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THE AMALGAMATION AND GEOMETRY OF TWO-BY-TWO
CONTINGENCY TABLES

By L. J. Goop' AND Y. MITTAL?
Virginia Polytechnic Institute and State University

If a pair of two-by-two contingency tables are amalgamated by addition
it can happen that a measure of association for the amalgamated table lies
outside the interval between the association measures of the individual
tables. We call this the amalgamation paradox and we show how it can be
avoided by suitable designs of the sampling experiments. We also study the
conditions for the ‘“homogeneity” of two subpopulations with respect to
various measures of association. Some of the proofs have interesting geomet-
rical interpretations.

1. Introduction. Consider a two-by-two contingency table whose entries in
reading order are a, b, ¢, d with a + b + ¢ + d = N, the sample size. We denote
this table by a = [a, b; ¢, d] and we suppose that abed # 0 and also that N is
so large that sampling variation can be ignored.

We shall call the row categories T' and T because often the first row
corresponds to a treatment and the second row to a nontreatment (but it may be
another treatment), and we call the column categories S and S because they
might correspond to “success” and “failure.” We use this notation consistently
even if the causal relationship is reversed or even if there is no directed causal
relationship as, for example, if the rows correspond to eye color and the columns
to hair color.

Measures of association are used either to measure some aspect of a causal
association or just an association between classifications in which neither classifi-
cation is a (partial) cause of the other. A measure of association is a function of
a, b, c and d, denoted by a = a(a) with some desirable properties as described in
Section 3. All the measures of association mentioned in this paper have the
property that a(a) = 0 or 1 when the rows and columns are “independent,” that
is, when ad = bc. We usually call a measure of association simply a measure.

Let a;,=[a; b; ¢, d;], i=1,2,..., n, be the two-by-two contingency table
corresponding to the ith of n mutually exclusive subpopulations, again with
a;b,c;d; # 0. For example, when n = 2 the subpopulations might consist of men
and women for testing a new drug. Let N, = a; + b, + ¢; + d; denote the sample
size for the ith subpopulation and let N = N, + N, + --- + N,, which is the
total sample size from the whole population. If the n tables are added together,
a process called amalgamation, we obtain a table A = [A, B; C, D] = [Xa,,Xb;
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Yc;,2d;], where of course A + B+ C + D = N. For the sake of simplicity we
assume that N, is proportional to the fraction p; of the population that makes
up the ith subpopulation. Taken literally this may not be a sensible way to
sample; for example, we might want to sample people from New York and from
Blacksburg separately, and then it would be inefficient to take sample sizes
proportional to their populations. But we can scale the tables to force N, to be
proportional to p;: This scaling is legitimate provided that the sample sizes are
so large that sampling variation can be ignored for each subpopulation, as we are
assuming. (It does not matter that the cell “frequencies” are not integers after
scaling.) Our work is concerned with a paradox, essentially familiar, defined in
the following manner:

DEFINITION 1.1. We say that the amalgamation (or aggregation) paradox, or
simply the paradox, occurs if

maxa(a;) < a(A) or a(A) < mina(a;).

We are here using “paradox” in the sense of an ostensible contradiction,
which is one of its dictionary definitions.

Yule (1903) pointed out that “a pair of attributes does not necessarily exhibit
independence within the universe [population] at large even if it exhibits
independence in every subuniverse [subpopulation]”; that is, in our notation one
can have a(a;) =0 (or 1) for all i, but a(A) # 0 [or a(A) # 1]. This was
emphasized, for example, by Yule and Kendall (1950, pages 36-38) and presum-
ably in all of the many editions and translations of that text including the ones
before 1937, of which Yule was the sole author. Pearson (1899) had emphasized
an analogous point regarding correlation measures for continuous (noncategori-
cal) data, and Yule (1903) acknowledges Pearson. The paradox appears, using
real data, in the slightly stronger form that «(A) can be negative (or less than 1)
although a(a;) > 0 [or a(a;) > 1] for all i, in Cohen and Nagel (1934, page 499).
[According to Cartwright (1979, page 422), Nagel suspects that he learned of the
paradox from the 1904 edition of Yule (1911).] This stronger form of the paradox
was discussed briefly by Simpson (1951, page 240), who stated that “the dangers
of amalgamating two-by-two tables are well known” and he cited Kendall (1945,
page 317). Thus the causal chain Pearson-Yule-Kendall-Simpson is fully docu-
mented. Blyth (1972) called the paradox “Simpson’s paradox” in accordance
with Stigler’s law [Stigler (1980)] that eponymy is always wrong. [See Good
(1985a) for a brief history of Stigler’s law.] Messick and van de Geer (1981) called
the paradox the “reversal paradox,” but in Yule’s formulation the subpopula-
tions each had zero association in which case there is no reversal of sign. Hence
we prefer the name “amalgamation paradox.” Our formulation of the paradox is
slightly more general than in these other papers.

