v, be an %,_,-measurable random variable such that
limv, = 0 a.s. Then

n
lim(Zv,-ui)/(nloglog n)*=0 a.s.
1 .

PrROOF. The result follows from Theorem 2 of Lai and Robbins (1978b). O

LEMMA 4. Let ¢, be a sequence of i.i.d. p-dimensional random vectors such
that Ee, = 0 and Ee,e, = 2. Let &, be the Borel field generated by ¢,,...,¢,
and let A, be an %,_,-measurable p X p nonsingular matrix. Let X, be an
arbitrary p-dimensional random vector and §, a sequence of p-dimensional
random vectors. For n > 1, define X,, recursively by

(3.13) X,..=(n-1)X,/n-A,5,+e,)/n.
I
(3.14) (n/loglogn)"?s, = o(1) a.s.,

then with probability 1, the set of cluster points of
{(n/loglog n)’X,, n> 3}

{X € RP: X'B™'2(B )X < 1}.
Proor. In view of (3.13),

Xor1=—(1/n) X A8, + &)
(3.15) . .
= —(1/n) ¥ A — (1/n) X Azey.
k=1 k=1
Let
a, = (n/loglogn)">.

Since sup,||A,|| < o a.s., it follows from (3.14) that

(3.16) (a,,/n)kZ:Aksk —o(l) as.
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Now,

(3.17) (1/n)é1Akek = (1/n) T (A - A)ey + (1/n) ¥, Acy,

. k=1 k=1
where A = B~1. By Lemma 3,

(3.18) (a,,/n)kZ::l(Ak —A)e, = o(1) as.

Furthermore, by a theorem of Kuelbs (1977), the limit set of (a,/n)X:_,A(—¢)
is

{X: X'AZA'X < 1}.
In view of (3.15)—(3.18), the proof is complete. O )

LEMMA 5. Let the notation and assumptions be the same as in Lemma 4.
() If n'/%8, = 0(1) a.s., then

(3.19) n'/2X, - N(0, B"'=(B~')’) in distribution.
(i) If (nloglogn)'/%5, = o(1) a.s., then

(3.20) lim(zn:XkX,;)/logn =B '2(B7'Y) a.s.
1
ProOF. Let A=BY S, =X} _,Ae,, T, = L2_,A.5,. In view of (3.15),
(3.21) -(1/n)X,=S,+ T,.
To prove (i), since n'/2§, = o(1) a.s. and sup,||A,|| < =, a.s.,
(3.22) n~'2T =o0(1) as.
Now,

E(A,e e, Aj\Fp ) = A ZA, > AZA’ as.
By Theorem 1 of Dvoretzky (1977),
(3.23) n~128, - N(0, AZA’) in distribution.
In view of (3.21)-(3.23),
n'?X, = n"'28, + n~T,
=n"1%3, + o(1) > N(0, AZA’) in distribution.
To prove (ii), by (3.21)
n n n
Y Xy X=X SuSi/k* + X STi/k®

. k= k= k=
(3.24) ' ' '

3

+ Y T,S{/k%+ Y. T,T//k2
k=1 k=1
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Since (n loglog n)'/28, = 0(1) and sup,||4;]| < © a.s.,
(3.25) IT,I2 = o(n/loglogn) a.s.
Hence,

n
Y T.T;/k*
k=1

(3.26) < Y IT./k|2 = o(logn) as.,
k=1

and in view of Lemma 4 and (3.25),

Y STy k2| < X (I1Sell/R)(IT4ll/ %)

k=1 k=1

(3:27) = 'kzn‘, O((loglog /k)"*)o((% loglog k) ™%
=1
=o(logn) as.
Similarly,
(3.28) ki‘, T,Si/k%| = o(logn) as.
=1
By (3.24) and (3.26)—(3.28), in order to prove (3.20), we need only show that
(3.29) lim(1/log n) kzn: S,S{/k®>= ASA’ as.
-1

Now,

T n n
k=1 k=1

(3:30) + % (SwR)S/EY/(k + 1
=1

=1, +1I,, (say).

Since S, = o(%) a.s. by Lemma 4,

(31) Ll s 3 1S/HI%/(k + 1) = o(log ).
We note that
Ii= ¥ SSi/k— Y SSi/(k+1)
k=1 k=1
(3.32) —S,S{+ ¥ (SuSL— SeiSiy) - S,Si/(n + 1)

k=2
= Jnl + Jn2 - Jn3 (Say)’
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In view of (3.30)—(3.32) and Lemma 4,
n
Y. SiSi/k? =1, + o(logn)
k=1 a
=, + dJ,, — J,3+ o(logn)
= 0(1) + J,, + o(log n) + o(log n)
=d,, + o(logn).
Consequently, in order to show (3.29), it suffices to prove that
(3.33) lim J,,/logn = AZA’ as.
Now, :

