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A DISTRIBUTION-FREE M-ESTIMATOR OF MULTIVARIATE
: SCATTER!

By Davip E. TYLER
Rutgers University

The existence and uniqueness of a limiting form of a Huber-type M-
estimator of multivariate scatter is established under certain conditions on
the observed sample. These conditions hold with probability one when
sampling randomly from a continuous multivariate distribution. The ex-
istence of the estimator is proven by showing that it is the limiting point of a
specific algorithm. Hence, the proof is constructive. For continuous popula-
tions, the estimator of multivariate scatter is shown to be strongly consistent
and asymptotically normal. An important property of the estimator is that
its asymptotic distribution is distribution-free with respect to the class of
continuous elliptically distributed populations. This distribution-free prop-
erty also holds for the finite sample size distribution when the location
parameter is known. In addition, the estimator is the “most robust” estima-
tor of the scatter matrix of an elliptical distribution in the sense of minimiz-
ing the maximum asymptotic variance.

1. Introduction and summary. For a sample x,x,,...,x, from an m-
variate distribution with known center, say t, Maronna (1976) defines an affine
invariant M-estimator of multivariate scatter to be the symmetric positive
definite matrix V, that satisfies the equation

ave{u,(s;)(x; — t)(x;, - t)’} = V,

where s; = (x; — t)’V;(x, — t). The function u, must satisfy some general
conditions given in Section 2 of Maronna’s paper. One condition is that for every
hyperplane L, P(L) <1 — m/K,, where P, is the empirical distribution mea-
sure and K, = sup, ., ,SU,(s). As noted by Maronna, since any set of m points in
R™ is contained in some hyperplane, this condition implies n > m(1 — m/K,) ™~

The affine invariant M-estimators of scatter are particularly suited for esti-
mating the pseudocovariance or scatter matrix V of an elliptical population, that
is, one with density of the form

(11) f(x5t,V,8) = |VI"V%{(x - )V i(x - 1)},

where g is some nonnegative function not dependent on t and V. In fact, the

definition of the M-estimators of scatter given by Maronna (1976) corresponds to
a generalization of the maximum likelihood estimators of the scatter matrix of
an elliptical population. The family of elliptical distributions provides a multi-
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variate location-scatter family of distributions that primarily serve as long-tailed
alternatives to the multivariate normal model. If the second moments exist, then
the parameter V is proportional to the covariance matrix. Properties of elliptical
distributions have been studied by Kelker (1970), and a recent discussion of these
distributions is given in the text by Muirhead (1982). Within the class of
elliptical distributions, the scatter matrix V is not well defined. For a specific
distribution, the functional form g in (1.1) can be replaced by g,(s) = ¢™g(cs),
where c is a fixed positive scalar. This results in a change in the scatter matrix
parameter from V to cV. However, parameters of the form H(V') are well defined
whenever the function H satisfies the following condition.

ConDITION 1.1. For any symmetric positive definite matrix V and any
positive scalar ¢, H(V) = H(cV). '

In other words, the directions and relative magnitudes of the axes of the
elliptical contours are well defined, but unless further specified, a parameter
measuring the spread of the contours is not. This paper focuses on parameters
satisfying Condition 1.1.

In this paper, a special case of the affine invariant M-estimators of scatter is
considered, namely the solution to

(1.2) mave{(xi -t)(x;—t)/(x; - t)'V; }(x; - t)} = Vo

which corresponds to choosing u,(s) = ms™!. The existence proof given by
Maronna (1976) does not apply to (1.2) since suy,(s) = m and hence K, = m.
Huber (1981), Chapter 8, defines a more general class of affine invariant M-esti-
mators of scatter and gives a more general proof of existence. For analogous
reasons, his proof also does not apply to (1.2). A constructive proof of the
existence of a solution to (1.2) for finite sample sizes is given in Section 2; see
Theorem 2.2 and Corollaries 2.2 and 2.3. The solution to (1.2) is not unique, since
if V, is a solution, then ¢V, is a solution for any positive scalar c. Except for this
positive scalar factor, though, the solution is unique; see Corollary 2.1. Thus, the
statistic H(V,) is uniquely defined whenever H satisfies Condition 1.1.

