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ASYMPTOTIC INFERENCE FOR NEARLY NONSTATIONARY
AR(1) PROCESSES

By N. H. CHAN aND C. Z. WEr!
Indiana University and University of Maryland

A first-order autoregressive process, Y, = BY,_; + ¢, is said to be nearly
nonstationary when B is close to one. The limiting distribution of the
least-squares estimate b, for B is studied when Y, is nearly nonstationary. By
reparameterizing 8 to be 1 — y/n, y being a fixed constant, it is shown that
the limiting distribution of 7, = (T7_,Y2 ,)"?(b, — B) converges to £(y)
which is a quotient of stochastic integrals of standard Brownian motion. This
provides a reasonable alternative to the approximation of the distribution of
7, proposed by Ahtola and Tiao (1984).

1. Introduction and main results. Consider a first-order autoregressive
AR(1) model

(1.1) Y,=BY,_ ,+¢, t=1,...,n.
Here, Y, is the observation at time ¢, ¢, is the random disturbance and B is an
unknown parameter. In the sequel, we shall let Y, be zero and {e,} be a

martingale difference sequence with respect to an increasing sequence of o-fields
{#,} such that

1 n
(1.2) - Y E(e%,_,) »pl, asn—> o
t=1
and

2
E(eHyoys mrnhFios) 220, a8n - co.

I

S|~
M=

(1.3) Va>0,

t=1

An important example of {e,} is a sequence of i.i.d. random variables with zero
means and finite variances.

The unknown parameter B is customarily estimated by its least-squares
estimate b, = L7_,Y,_,Y,/L7_ Y2 .. If the ¢,’s are normally distributed, b, is also
the maximum-likelihood estimate of 8. In recent years, there has been consider-
able interest in the asymptotic properties of b, when B is close or equal to one,
both in the statistics and in the econometrics literature [cf. Fuller (1976), Dickey
and Fuller (1979), Lai and Siegmund (1983), Ahtola and Tiao (1984), Evans and
Savin (1981), Anderson (1985) and Phillips (1987)].
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When |B| < 1, it is well known that [see, for example, Mann and Wald (1943)]

n 1/2
(1.4) T, = ( Y Y,2_1) (b, — B) »5 N(0,1), asn — oo,
T=1

where N(0,1) denotes a standard normal random variable and —, designates
convergence in distribution. For |B| > 1, Anderson (1959) showed that (1.4) is
true when the ¢,’s are independently identically distributed. But for general &,’s,
with |B| > 1, he showed that the limiting distribution of 7, may not exist.
However, when B = 1, (1.4) is no longer applicable even if the ¢,’s are indepen-
dently normally distributed and it can be shown that [White (1958) and Rao
(1978)] as n — oo,

(1.5) 1, 29 7 =3(W1) - 1)/{£1W2(t) dt}l/z’

where {W(t): 0 < t < 1} is a standard Brownian motion process. Observe that
P(1 < 0) = P(W%1) < 1) = 0.684. This indicates that (1.4) may not be a satis-
factory approximation when B is close to one and the sample size is moderate. Of
course, (1.5) could also be used to approximate the distribution of 7, when B is
close to one, as suggested by Evans and Savin (1981). However, this approxima-
tion results in a nonsmooth transformation from a standard normal distribution
to a distribution 7 which is nonintuitive.

Under a specific sequential sampling scheme, Lai and Siegmund (1983) showed
that the convergence in (1.4) is uniform in 8 for |B| < 1. However, most of the
time series encountered are collected in a fixed sample size scheme. Ahtola and
Tiao (1984), based on fixed sample size considerations, proposed to approximate
the distribution of 7, through a quadratic form decomposition when B is close to
but less than one. They expressed this decomposition as a sum of two quantities
which in turn were approximated by a normal and an F random variable.
However, the approximation by an F random variable was based on some
heuristic moment considerations and a rigorous justification remains to be found.