When the paradox occurs it can be misleading or even dangerous. For
example, a drug can be judged to be beneficial, as measured by «, for both men
and women considered separately, but can seem to be harmful for the population
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at large, by looking only at the amalgamated table. This can happen even
though N, « p,. We claim that such a situation can arise only if not enough care
is used in the design of the experiment. In Section 4, for each of several
meaningful measures of association, we state what the designs should be in order
to avoid the paradox. There is additional discussion of these measures in
Goodman and Kruskal (1959) and Good (1985¢).

In Section 5 we study a further property defined as follows:

DEFINITION 1.2. Two subpopulations, or the corresponding contingency ta-
bles a, and a, are homogeneous with respect to a if

a(a,) = aa,) = a(A),

where A = a, + a, is the amalgamated table.

We shall find necessary and sufficient conditions for two subpopulations to be
homogeneous with respect to a, where a is any one of a certain set of measures
that we define in Section 3.

2. Designs of relevant experiments. We now define two conditions under
which the later theorems are proved and discuss situations under which these
conditions can be built into the design of an experiment.

DEFINITION 2.1. An experimental design is said to be row-uniform or row-fair
if, for some A, i

a; + b,
c,-+d,-_

(2.1)

A, 1=1,2,...,n.

Similarly we call the design column-uniform or column-fair if, for some p,
a;+c; '
b,+d;,

(2.2) B, i=1,2,...,n.

Whether either or both these conditions can be attained depends on the
nature of the tables and on the sampling procedures used. We first give defini-
tions pertaining to the nature of the tables.

DEFINITION 2.2. A table is called row-causal or R-causal (column-causal or
C-causal) if the row (column) categories can be regarded as (probabilistic) causes
of the column (row) categories.

For example, the rows might correspond to smoking and nonsmoking, and the
columns to high and normal blood pressure. An example of a “noncausal” table
is one where the rows and columns correspond to attributes such as eye color and
hair color.

For R-causal tables it is often practicable to use sampling procedures I
and II,, but less practicable to use procedures II, or III, as defined in the
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following manner:

DEFINITION 2.3. In sampling procedure I we sample at random from a
population (or subpopulation). For two-by-two tables this could also be called
tetranomial sampling.

DEFINITION 2.4. In sampling procedure II (or II;) we control (fix) the row
(column) totals, and then sample at random until these marginal totals are
attained. These sampling procedures are sometimes called product-binomial
sampling. .

DEFINITION 2.5. In sampling procedure III, both the row and column totals
are controlled.

A familiar kind of example of procedure III is where a subject tries to
discriminate between two kinds of chewing tobacco knowing that there are four
clods of each kind, that is, that the row totals are both 4, and she is forced to
make each column total equal to 4 to give herself a chance of getting all eight
“guesses” right. In other words as soon as one column total is 4 she has no
further choice unless she is allowed to change her mind about previous guesses.
Compare the famous experiment described by Fisher (1949, Chapter 2) who,
however, did not express the matter in terms of contingency tables, and where
the lady tasted tea instead of chewing tobacco.

Sampling procedure I can be used for both causal and noncausal tables.
Procedures II , and II, can also be used for both, except that, for R-causal tables
there would be less point in controlling the column totals alone. In the tasting
experiment, which exemplifies procedure III, the true brands are potential causes
of the “guesses.” But procedure III is also exemplified by the sampling of a
population of people classified according as they are above or below median
height and above or below median income, and in this example the causal
relationship is obscure.

An R-uniform (C-uniform) design is clearly possible under sampling procedure
I1, (II;). Under sampling procedure III it is easy to use a design that is both
row and column uniform. Under sampling procedure I it is impossible to
construct a design that could be guaranteed to be either row or column uniform.
Similar comments apply to R-uniform (C-uniform) designs under sampling
procedure II, (Il ;). However, R-uniformity (C-uniformity) can be observed (as
opposed to being guaranteed in advance), at least approximately for a given
group of contingency tables, as a consequence of either pure chance or the nature
of the attributes studied. For example, consider a retrospective study of daughters
with vaginal cancer (S) and mothers treated with DES (7') [Herbst, Ulfelder
and Poskanzer (1971); Herbst, Poskanzer, Robboy, Friedlander and Scully (1975)].
If P(S|T) and P(S|T) are constant in various subpopulations, then in the
experiment in which the total number of daughters in each category is fixed
(sampling procedure II;) we will observe that the design is approximately
R-uniform. Thus in this experiment the design could be C-uniform and ap-
proximately R-uniform. For the effects of this approximation on our results, see
the Appendix.
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3. Association measures and properties.