Y (AperSi_y + Sp_184AL) /R

n
Jp = X ApeerAp/k +
k=2 k=2

n
(3.34) =
= Lnl + Ln2 (Say)‘
Since by Lemma 4,
E(||4,8,8:_111P1%_1) < 1AI%1S,-1lI*Elle,||?
=o(nloglogn) as.,

it follows from the martingale convergence theorem that
n
Y (AgepSi_y + Sy 18444)/(k log k)
k=2

converges a.s. Thus, in view of Kronecker’s lemma,

(3.35) L,,=o(logn) as.
Let
n
Vo= X Ayeper AL,
k=1
Then
n
L, = Z (Vk - Vk—1)/k
k=2
n—1
= (1/k-1/(k+ 1))V, - V,/2 4+ V,/n
k=2

n—1
Y 1k + 1)V /- V,/2 + V, /n.
k=2

If it can be shown that
(3.36) V,/n - ASA’ as.,



ADAPTIVE R-M PROCEDURE 1125

then
(3.37) L= ¥ (1/k+1)(AZ4" +o(1)) + O(1)

= (logn)AZA’ + o(logn) as.,

and in view of (3.34), (3.35) and (3.37), (3.33) is proved. Hence, it remains to show
(3.36).
Since A, — A as., by Theorem 1 of Lai and Robbins (1978b),

(Vn)ij/n d (AEA')U a.s.,

where (M), ; denotes the (i, j) element of the matrix M. Hence, (3.36) holds, and
the proof is complete. O

4. Generalized Venter estimator of the Jacobian matrix and asymp-
totic properties of multivariate Venter-type stochastic approximation
schemes. Throughout the sequel we shall assume that the mean response
function f: RP — RP satisfies conditions (4.9) and (4.10). For the adaptive
stochastic approximation scheme (4.8) of this section, successive estimates of the
desired level @ are constructed at stages n = 2pm, m = 1,2,... . This is due to
the fact that it is necessary to use at least 2 p vector observations to estimate the
values of the matrix df/dx. This refinement is a generalization of Venter’s
scheme in the case p = 1 [cf. Venter (1967), Nevelson and Hasminskii (1973b)
and Lai and Robbins (1979)].

We now describe a multivariate extension of Venter-type designs. In the
following, we shall let e; denote the unit jth coordinate vector in R?, i.e., all the
components of e; are zero except for the jth component which is 1. Let ¢, and
A, be two predetermined sequences of positive numbers. At stage m, define X,

recursively by
(41) X,=X, ,-(m-1)"'U,_Y, , (X, being arbitrary),

where U, !, is the Venter-type estimate [see (4.7)] of the Jacobian matrix df/36
based on the observations up to stage m — 1 and Y,,_, is the “fitted” response at
the level X,,_, [see (4.5)]. Take 2p observations Y., V. i*,..., V.5, Y, x* at the
points

(4.2) Xy=X,+c,e

m®j»
(4.3) Xx¥=X,—cne;, Jj=1,...,p.
Thus,
Y':j = f(XI:_]) + E;:I.j’

(4.4)

Yrx=f(Xx*) +ent, ji=1,...,p.
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Set
p
(4.5) Y, = (1/2p) _ZI(Y,,:'; +Yrr),
4 J=
m—1 m—1
(46) Wm = Z AkZ(k)/ E Ak’ I/V1 =0,
k=1 k=1

where Z(k) is the matrix whose jth column is
Z(k) = (2¢,) (Y5 — Y5*).
Define
W, ifdetW, +#0
4.7 u,={(.m"’ moL
(47) m {I, if det W, = 0.
The matrix U, is used to estimate (3f/30) ! at stage m.

REMARK 2. The above condition with
(4.8) A,=1, kn“<c,<K,n
where a; < 3 and a, < § has been described by Nevelson and Hasminskii
(1973b). However, this choice of A, is rather inefficient (cf. Remark 4).

Since at stage m, the Venter-type design described previously has taken
n = 2mp observations, we shall define the cost due to these n observations as

m p
k.- % { 5 (Xg— 0)(Xg— 0)" + (Xgp* - 8)(Xps* - a)'}.

=1\ =1
THEOREM 2. Assume that

the function df/dx is bounded and satisfies the Holder
condition , i.e., for x, y € RP,

i a—y— < a|lx — y|, where a > 0, a constant;
the symmetric function
of [ 9f of (df
. +
(4.10) 3x(8y) Gy(ax)
is positive definite uniformly w.r.t. x, y € RP;
(4.11) {exex*, m=12,...,j=12...,p} are i.id. random
) vectors with mean vector 0, covariance matrix 2;
(4.12) ¢, = o((k loglog k)~ 1/2)
o0
(4.13) Y (Ay/cyA,)’loglogk < 0, A2 /loglog & 1 o,

where A, = Z)\ N
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Let n = 2mp and 6, = X,,. Then (1.7)-(1.9) hold with §, replacing X,,. Further-

more,

ad
(4.14) lim(1/logn)K, = B 'E(B~')’ a.s., where B = 5—;—

REMARK 3. Condition (4.10) is due to Nevelson and Hasminskii (1973b). It is
satisfied by any linear function f(X) = BX + C with det B # 0.