The main purpose of this paper is to provide another alternative to approxi-
mate the distribution of 7, when B is close to one. Our approach is motivated by
the following classical Poisson approximation analogue.

Let X be a binomial random variable with parameters n and p. It is well
known that for fixed p, U, = (X — np)(np(1 — p))" /2 -, N(0,1) as n - 0.
But when np ~ A, Poisson’s theorem implies that U, —»5 G, as n — o, where
G, =A% Y, — A) and Y, is a Poisson random variable with parameter A.
Notice that G, possesses the following properties:

(1) G, is a continuous family of distributions in A;
(1.6) (ii) G, —50as A - 0; and
(iii) from the central limit theorem, G, —, N(0,1) as A - oo.

We expect a reasonable approximation to the distribution of r,, for nearly
nonstationary AR(1) models, should reveal similar properties. But before
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proceeding, let us reparameterize (1.1) through a characterization of the closeness
of B to unity.

Suppose B lies in a neighborhood of one and has the form 1 — y/a,,, where y
is a fixed constant and {a,,} is a sequence of constants which increases to infinity.
Consider the order of I, = E(X?_,Y;2 ) (this is the order of the observed Fisher
information about B8 when the ¢,’s are normally distributed). Clearly,

i n/(1 - B2 <
t=1 n-, B =1
As nonstationary behavior of {Y,} becomes dominant when B is near one, a
reasonable choice for a,, should retain the order of I, to be n?, i.e., corresponding
to the nonstationary boundary 8 = 1. Putting 8 =1 — y/a, into (1.7), this
consideration leads to 8 = 8, = 1 — y/n. Reparameterizing (1.1) according to 8,,
we are now ready to state our principal result.

THEOREM 1. LetfB,=1—v/n. Fort=1,...,n, suppose Y(n) satisfies the
reparameterized AR(1) model,

(1.8) Y(n) =BY,_(n) +¢, Yyo(n)=0, forailn
and {¢,} satisfying (1.2) and (1.3). Then, as n = oo,
n 1/2
T = ( Z Y?—l) (bn - Bn) g9 ’(Z(Y)’
t=1
where
2(v) = [+ bt)W(t) aW(2) / { [+ vty w(e) dt}l/2,
0 0

b=e>-1
and {W(t): 0 < t < 1} is a standard Brownian motion.

REMARK. Notice that Theorem 1 is valid only when B, is close to one. Thus,
in practice, we have to require |y/n| to be small so that 8, stays near one.

Observe that £(v) is a continuous family of distributions in the parameter vy.
This corresponds to (i) of (1.6). When y = 0, Itd’s formula [cf. Arnold (1974),
page 90] implies

COROLLARY 1. #(0) = {(W%(1) — 1)/{[dW?(¢t) dt}/*.

Notice that .#(0) = 7 in (1.5), which corresponds to (ii) of (1.6). For (iii) of
(1.6), we have

" THEOREM 2. Z(Y) =4 N(0,1) as |y| > .

Even though Theorem 2 holds for y » o0 and y - — oo, the underlying
reasoning for this result is quite different between positive and negative y’s. For
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large positive y’s, B can be thought of much less than one so that the model can
be viewed as stationary and asymptotic normality prevails, which corresponds to
(iii) in (1.6). On the other hand, negative y means B is larger than one and our
AR(1) model becomes explosive. Theorem 2 shows that asymptotic normality is
still legitimate for such nearly explosive AR(1) models and serves as a comple-
ment to the result of Anderson (1959).

In recent literature, there has been a discussion concerning the numerical
tabulation of the limiting distribution of ,. Dickey and Fuller (1979) showed
that the limiting distribution of 7, is a quotient of weighted sums of independent
standard normal random variables from which they obtained their numerical
tabulations. By means of a fourier series expansion for W(¢), Chan and Wei
(1985) showed that #(0) is equivalent to the form obtained by Dickey and
Fuller. We believe that similar ideas can be used to obtain a series expansion for
Z(v) so that numerical tabulation will be achieved.