A motivation behind the author’s study of the estimator defined by (1.2)
stems from observing that it is a limiting form of a Huber-type M-estimator of
scatter. These estimators are defined by choosing for some fixed r, uy(s) = a if
s < r? and uy(s) = ar?/s for s > r?, where the scaling factor a is defined so
that E{x2ux2)} = m. In an earlier paper (Tyler (1983)), it is noted that as
r — 0 the asymptotic variance of the Huber-type estimators of scatter when
sampling from an elliptical population does not depend on the functional form g
in (1.1). In addition, this limiting value corresponds to the strict upper bound for
the asymptotic variances of the maximum likelihood estimators of scatter
derived when g is assumed known. It is shown in Section 3 that these limiting
properties of the asymptotic variance of the Huber-type estimators hold for the
asymptotic variance of the estimator defined by (1.2). This is expected since for
the Huber-type estimators as r — 0, u,(s) = ms™! for s > 0, which corresponds
to (1.2). Consequently, one can argue that the proposed estimator is the “most
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robust” estimator for the scatter matrix of an elliptical population; see Remark
3.1. More importantly, for inferential purposes, no nuisance parameters are
involved in the asymptotic standard error of the proposed estimator, at least for
elliptical populations. This distribution-free property also holds for the finite
sample size distribution of the estimator of scatter, see Theorem 3.3. Finally, the
strong consistency and asymptotic normality of the proposed estimator of
multivariate scatter are established in Theorems 3.1 and 3.2, respectively.

The results of Section 3 assume the center t is known. Section 4 treats the
case when t is not known. It is shown that the asymptotic results of Section 3 are
valid when t is replaced by an estimate that converges to t sufficiently fast and if
the population being sampled satisfies some inverse moment conditions. Theo-
rem 4.1 establishes consistency and Theorem 4.2 establishes asymptotic normal-
ity.

2. Existence and uniqueness. Without loss of generality, it is assumed in
this section and in the succeeding section that t = 0. For any proper subspace S
of R™, let 0 < R(S) < m represent its rank. For the sample {x;,1 < i < n}, let
P, be the empirical distribution measure and let n, represent the largest
subsample size such that no ¢ vectors from this subsample lie in a (¢ — 1)-
dimensional subspace. Some conditions on the observed sample used to establish
the various results in this section are listed for easy reference.

ConpITION 2.1. The sample {x;,1 < i < n} contains no values equal to 0,

and furthermore:
(i) span R™;

(i) ng=2m+1;

(iii) P,(S) < 1/m for any proper subspace S;

(iv) P(S) < min{1/m, n,R(S)/(nm)} for any proper subspace S and n, >
m(m — 1);

V) ng=n>m(m—1).

Note that each condition is implied by any succeeding condition, and that
conditions (iii)—(v) imply n > m(m — 1). For such n, all five conditions hold
with probability one when the sample represents a random sample from a
continuous distribution in R™ since n, = n and P(S) = R(S)/n with probabil-
ity one.

Define on the set of symmetric positive definite matrices the matrix valued
function
(2.1) M(T) = mave{T"?x x/T"?/x/Tx,},
where A2 refers to the unique symmetric positive semidefinite square root of

the symmetric positive semidefinite matrix A. The function M is essentially
one-to-one in the following sense.

THEOREM 2.1. If Condition 2.1(ii) holds, then for any two symmetric positive
definite matrices T, and T,, M(T,) = M(T},) if and only if T, = cT, for some
positive scalar c.
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Proor. If T} = cI,, then it easily follows that M(T;) = M(T},). To prove the
converse suppose M(I')) = M(T,) and without loss of generality assume T, = I.
Let vy, represent the largest eigenvalue of T'; and R, its associated eigenprojec-
tion. Multiplying both sides of the equation M(T,) = M(I,) by R, and then
taking the trace gives

(2.2) v,mave{x;Rx,;/x/T'x;} = mave{x,Rx;/x!x,}.

Since x/I'x; < yx!x; unless Rx; = x;, (2.2) holds only if either R;x; =0 or
Rx; =x,; for all 1 <i<n. This contradicts Condition 2.1(ii) unless R, = I,
which implies I, = y,1. O

If there exists a I" such that M(T") = I, then a solution to (1.2) is obtained by
setting V, = T' "L, The uniqueness of the solution is an immediate consequence of
Theorem 2.1.

CoROLLARY 2.1. If a symmetric positive definite solution V, , exists to (1.2)
and if Condition 2.1(ii) holds, then the symmetric positive definite matrix V, , is
also a solution if and only if V, , = ¢V, ,, for some positive scalar c.