Homogeneity of degree zero. A measure of association should be a homoge-
neous function of (a, b, ¢, d) of degree zero; that is, a(a) = a(Aa) for all positive
A, at least asymptotically for large samples, and we are only concerned with large
samples in this paper. If this condition were not satisfied (asymptotically at
least), then a would not be a consistent estimator of a population parameter.
Some reasonable enough measures, such as (a + 2)(d + )b+ 7 Yc+ H7}
are not strictly homogeneous of degree zero, but all reasonable ones have the
property asymptotically, and in this paper we consider only measures that are
strictly homogeneous of degree zero. The term “homogeneous” is used in several
senses and it is further discussed by Good (1986b).

Symmetry. A measure a is called symmetric if identically a(a) = a(a’), where
a’ denotes the transpose of a, namely [a, c; b, d]. Symmetric measures are
especially suitable for noncausal or attribute tables.

Row-scale and column-scale invariance. The measure a is called row-scale
(column-scale) invariant if it is unchanged when the ith row (ith column) is
multiplied by A; (i = 1,2).

When sampling procedure II, (II;) is used, then a should be row-scale
(column-scale) invariant because otherwise a would depend on the arbitrarily
chosen ratio of the row totals. When sampling procedure III is used, a should be
both row-scale and column-scale invariant.

We now define the measures of concern in the body of this paper with some,
but not exhaustive, indication of their practical interest. For a discussion of
further properties of these measures and some history see Good (1985c).

(i) Peirce’s measure. We write

(3.1) 7o = 7p(8) = — ‘

a+b c+d

Under sampling procedure I or II, this expression is equal to
(3:2) P(S|IT) - P(SIT),

which is a reasonable measure of superiority of treatment T over treatment T in
an R-causal table. It can of course be negative and then |7y measures an
inferiority. When multiplied by 100, Peirce’s measure is sometimes called the
“percentage difference” [Somers (1978)]. It was introduced by Peirce (1884) and
was cited by Goodman and Kruskal (1959, pages 129-130). For an interpretation
of m, that does not depend on a causal direction we refer to Somers (1978).

Under sampling procedure 11, the interpretation (3.2) will be approximately
correct if the ratio of the column totals is close to the ratio P(S)/P(S) in all the
subpopulations. The measure g, which is obviously row-scale invariant, is
naturally designed for R-causal tables, but even for C-causal tables 7y can play a
detective role. Similar comments apply to the other measures to be defined in
this section.
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We define analogously

a b
(3.3) 7rC:WC(a)=a+c_b+d’
which can be interpreted as
(3.4) P(T|S) — P(T|S).

(i) Yule’s measures. Yule (1903) considered the excess of the first “cell
probability” a/N over its expected value under independence of rows and
columns. That is,

a (a+bd)a+c) ad-bc
3.5 = =— — = .
(3.5) y=x@a)=1 N N
Apart from sign, it is the same for all four cells of the table. It is symmetrical
between rows and columns and hence is especially suitable for noncausal tables.
It is neither row- nor column-scale invariant.
(iii) The odds ratio or cross-product ratio

ad
be’
Under any sampling procedure we can interpret « as
o(SIT) _ O(TIS)
o(SIT) 0O(T|S)’
where O denotes odds within the population.
Edwards (1963) showed that a measure of association a must be a function of
k if it satisfies both the following conditions: « is a function of P(S|T') and
P(S|T) alone, and is also a function of P(T|S) and P(T|S) alone. Symmetry, as
defined above, is a weaker condition than this one.

The odds ratio is both row-scale and column-scale invariant, and the only
measures that are both row-scale and column-scale invariant are functions of k.

(3.6) k = k(a) =

Proor. If a = a(a, b; c, d) is row-scale and column-scale invariant, we must
have

(3.7) a(a, b; ¢, d) = a(Ayp @, Aipab; Aypic; Aopod)

for all positive numbers A, A,, u; and p,. Take X4 = d/(ab?), Xy = b/(cd?),
pt=d/(ac?) and p3=c/(bd?). Then the right side of (3.7) reduces to
a(k/2, k=4 k~/41), so a is a function of k alone. This result can also be
derived from Edwards (1963). O

Thus functions of k are the only measures that are clearly reasonable when
sampling procedure III is used. An example of such functions is Y; [Good
(1985¢)], which generalizes two association measures used by Yule.

(iv) Weight of evidence. Let

a(b+d)

(3.8) We = We(a) = 10gm,
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which, under sampling procedure I or II, is equal to

as) [ 209

and can be interpreted as the prognostic weight of evidence (logarithm of the

Bayes factor) in favor of S provided by the knowledge that the treatment was 7.