The rest of this paper is devoted to proving Theorems 1 and 2.

2. Proof of Theorem 1. We first establish three lemmas. To simplify
notation, let Y,(n) and B, be written, respectively, as Y, and B throughout this
paper. Let X, ;= n"'/?8""%, For each n, {X, ,} is a martingale difference
sequence with respect to the o-fields %, ;=% For t€[0,1], let X, (¢)=
ZEZ?X,,, ;» where [nt] is the greatest integer function of nt. We have the

following functional central limit theorem for X, (¢).

LEMMA 2.1. Fort € [0,1], let B(t) = e~ *"(e*"” — 1)/2y. Then
(2.1) X,(t) »o Wy(B,(t)), inD[0,1] asn - oo,
where W (t) is a standard Brownian motion.

PrROOF. Observe that B, (?) is a continuous function of ¢ mapping [0, 1] onto
[0, c], where ¢ = B (1) = (1 — e~ 27) /2y. In view of the martingale central limit
theorem of Rootzén (1983) (see Theorem A in the Appendix), the proof of (2.2) is
completed once we have established the conditional Lindeberg condition and the
conditional variance for X,(¢). For the conditional Lindeberg condition, V a > 0,

consider
n

H, = .ZIE(er,iI(lX,,,‘lza)l‘g-i—l)
im
12 )
= ; ZIBZ(n—z)E(e%I(IBiIZnl/zaﬁi—n)%_l).
i=
Suppose B = 1 — y/n with y > 0. Then
1 n
Hn =< ; igl E(eizl(le,-lznl/za)l‘%—l)

= 0,(1), by (1.3).
On the other hand, if 8 = 1 + y/n with y > 0, then
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2y n
2
(2 2) Hn < T ‘ZIE(EIZI(pilznl/zae_")l'%—l)
. i=

= Op(l)v:
For the conditional variance of X, (¢), it is enough to show that for ¢ € [0, 1],

[nt] nt]

1 1t
- E Xfi i-1) = = A €i2 i
(23) n igl ( , I.? l) n ;glﬂ ( Igl' 1)
—p B/(t), asn - .

The proof of (2.3) is given in A.2 in the Appendix. Now, we can apply Rootzén’s
theorem with 7,(¢) = [nt] and 7(¢) = B.(t) to obtain

X,(t) > Wy(B,(2)), asn— . O
LEMMA 2.2. Let
R, = fpﬂi-n>x2(i)l — [(e*ra-9x2(¢) dt.
n = "\nln o n

Then
R,—-p0, asn—> oo.

PROOF. For each n such that |y/n| <1, let d, = (n/y)log(1 — v/n). For
fixed vy, d, > —1asn - o0.For (i — 1)/n<t<i/n,i=1,...,n, observe that
I(l _ Y/n)2(i-n) _ e27(1—t)|
(2.4) = e2y(1—i/n)|e(d,,+l)2‘y(i/n—l) _ e2y(i/n—t)|

< e2M{|e( @t DG/n=D _ 1| 1|1 — g2G/n-D)),

Now,

max |(d, + 1)2y(i/n — 1)| < 2|y||d, + 1|
(2.5) 1<i<n )
-0, asn — oo,

max sup |1 — 2@/ 9| < max{e®/" - 1,1 — e®"/"}
(2.6) 1l=isn(i-1/ns<t<i/n
-0, asn — oo.

Thus, it follows from (2.4)-(2.6) that

T,= max { sup |(1—y/n) T - ezy(l_t)l}
l<isn\(i-1)/n<t<i/n

(2.7
=o(1).
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Observe that by the definition of X, (¢), we have

n—1 .
R, =| X [TV (g¥im - e210-0} X2(i/n) dt + X(1)/n
i= i/n L)

<T, z D2 /) dt + X2(1)/n

i=1"i/n

=T [ X2(t) dt + X2(1)/n
0
= 0,(1), by Lemma 2.1 and (2.7). O

LEMMA 2.3. For X € D[0,1] with X # 0, let

h(X) = {Y/Olezy(l-t)Xz(t) dt + 1X%(1) - %}/{j(‘)lew(l—t)Xz(t) dt}l/2

Then
h(Wi(B,(2))) = £(2).