To construct a solution to the equation M(T') = I, and hence a solution to
(1.2), consider some initial symmetric positive definite matrix I';. Assuming the
sample spans R™, recursively define the sequence of positive definite symmetric
matrices

iy = T/ 2M;'TY? /(T M5 1)
= {mave(xx}/x/T,x;)} _l/tr(I‘kMk‘l),

where M, = M(T},). If the sequence I', converges to a nonsingular I', then
M(T) = I. Before proving the convergence of the sequence under certain condi-
tions on the sample, some general preliminary results are established.

(2.3)

LEmMA 2.1. Let A, ;, and A, , represent the largest and smallest eigenval-
ues of M,, respectively. If Condition 2.1(i) holds, then A, , is a decreasing
sequence with A, , > A\, > 1 and A, , is an increasing sequence with A, , —
A, <1l

PROOF. By definition,

2.4) I = mave{ M, */?T}/?x x/T}/ My V% /x;T,x,}
=m ave{ ( Fli-/i?lxixg 1%-21/X£Fk+ lxi)(xgrlz/sz— 1I‘I£/2xi/xgrkxi)} .

The second equality is obtained by noting that the symmetric positive definite

square root of I'Y/2M; 'T's/? has the form @, M; '/?T}/2, where @, is an orthogo-

nal matrix. By the extremal properties of the largest and smallest eigenvalues,

(2.4) implies

(2.5) ANt iMy = T2 AWMy,
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where the ordering refers to the partial ordering of symmetric positive semidef-
inite matrices. Since tr(M,) = m, the left-sided inequality in (2.5) implies
A x <An, pi1 <1 and the right-sided inequality implies A, , > A; ., > 1.
Application of the monotone convergence theorem completes the proof. O

THEOREM 2.2. If Condition 2.1(iii) holds, and if for some k, A, ,>
mP,(S)/R(S) for all proper subspaces S, then T, - I', a symmetric positive
definite matrix satisfying M(T') = L

ProoF. Since tr(I') = 1, there exists a subsequence I; - I', a symmetric
positive definite or semidefinite matrix. This subsequence can be chosen so that
1/2
I}/%x,/(xiTx;) " — 0

whenever I'x; = 0, and furthermore so that @, - @, where Q; is defined after
(2.4). The subsequences M; and M, , then converge, respectively, to

(2.6) M= n"lm{ Y r'2x x/I'/?/(x/Tx;) + Y, Oiﬁi'}
1=37] i€w

and '

@7 My=n"'m{ ¥ I xxiDyY/(xilx) + T 4,
icew 137

where

T, - T, = TYV2M - 'TV?/te(M'T), ;= QM28,/(6;M )",

and the index set w = {i|I'x; # 0, 1 < i < n}. The orthogonal matrix @ satisfies
the property (I''/2M~'I''/2)/2 = QM ~/?T''/2, Lemma 2.1 insures M is nonsin-
gular since it implies A, > 0.

By Lemma 2.1, the largest and smallest eigenvalues of both M and M, are A,
and A, respectively. Let P and P, represent the eigenprojections associated
with the largest root of M and M,, respectively, and let r = rank(P) and
r, = rank(P,). Without loss of generality, assume r, > r. If this condition does
not hold, the subsequences (T}, I;, ;) can be replaced by (I, I;,,) and so on
until the condition is met.

Arguments similar to those used in justifying (2.4) can be applied to (2.6) and
(2.7) to obtain

(28) I= n_lm{ Y M1\ 2% x!TV2M V2 /x/Tx, + ), M‘l/zﬂiﬂi’M"l/z}

iew 1E€w
and
I=A7M, + n—lm{ Y (T2xx/T?/x/Tex;)
iew
(2.9) X(x{TV2M T 2x,/xTx; — )\;1)}

+n_1m{ Y o006/ M 79, — )\;1)}.

i¢w
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Pre- and postmultiply both sides of (2.9) by P, and recall PZ= P, and
AP M, P, = P,. This gives for i € w either B,QM ~'/2T'/2x, = 0 or PF1/2x =
I‘l/ ’x;, and for i & w either P, QM~1/29,=0 or P§,=0, Usmg this result
premultiplying both sides of (2.8) by P,@ and postmultiplying by I — P gives
P,Q(I — P) =0 or equivalently Q'P,Q = Q'P,QP. However, since r, > r, this
implies P = Q'P,Q.

The results of the previous paragraph imply for i € w either PT*?x,=0
or PI'/?x,=T"%x,. This contradicts Condition 2.1(ii) unless PI'/2 =0 or
PT/2 = T2 If PT'/2 = 0, then after noting that the results of the previous
paragraph also imply for i € w either P6; = 0 or PO, = 0, it follows from (2.6)
that A\, P = n™'m%,; . 9,0/ where the index set

v={il'x;=0, P§;=6,,1 <i<n}.