For the terminology “weight of evidence” in this (or near) sense, see, for

example, a sentence in Peirce (1878, page 1345), a much fuller discussion in Good

(1950, 1985b) and, for a careful justification of the terminology, Good (1984).
We write analogously,

a(c+d)
c(a+d)’
which, under sampling procedure I or II, is equal to

(3.11) log[ﬁgz:;; ]

(3.10) Wy = Wx(a) = log

(v) Causal propensity. Let

d(a+b)
b(c+d)’
which, under sampling procedure I or IIg, is

o [P(S‘IT) }

(3.12) Qr = Qr(a) = log

(3.13) g P(3IT)

the propensity of T to cause S rather than S, or the weight of evidence against T
if S occurs [Good (1961, 1986¢c)]. It should be noted that it is possible for the
direction of causality to be unclear or to be two-way. For example, the rows
might represent higher and low 1.Q. and the column high and low mathematical
performance. In such cases @ and @, might both be suggestive of causal
relationships. Without explicit reference to causality and without the logarithm,
it was proposed earlier and independently by Sheps (1958) with the name
“survival ratio,” but “benefit ratio” or “effectiveness ratio” would be a more
flexible name. Analogously, let

d(a+c)
c(b+d)’
which, under sampling procedure I or I, is equal to

(3.15) log[igg:z_; ]

(8.14) Qc = Qc(a) = log

4. Avoidance of the paradox. Our query in this area arose from a conjec-
ture of one of the authors and its simple geometrical proof by the other author.
The conjecture was that if (a, + b,)/(c; + d)) = (ay + by)/(cy + dy)
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then a,d, > bjc;, and a,d, > byc, together imply (a, + a,)(d; + d,) >
(b, + by)(c; + c,). Geometrically this says that, given two parallelograms, each
with a vertex at the origin, and with vertices at (a,, ¢;) and (b,, d;) for one
parallelogram, and (a,,c,) and (by, d,) for the other, and if (i) these two
parallelograms have collinear diagonals, (ii) the points (a,, ¢;) and (a,, ¢,) lie
below the common diagonal (because the areas a,d; — b,c, and a,d, — byc, are
positive), then the point (a; + a,, c; + c;) also lies below the diagonal. The
theorems given in this section on avoidance of a paradox are stronger and their
proofs are algebraic. A geometrical approach was pursued for some of these
results and can be found in Good (1986a).

We now give conditions for avoiding the paradox for each of the measures of
association defined in Section 3. We have n subpopulations with corresponding
two-by-two contingency tables a; amalgamated into a table A, this and other
notation being as in the Introduction.

The following obvious algebraic fact will be used repeatedly so we call it a
lemma although we usually use it without citing it.

LEMMA 4.1. If t, u, v and w are positive numbers then (t + u)/(v + w) is a
“convex combination” of t/v and u/w, namely
Bt/v+ (1= B)u/w,
where B = v/(v + w).
THEOREM 4.1. For row-uniform designs a(A) is the natural weighted aver-
age of the a(a;)’s, that is,

(4.1) a(A) = 3 (N/N)a(a)),
i=1
where a is my or y. Hence in particular
(4.2) mina(a;) < «(A) < maxa(a;)
l 1

and the paradox cannot occur.

COROLLARY 4.1. For column-uniform designs, (4.1) and (4.2) hold when « is
T Or Y.

ProOOF OF THEOREM 4.1. From (2.1) and (3.1) we have
N;=(A+1)(c; + d;)

and
I\ — e
”R(ai)=?ci+_dﬁ, i=1,2,...,n.
Thus
(A) = (Za;)/A = Ze B Y(c; + d;)mp(a;)
R - X(c; +d;) - Y(¢c; + d;)
(4.3) "N

=2 'JVLWR(ai)'

i=1
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Since for row-uniform designs

r(a) = y(a)(A + 1)*/A,
the result for y follows from (4.3). O

THEOREM 4.2. For row-uniform designs
(4.4) exp[a(A)] = ) 8exp[a(a;)]
i=1

for some 8, > 0 with ¥.I_.8, = 1, where a is Qg or Wy. In particular, (4.2) holds
for a = Qg or Wy and the paradox cannot occur.

COROLLARY 4.2. For column-uniform designs, (4.4) and (4.2) hold for a = Q
or W, and the paradox cannot occur.

Proor oF THEOREM 4.2. For row-uniform designs we can write
exp(Qg(a;)) =Ad/b; and exp(Qg(A)) =AXd/ 2 b;.
Thus (4.4) holds with 8, = b,/(Lb;). Also
exp(Wr(a;)) =A""a;/c; and exp(Wg(A)) =A"'Ya/ Y c;.
So (4.4) is true with §; = ¢;,/(Xc;). O

THEOREM 4.3. If the design is both row-uniform and column-uniform then
(4.2) holds for a = k.