PrOOF. Let a = 2ye”". Recall that ¢ = B,(1). Set the variable s = B/(¢) =
e~ 2Y(e?" — 1) /2y. By this change of variable, we have

1 c 847
Y/; e2‘l(1—t)‘w/'12(By(t)) dt = YL (T+_as_)2wvlz(s) ds.

Observe that using integration by parts [cf. Arnold (1974), page 93],
1 1
2 4y - 2
f (1 — Wl(s)ds ve f( a)Wl(s)d(l " as)

1
= — —e2r
5 WO o0 2f1+

ey

d(Wi(s))

2y

o+ s v

which by Itd’s formula [cf. Arnold (1974), page 93] is

ey

- SWABW) + 5+ [ o ile) dWi(s).

Hence,

4y 1/2

h(W,(B,(t))) = /:1i;sVVl(s)dWl(s)/{foc(—lfas—)ng(s)ds}
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Now let s = cu. Then

c 827 1
[ e W) awits) = |

ey

Wi(cu) dWy(cu)

1+ acu
ey

= /:1 " bch(u) dW(u),

where b = ac and W(u) = ¢~ /2W,(cu) is again a standard Brownian motion.
Similarly,

c 647 1 647
f———;Wf(s)ds=f ————*W?(u) dt. O
o (1+ as) o (1+bu)”

With Lemmas 2.1-2.3, the main idea of the proof of Theorem 1 lies in
exploiting the following identity, whose derivation follows directly from squaring
(1.8) and summing:

n y2n—y”(Yt_l)2 1 1 1 1 2
28) nl Y Y, je,=— + — Y2- — €2,
(28) El‘” 2n—yt§:1 n 2n—y " 2n—yt¥1‘
Now, express the preceding quantities in (2.8) in terms of X, (t), defined in
Lemma 2.1. Specifically,

n n i 2
n?y Y2 = E n"l( Z Bi—kekn—vz)
i=1

i=1 k=1

(29) - Lpenx L) - [ oxio a
o i=1 0

+ [(erra-0x2(t) dt
o n

=R, + [e¥-0X2(t) dt.
0
Note that by (1.2) and Theorem B (see the Appendix), we have

1 n
x V- fao
(2.10) L P

= 0,(1).

Recall

Tn

(f Yf.l)w(b,,— 8)

t=1

Ereelf[£2)
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It follows from (2.8)—(2.10) that

Y2n-—y 1
/L + 2v(1-8) ¥ 2 )
- {2 - (R‘,, foe X2(¢) dt
2.11 | +1 X2(1 L V. +1

L 1/2
/{R,,+fe27<1—‘>X,$(t) dt} .
0

Since P{ [je*"~OW2(B(t))dt > 0} = 1, it follows from the continuous map-
ping theorem [Billingsley (1968), page 30], Lemmas 2.1-2.3, (2.10) and (2.11) that
as n — oo,

7, =9 h(W,(B,(t))), with A defined in Lemma 2.3,

= Z (Y)
This completes the proof of Theorem 1. O

(2.12)

3. Proof of Theorem 2. The proof of Theorem 2 is accomplished by using a
special case of Theorem 1 of Rootzén (1980) which concerns the limiting distribu-
tions of stochastic integrals. We restate this special case in the following lemma.

LEMMA 3.1. Let {(W(t): 0 < t < 1} be a standard Brownian motion which is
measurable with respect to an increasing sequence of o-fields %, Suppose
{¥.(2): t € [0,1]} is a sequence of random functions which is #-measurable. If

(3.1) (1) = [Yi(s)ds >pr, asn— o,

for some random variable T such that r > 0 a.s. and

(3.2) sup ftz[/n(s) ds|—,0, asn— o,
0<¢t<11%0

then

foltlfn(s)dW(s)/{fOl;/,ii(s)als}l/2 -, N(0,1), asn - o.