ProOF OF THEORLM 2. Without loss of generality we can assume that 6 = 0.
By using condition (4.10) and the same argument as in Theorem 2.1 of Nevelson
and Hasminskii (1973b), we can prove that there is a random variable ;> r > 0
such that .

(4.15) limm’X,=0 as.
Set
(416) B, X, =f(X,), BXXx=Ff(X%), BrrXxr=f(Xxr),

b
(4.17) en=(1/2p) X (ex;+ ex¥), 8,=B,X,+e,— Y,
Jj=1

Then (4.1) becomes

(418) X=X, - (m—1)"U, (B 1 Xpy+8p 1+ tpn_1)-
Note that by (4.9), (4.15)~(4.17),

(4.19) |1B,, = Bl < d||X,,]| = o(m™") = o(1/loglog m) as.

and

» ,
181 < (1/2p) X [ F(X.%) + F(Xx7) = 2f(X,) |
j=1
) _
<d, Y lle,ell (for some random variable d,)
j=1

(4.20)

=0(¢c,) = o((mloglog m)_l/z) a.s., by (4.12).
By (4.6), the jth column of W, is

W,(j) = milxk(zck)“( F(XE) = F(X2*)) /A s

k=1

(4.21) m=1 _
+ Y A(2c) (et — k) /Ay
k=1

= Ly(J) + L,(J) (say)-
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i_.et B; be the jth column of B. Then in view of (4.9) and (4.16), with probability
(F(X) = 1(X5)) /204
= (B/:}Xk"}' - B/Z"j*Xk"}* )/2ck
= (B} — By*)X,/2¢c, + (B + BE*)e;/2
= O(1 X2 — X5* 111 Xall/ce) + B; + O(I X5 + 1. X2*1))
= O(IX,I) + B; + O(|| Xll + ¢cx)
=B;+o(k™")
= B; + o(1/loglog k) a.s. by (4.12) and (4.15).
Hence by (4.21),

m—1
(4.22) | 2,u(s) - B < kgl Aro(1/loglog k)/A,,_,

=o0(1/loglogm) as.

In view of (4.11), (4.13) and Kolmogorov’s three series theorem,
m-—1
Y A (2¢,)” l(e,;"j — e} )(loglog & )?/A, converges a.s.
k=1

By Kronecker’s lemma and (4.21),

(4.23) ILo( /) I° = o(1/loglog m)  as.
Thus in view of (4.21)-(4.23),

p
IW,. = Bll < L |W(/) - B

j=1
4.24 d . )
(4.24) < ¥ [ Zuld) = B + 12 )]
j=1
= o((loglog m)_1/2) a.s.
Hence, ,
WU, — B~ Y < U, B~Y||IB — Wl
(4.25)

= o((loglog m)_l/z) a.s.

In view of (4.19), (4.25) and Lemma 2, in order to show that (1.7)-(1.9) hold for
d,,, we need only show that (1.7)—(1.9) hold for

Tn+1 = (n - 1)/nTn - (Un/n)(sn + En)'
This is true in view of (4.20), (4.25), Lemmas 3 and 4. To prove (4.14), we apply
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(1.8) and note that
”Xt;:j - Xm” = "ert]* - Xm” = c-m = O(m_l/z) as. a

REMARK 4. The choice of c,,\, [see (4.8)] in Nevelson and Hasminskii
(1973b) does not satisfy (4.12) and (4.13). The cost of their procedure K, grows
at a larger order than logn in (4.14). This can be seen from the following
consideration. Let f(X)= B(X — 0). As shown by Nevelson and Hasminskii
under (4.8),

U,— B! as.

Hence, we can apply Lemma 5 with §,, = 0 to show that
(4.26) hm( fx,,x,;) Jlogm = B-12(B-1)'/2p.
1
We note that
(4.27) S s b ks~ ko (1 — ), o <L
1 1
By (4.26) and (4.27),
(4.28) limKn/('Zn:c,f) =1 as.(n=2mp).
1

In view of (4.27) and (4.28), the cost K, of the Nevelson-Hasminskii procedure
grows algebraically instead of logarithmically.

REMARK 5. The choice of c,, A, in Lai and Robbins (1979) for the simple
linear model

¥, =B(x;—0) +¢

is \/2 = ¢, = n"'/?(log n)~* where 0 < a < . This choice clearly satisfies (4.12)
and (4.13).
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