Note. The following example shows that just row-uniform or column-uni-
form design is not sufficient for Theorem 4.3. Let a, =[3,1; 1,9] and a, =
[889,203; 381,2349]. Then «(a,) = k(a,) = 27, and the design is row-uniform
with A = 04, but x(A) = 26.991.

PRrROOF OF THEOREM 4.3. We prove the theorem for n = 2. For n > 2, we can
first amalgamate two tables and then add further tables one at a time to get the
final result. Let

X, =a,/a,, Xy = b,/b,, X3 =¢/Cy, xy=d,/d,.

For n = 2, we rewrite the conditions of row-uniform and column-uniform
design as ‘

(4.5) X8 + x5(1 —8) =x38" + x,(1 — &)
for 6 = ay/(ay + by) > 0and 8’ = ¢,/(cy + dy) > 0 (see Lemma 1);
(4.6) xm + x5(1 —m) = xgn" + 241 — 1)

for n = a,/(a, + ¢;) > 0 and 7’ = by/(by + d,) > 0. Equation (4.5) shows that
the intervals (x;, x,) and (x5, x,) must overlap (or, as a special case, x, = x, =
x4 = x,), while (4.6) shows that the intervals (x, x;) and (x,, x,) must overlap.
Here the notation (x,, x,) is not intended to imply that x, < x,, etc.
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Without loss of generality we shall assume that «(a,) < k(a,), that is,

(4.7) XXy < XoXg.
We shall show that
(4.8) k(a;) < k(A) < x(a,).

First, let us assume that x; < x,; then x, and x; cannot both lie in the interval
[x,; x,] since x; < x5 < x5 < x, violates (4.5), while x, < x; < x, < x, violates
(4.6). The only exception is when x, = x, = x; = x,, but the result (4.8) is then
trivially true. For the same reasons it is not possible that one of x,, x; is less
than x, and the other greater than x,. If both x, and x; are less than x,, then
(4.7) will be violated. Thus x, and x, both have to exceed x,. Accordingly we are
left with only two cases,

(4.9) X, <X, <Xy < Xy
or
(4.10) X, <x, <Xy < Xy

Arguing similarly for the case x, < x,, we get two more cases, namely

(4.11) Xy <X, <Xy < X4
or
(4.12) Xy <X, < x5 <Xy,

For each one of the above four cases, we will show that (4.8) holds. We note that
in all four of the cases (4.9), (4.10), (4.11) and (4.12) we have x; < x; and x, < x,.
This implies that a,/c, < ay/c, and d,/b, < d,/b,. By use of Lemma 4.1 we
see that a,/c¢, < (a; + a,)/(c; + ¢3) < ay/c, as well as d,/b, <
(d, +dy)/(b, + by) < d,/b,, and (4.8) follows readily. O

5. Homogeneity of two subpopulations. As in Definition 1.2 we call the
two subpopulations homogeneous with respect to a if

(5.1) a(a,) = a(a,) = «(A),

where a,,a, denote the two-by-two contingency tables of the subpopulations
and A is the amalgamated table. [For a related discussion of homogeneity see
Good, (1986b).] We shall give necessary and sufficient conditions for (5.1) when «
is any one of the measures mp, mo, Wy, We, @p, Qc or k.

THEOREM 5.1. For the odds ratio «, (5.1) holds if and only if either
(5.2) a,/¢, = ay/c;, and b,/d, = by/d,

( for our example, this can be interpreted as “conditional on success, sex and
treatment are independent”) or

(5.3) a,/b; = ay/b, and c,/d, = cy/d,
(i.e., “conditional on treatment, sex and success are independent”).
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Proor. By the definition of homogeneity with respect to k we have
a,d a,d a, +a,)(d,+d
6 d_aady (o ra)dird)
b, byc, (b, + b,)(c; + ¢,)
Substituting a, = b,c,k/d, and a, = byc,k/d, in the last part of (5.4) we have
(biek/dy + bycok/dy)(dy + dy) = k(b + by)(c, + cy).

This simplifies to

(b1d2 - b2d1)(c1d2 —cyd;) = 0.

Thus either b,/d, = b,/d, [which implies a,/c; = a,/c, in view of (5.4)] or
¢,/d, = cy/d, [which implies a,/b, = a,/b, in view of (5.4) again]. To show
sufficiency we reverse the argument or we can easily show directly that each of
(5.2) and (5.3) imply (5.1). O

THEOREM 5.2. For weight of evidence W, (5.1) holds if and only if either
(5.2) holds or
a, a, a, +c a, + ¢y