Let
¥(s) = (1 + 8)/*W(s)/(1 + bs)
and
@s(s) = b(log b) " *W(s) /(1 + bs).

Notice that b = e — 1. Hence, b > —1asy - —oo and b — o as y — oo.
We have

LEMMA 3.2.
o) [3(s) ds =, W2(1), asb— —1
0
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and

(ii) [#(s)ds »p1, asb— .
0

Proor. Using integration by parts and Itd’s formula as in the proof of
Lemma 2.3, we obtain

jo "Y2(s)ds = (1 +b) jo "1 + bs) T*W2(s) ds

1+ b)fol(—%)WZ(s)d(ljbs)

(3.3) - o T
- —%-'__b){wz(s)lles_ - j(; : :bs(ds + 2W(s)dW(s))}
= — %Wz(l) + 315(1 + b)log(1 + b) + %(1 + b)fo1 :st;s dW(s).
Now,
{30 2w < o1

-0, asb—> —1.
It follows from Chebyshev’s inequality that

2 1W(S)
3(1+b)f01+bde(s)—>P0, asb - —1.

Thus, from (3.3),
[(s) ds =, W2(1), asb— -1.
0

For (ii), observe that
flq)%(s) ds = b*(log )" ['(1 + bs) *W?(s) ds
0 0

(34) __ b W logi+b) b W(s)

= — + '
Moreover,
b 1 W(s) ? b 2 1 S
= ds 0 .
E{(logb) 0 1+bSdW(s)} logb)/(; (1+bs)2 -0, asb - o

It follows from Chebyshev’s inequality and (3.4) that
fltp?,(s)ds»,,l, as b — 0. O
0
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In view of this lemma, we have already proved condition (3.1) of Lemma 3.1
for ¥, and ¢,. Condition (3.2) is the content of

LeEMMA 3.3. .
(1) sup /t¢b(s)dsl—>P0, asb—> —1
0<t<11°0
and
o t
(ii) sup fq;,,(s)dsl—»PO, asb - .
0<¢<11°0

PROOF. Since sup, ., .1|/d¥s(s) ds| < [3|¥4(8)| ds, it is enough to show that
Jol¥s(s)|ds =p 0 as b — —1. In view of Markov’s inequality, it suffices to show

Ef'1|x[z,,(s)|ds—>0, asbh— —1.
0

But
E['[yy(s)|ds < (1 + )" ['s72(1 + bs) " ds
0 0
<1+ b)‘”fl(l + bs) 'ds
0
-0, asb—-> —1.
This establishes (i).

Likewise, (ii) will follow if E[}|p,(s)|ds = 0 as b — co. But this is true since

1 ~1/2 (1 s'/?
EL|<Pb(S)|dSSb(10gb) /;m;ds

2
v
= 2blogd) " [
by letting v = (bs)l/Z’
< 2(log b) ™
- 07 as b - 00. D

Observe that Z(y) = [j(1 + bs)™'W(s) dW(s)/{[o(1 + bs) 2W?(s) ds}/?
can either be written as [}y ,(s) dW(s)/{ }3(s) ds}/? for y < 0 or

fol%(s) dW(S)/{j:(P%(s) ds}l/2 for y > 0.

By Lemmas 3.1-3.3, we conclude that Z(y) =45 N(0,1) as |y| = oo. This
completes the proof of Theorem 2. O

APPENDIX

Al

THEOREM A [Rootzén (1983), Theorem 3.5]. Suppose (X, ,, %, ;} is a
martingale difference array. Let {r,(t); t € [0,1]} be a sequence of adapted time
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scales and {1(t); t € [0,1]} a continuous, nonrandom function. If the following
holds:

(1)

V€ > O, E E(X)f,;I(IXn_j|>e)l‘%t,j—l) _>P 0, asn —> o0
j=1 /

and

T(2)

> E(Xf,jlgz;z,j—l) -p7(t), asn— oo, te[0,1],

j=1
then

T(2)

)y X, "9 W(r(t)), asn— oo,‘inD[O,l],
J=1

where W(t) is a standard Brownian motion.