5.5 222 and = ,
(5.5) b, b U b +d, b, +d,

where the second condition asserts column-uniformity. Similarly, for Wy, (5.1)

holds if and only if either (5.3) holds or
a a a, +b a,+b

(5.6) a4 1 1 _ 9 2

c,  C c,td;, c¢+d,

ProoF. 1t is enough to prove the theorem for W, because the result for Wy
follows by interchanging rows with columns, that is, by interchanging b with c.
Let us write exp(Wy(a)) = {/n, where § =1+ d/b and n =1 + c¢/a. If we let
vy =2>b,/(b, +b,) and & = a,/(a, + a,), then (5.1) becomes
é_é Y£1+(1_'Y)£2

5.7 =22 _ .
(57) m mg  Omyp+ (1= 8)n,

We now have

(5'8) £1"72 =§&m
and
(5-9) 8£1’71 + (1 - 8)51772 = Y§1"71 + (1 - 7)52"71-

Substituting in (5.9) from (5.8) we have

(6.10)  (y—8)ém = (y—8)ém, and (8 —v)ém; = (8 — v)&m,.

Since £, # 0 and 7, # 0, (5.10) will be true if either 6 = y [i.e., a,/b, = a,/b,
and this implies (a, + ¢,)/(b; + d,) = (ay + ¢)/(by + d,) in view of (5.1)] or
m, =mn, and £, =4§, (ie, a,/c, =ay/c, and b,/d, = b,/d,). The proof of
sufficiency is trivial. O
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THEOREM 5.3. For the causal propensity Qpg, (5.1) holds if and only if either
(5.3) holds or

b, b, a, +b, a,+ b
5.11 — = — and = .
(5.11) d, _d, ™ o +d e +d,
Similarly for Q, (5.1) holds if and only if either (5.2) holds or
519 c, Cy nd a;, + ¢ a, + ¢y
(5.12) d, dy " b+d, by+dy

We omit the proof since it is very similar to that of Theorem 5.2.

THEOREM 5.4. For Peirce’s measure 7y, (5.1) holds if and only if either (5.3)
holds or

a,+b, a,+b, a —pa, a,+b, ¢ +d
= = , Where p= b = 7.
a; + 0, C;tdy

5.13 = =
(5.13) c,+d; cygt+dy, ¢ —pey,

Similarly for @, by interchanging b, with ¢, and b, with c,, we see that (5.1)
holds if and only if either (5.2) holds or

a, +c  ayte a - pay a1+c1_b1+d1

1) o T hvd, b —pb, Y P T o v e, T hid,
Proor. We can write (5.1) as
a a c
(5.15) a, -|-1b1 s ildl N a, +2b2 e +2d2
(5.16) _ a, + a, ¢, +d;

a +ay,+b +b, c +te,+d +dy

Splitting both terms of (5.16) as convex combinations, we see that the expression
equals

a, asy € Cy
(5.17) Yot o, (I_Y)a2+ b, _8c1+d1 _(1_8)c2+d2’
where
a;, + b,
YT 4 +b, ta,+ b,
and

¢, +d;
c,+d, +cy,+dy

We also know that any convex combination of my(a,) = mg(a,) is equal to mgz(A),
since all three are equal. Thus equating the right-hand side of (5.17) to ymg(a,) +

(1 = v)mg(a,), we get

(5.18) Y e §—t (1-8
. _ = + —_
Ycl+d1 Y)c2+d2 ¢, +d; )

Co
cp+dy
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That is,
91 Co

o+ d,’

(8-7) =(@-v)

c,+d,
Thus we must have either (i) § = v, which is equivalent to
a,+b, a,+b,

= =), sa
c,+d, ¢, +d, ¥

in which case, from (5.15) we see that
a, ¢ aqy Cy
Mey+d)  e+dy Me,+dy) cy+dy’

so that
a,—Ac; ¢ +d,

a2—7\02_c2+d2

and hence A = (a, — pa,)/(c; — pc,), where p is defined in (5.13) or

. ¢y Co
(ii) o +d, c,+d,

which is equivalent to ¢,/d, = ¢,/d, and implies a,/b, = a,/b, in view of
(56.15), and this gives (5.3). O

The proof of sufficiency for Theorem 5.4 follows by reversing the argument.
The following theorem follows easily.

THEOREM 5.5. If (5.2) holds, then the two subpopulations are homogeneous
with respect to k, Wg, Q¢ and mg. If (5.3) holds then the two subpopulations are
homogeneous with respect to k, Wy, Qg and .

THEOREM 5.6. Under either row-uniform or column-uniform design, if the
two subpopulations are homogeneous with respect to any three of our seven
measures, then either

() a,/ay =b,/b, = ¢,/c, = d,/d, (i.e., the three tables are “essentially the
same,” that is, are proportional to one another); or

(i) a,/¢c, = b,/d, = a,/c, = by/d, (in particular, the rows and columns are
“independent” within all three tables).

PROOF. First we show that if the two subpopulations are homogeneous with
respect to any three of the above measures, then either (5.2) or (5.3) must hold.
For convenience we first abbreviate Theorems 5.1 to 5.4 in a self-explanatory
way: k = (5.2) or (5.3); W, = (56.2) or (5.5); Q. = (5.2) or (5.12); e = (5.2) or
(5.14); Wg = (5.3) or (5.6); Q@ = (5.3) or (5.11); and 7 = (5.3) or (5.13). We see
at once that when three sets of these conditions hold simultaneously then either
(5.2) or (5.3) or three of the six conditions (5.5), (5.6), (5.11), (5.12), (5.13) and
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(5.14) must hold. If the three are from (5.5), (5.6), (5.11) and (5.12) then it is easy
to see that (5.2) or (5.3) must hold. A little reflection shows that the only other
possibility, for other combinations of three, is that both

a, + b, ¢, +d,

1 =

(5.19) a,+b, c,+d,
and

(5.20) a,+c¢ b +d

ay,+c, by+d,

must hold and at least one of the four equalities

(5.21) X, = Xj, Xy =Xy, X, = Xy, X3 =Xy,

holds, where, as before,

x, = a/a,, xy = b,/bs, X3 = ¢/C, x,=d,/d,.

But (5.19) and (5.20) can be written in the forms

(5.22) dx, + (1 — 8)xy =vyx3+ (1 — v)x4
and
(5.23) 8x, + (1 —8)xys=7vx,+ (1 — v )xy,

where 8, §’, v and y’ all lie between 0 and 1.

If x, = x; then the second equation shows that x; lies between x, and x,, but
the first equation will then be violated unless x, = x, = x5 = x, [that is, (i)
holds]. We reach the same conclusion from each of the remaining three equalities
in (5.21).

We finish the proof by showing that if one of (5.2) and (5.3) and one of (5.19)
and (5.20) holds then (i) or (ii) in the statement of Theorem 5.6 must be true.

If (5.2) (that is, x, = x; and x, = x,) and (5.22) hold then & = v, that is,
ay/(ay + by) = ¢y/(cy + dy) and hence ay/c, = (ay + by)/(cy + dy) = by/ds,
but (5.2) implies a,/c, = a,/c, and b,/d, = b,/d,. Thus (ii) must hold. If (5.2)
and (5.23) hold then x, = x; = x, = x, and (i) must hold. Similar arguments
show that if (5.3) and (5.22) or (5.3) and (5.23) hold then (i) or (ii) hold in each
case. This completes the proof of Theorem 5.6. O

APPENDIX?

The effect of small variations on the amalgamation paradox. Here we
discuss the conditions of row-fair and column-fair designs further and look at the
effect of small variations on the amalgamation paradox.

It is possible to design an experiment in which (2.1) holds [the discussion for
condition (2.2) is similar] if the sampling procedure employed is II ,, that is, the
row totals are held fixed. For example, the statistician can choose the sample size
N, for the ith subpopulation as the minimum acceptable (> n,, say) number for
which pN, is an integer, 0 < p < 1 being fixed. Then the statistician can choose

3Written by the second-named author.
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PN, individuals at random from N, and assign them to the treatment T. Such a
design will obviously satisfy (2.1) for A = p/(1 — p).

However, in many other practical situations, we may find that the equality in
(2.1) is only approximately correct. For instance, in the preceding example, if the
treatment were given to each one of the individuals from the ith subpopulation
with a fixed probability p (i.e., the treatment is randomized), then we would find
that (2.1) holds approximately if NV, is large for each i. Such a situation can occur
in some retrospective studies as well. Suppose an equal proportion p of people
were inoculated (T') against the Asian flu in both the U.S. and Canada. Later
random samples were drawn from each country to study the adverse effects (S)
of the inoculation. If the sample size from each country is large enough then we
will find this design to be “approximately row-fair” [i.e., the equality in (2.1) is
replaced by =].

It is intuitively clear that whenever a row-fair design is a sufficient condition
for (4.2), the approximate row-fair design should be sufficient as well for large
enough sample sizes. In the following we make this idea explicit.

Let us first consider only two subpopulations with sample sizes N; and N,.
We define the design (which yielded the two contingency tables a, and a,) to be
approximately row-fair if
a, +b; a; + b,

Al =\ = .
(A1) ¢, +d; ! 2 e+ d,

(We define an approximate column-fair design in a similar fashion. The analog
of the following result is obvious and hence excluded.)

THEOREM A.l. If the design is approximately row-fair, then
(A2) min(a(a,); a(a,)) < a(A) < max(a(a,); a(a,)),
where A =[A, B; C, D] is the amalgamated table and o is any one of the

measures 7y, Wy, Qg or y.