REMARK. Under the same assumptions, this result can also be derived from
Theorem (3.2) of Helland (1982).

THEOREM B [Hall and Heyde (1980), Theorem 2.23, page 44]. Let
{X, ;» %, ;} be a martingale difference array. If

Yj’
n
Ve>0, ZIE(Xf,jI(IXn,jP8)|'d/7;l,j—1) —2p0, asn— o
=
and if T7_\E(X? |F, ,_,) is tight, then

-p0, asn— .

n n
Y E(X} 4%, ) - L X2,
Jj=1 j=1

A2.
PROOF OF (2.3). Fix s €[0,1]. For any & > 0, choose 0 = ¢, <, < -+ <
t, = s such that
(A.2.1) max |e_27(1_ti) — e_2'Y(l_ti—1)| < §.
1<i<k

It follows from (A.2.1) that

k
fse—ZV(l—t) dt — Y e 2-t-d(t, — ¢, )

i=1

(A22)

ko

<Y fti |e~2v(1=H — =2v1~4-1)| gt < §,
i=1"%-1



NEAR NONSTATIONARITY 1061
Let I, = {I: [nt;_,] <l < [nt]}. Then

A=

n

B*" 9E(e1#;_,) — B,(s)

1

-
I

S|~
‘™

|
S|+~
R

E B“"""’E(e?%-l) — B(s)

_ {;11_ E (Bz(n—l) _ B2(n—[nti—1]))E(£l2|‘%_l)}

k
{z

k
o L= o) - 56)

i=1

(A.2.3)

o~

~.

Bz(n [nt;_ 1])[ E E(el% 1) — ( i ti—l)]}

lel;

@
I
—

= I, +1II,+ I, say.

Observe that B (s) = [se~271~9 dt.
k k

D L e R l)}

i=1 i=1

\IIL| <

(A2.4)

k S
+| Y e 2ra-t(g, — g, ) — foe_zya_t)dtl'

Since A"~ Irti-1D) — =2v1~4-1) a5 n — oo, in view of (A.2.2), there exists an N
such that

(A2.5) [IIT| <28, Vn=N.
Note that (1.2) implies that for all i,

- Z E(el% 1) —t_,, asn— oo.
leI
Furthermore,
max |Bz(n_[nti—1]) < e2|y|.
1<i<k
Thus,

k
|IL,| < e2 Z E(e1#, (t;—t_)
(A.2.6) | i§l n el (ef1%0) - '

= 0,(1).



1062 N. H. CHAN AND C. Z. WEI

Finally, we have

max max|B2(n_1) — Bz(n_[nti—l])|

1<i<k lel; B
= max |B2(n—[nt,']) — Bz(n_["ti—1])|
1<i<k
< max [e78(7H) — 72740 4 0(1)
1<i<k

<&+ o0(1), by(A21).
Hence,

L] < (8 + o(l))(;l; éE(E?%_I))
= (8 + 0(1))(1 + 0,(1)), by (1.2)
=8 + 0,(1).

So, given 1 > 0, choose a small § such that & <%/6. Then, in view of
(A.2.3)-(A.2.7), we have for n > N,

P(A,| > n) < P(I,| > n/3) + P(IL,| > 7/3)
+P(III,| > 1/3)

< P(5 > 1/6) + P(|0,(1)| > u/6)
+P(|0,(1)] > 1/3)
= P(|o,(1)| > n/6) + P(|0,(1)| > u/3).

(A2.7)

Thus,
lim P(|A,| >n) = 0.
n—oo

This completes our proof. O
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