Proor. We first reformulate the problem in terms of the quantities of
the amalgamated table A. Define p = (A + B)/N, N=N, + N,, and A =
p/(1 — p). All tables (with N, and N, fixed) whose row-ratios are close to A
and whose amalgamated table is A must be of the form

Subpopulation 1 ’ Subpopulation 2
S S S S
N,
T a,| (p—08)N, —aqa, T a, p+8—1\7 N, — a,
2
_ _ N, ’
T ;| A—-p+8)N,—¢ T c l—p—SF N, — ¢,
2

where § could be positive or negative. Let us call the two tables aj and aJ,
respectively. Note that the values of a,, ¢,, a,, ¢, are not fixed. They may vary
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for different subpopulations as well as with N, and N, for the same subpopula-
tions (see the example in the Introduction). We prove the result for all such
tables. We introduce some more notation here which is in direct conflict with
(A2). This should be allowed, however, since we are reformulating the problem.
Let a, =[a,, b; ¢, d,] and a, =[a,, by; c,,d,], where b, =pN, — a; and
d;=(Q0-p)N,—¢c;, i=1,2. We will call a, and a, the “ideal” tables corre-
sponding to a} and a%. (The word “ideal” is used just for convenience and by no
means implies a connection with any specific populations or with a for large N,
i = 1,2. Also there is one such table a; for each a’ but many such for the given
amalgamation A.) The amalgamation of the ideal tables is A as well and their
row ratios are constant, equal to A. By Section 4 we have

(A3) a(a,) < a(A) < a(a,)

for all such ideal tables. [Without loss of generality, we have chosen the
subscripts so that a(a;) < a(a,).] Theorem A.1 will be proved if we show that
for fixed N,, N, and p,

(A4) min(a(a‘sl), a(asz)) <a(A) < max( a(a‘sl), a(a‘z))

for & small enough.
In case a(a,) < a(A) < a(a,), the proof is obvious from the following observa-
tion. For a = mg, Wy, Q5 or y, we have

%a(a‘i) >0 and ;%a(a‘z) <0
for & # 0 small. Also for § = 0, a(a®) = a(a,), i = 1,2, and (A4) is true in view of
(A3). On the other hand if it were the case that a(a,) = a(A) = a(a,) then
a(ad) < a(A) < a(ad) for 8§ < 0 small and the reverse inequalities would be true
for § > 0 small. [Note that it cannot be the case that a(a,) < a(A) = a(a,) or
a(a;) = a(A) < a(a,) for row-fair designs and a = 75, Wy, Qp or y.] The
extension of the case when there are £ subpopulations is obvious.

It is also illuminating to write a(a), i = 1,2, as the sum of a(a;) and a
function of § since it would provide some guidance for choosing the values of N,
and N,. We write this below for a = II, to illustrate the point. We have

) a, [
+ .
1-p)|Ma, +b,—8N,) ¢ +d,+8N,
We note that the term in the brackets of the right-hand side of (A5) can

be bounded above for all tables a, if 6 is small enough. For example if
|8] < imin(p,1 — p), then the term in the brackets is at most
a, + b, ¢, +d,; 2

+ < —-+2.
Ma, +b,—8,) ¢, +d, +8N, A

(A5) IIy(a}) = Ilg(a,) +

Similarly, we can write
SN, a c
F) 1 2 2
= - + .
(46) mx(a) = ma(a;) (1= p)N, | A(ay + by + 6N,) ¢, + d, — 6N,
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Again the term in the brackets is at most

PN, N (1-p)N,
A(pN, +8N,) (1 -p)(N,-8N,)"

If we were in one of the situations described in the Introduction, then 8§ would be
a function of the standard error of the estimates of p in the two subpopulations
and this would converge to zero as N, and N, tend to infinity. O

Finally we prove the following theorem.

THEOREM A.2. If the design is both approximately row-fair and approxi-
mately column-fair, then (A2) holds for a = k, the odds ratio.

Proor. We reformulate the problem in the manner similar to the above and
define the contingency tables corresponding to the two subpopulations as

Subpopulation 1 Subpopulation 2
a, l b, — 8N, a, l b, + 8N,
¢, — N, | d, + (e8)N, o+ eNy | dy— (e + 8)N,’

where b, = pN;,— a;, ¢c;=qgN,— a, and d;,= (1 — p — g)N, for i = 1,2. Again
the corresponding ideal tables are a, and a, for which k(a,) < k(A) < k(a,). We
note here that (3/38)x(a5%) >0, (9/d¢)k(a3®) >0, (3/98)k(a%®) <0 and
(9/9¢)k(a%®) < 0, the inequalities for the partial derivatives wrt 8 being true for
all & small and for all § # 0 small; similarly for partial derivatives wrt e. The
proof now follows along similar lines. Again k(a%?®) can be written as the sum of
k(a;) and a function of & and ¢ for i = 1,2. We omit the details. O
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