Applying the trace to the last equation and recalling that 60, = 1 gives A;r <
n~mny, where nr represents the number of sample vectors in the null space of
T. However, by Condition 2.1(iii) this implies A, < mn/(rn) <1, a contradic-
tion. Thus, PT''/2 = I''/2 and so

(2,10) P=n"'mA;') I'?x x’I‘l/z/x’l"x +n7im ALY 6,6,
ew i€ew

The ranks of the two summations in (2.6) are additive, and hence the ranks of
the two summations in (2.10) are additive. This implies that the two terms
on the right-hand side of (2.10) are both orthogonal projections. By Condition
2.1(i), the first term has rank equal to rank(I'). Applying the trace to the first
term gives
(2.11) A, =n"'m(n — n;)/rank(T).

Applying the trace to the last term of (2.10) gives A; < 1. This implies v is empty
and thus by Condition 2.1(i), r = rank(T"). The inequality m = tr(M) > rA, +
(m — r)A,, then gives A, < mn/{n(m — r)}.

The last inequality violates the condition on A, r unless M, — I, since by
Theorem 3.2, A, , increases to A,,. Since M), — I, it follows from (3.3) that the
sequence I', —» I'. By (2.11), T must be nonsingular. Finally, by the continuity of
the function M(-) when the argument is nonsingular, M(T") = 1. O

As a consequence of Theorems 2.1 and 2.2, in order to prove the existence of a
“unique” solution to (1.2) and to construct the solution via (2.3), it is sufficient to
show the existence of an initial symmetric positive definite matrix I'; such that
the largest root of M(T,) satisfies the condition stated in Theorem 2.2. Two
examples are given in the following corollaries.

COROLLARY 2.2. If Condition 2.1(v) holds, then for the initial value T, =
(X7 xx}} "1, the sequence I}, — T, a symmetric positive definite matrix satisfy-
ing the equation M(T") = I.

Proor. Since Condition 2.1(v) implies 2.1(iii), it is sufficient to show A, , >
m/n. Let w, =I'}/?x; and a = max{w;/w;, 1 <i < n}. Since L ,ww/ = I, it
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follows that 0 < @ <1 and M, > {m/(na)} I. Thus, A, , > m/(na). However,
a =1 only if there exists a j such that w/w; =0 for i #j. This contradicts
Condition 2.1(v) and hence A, , > m/n. O

Let {y;,1 < i < n,} represent a subsample of size n, such that any subset of
size m from this subsample spans R™. If Condition 2.1(iv) holds, then by the
preceding corollary there exists a positive definite matrix I'; such that

o
(2.12) ng'm Y I12y,y/T1%/y/Tyy, = I
i=1

CoROLLARY 2.3. If Condition 2.1(iv) holds and T, satisfies (2.12), then the
sequence I', = I, a symmetric positive definite matrix satisfying the equation
M) =1

ProoF. From the definition of I, it follows that M, > (n,/n)l. Thus,
A1 = ny/n > mPB,(S)/R(S) for any proper subspace S. O

REMARK 2.1. Condition 2.1 demands that no sample vector x be equal to the
center t since for such cases the left-hand side of (1.2) is undefined. A practical
modification in such cases is obtained by disregarding these sample vectors in the
average. Such sample vectors contain no directional information, that is, infor-
mation on functions of the scatter matrix that satisfy Condition 1.1.

3. Distribution theory: Location known. Let V, represent the solution to
(1.2) that is standardized so that tr(V,) = m, and where it is still assumed
without loss of generality that t = 0.

By the results of the previous section, for n > m(m — 1), V,, exists and is
unique on a set with probability one when the random sample is drawn from a
continuous distribution in R™. For a continuous population, say represented by
an m-dimensional random vector X possessing a density in R™, let V be the
symmetric positive definite solution to

(3.1) mE(XX'/X'V-1X) =V,

which is standardized so that tr(V) = m. Application of Theorems 2.1 and 2.2 to
a continuous population rather than a sample insures that V exists and is unique.
If the population is elliptical, then V corresponds to the pseudocovariance or
scatter matrix parameter.

The strong consistency of V, as an estimate of V does not follow readily from
the general theory for M-estimators. In particular, Condition (B-4) as given by
Huber ((1981), page 131) does not hold. The proof of the following consistency
theorem is similar to the classical proof of the maximum likelihood estimators.

THEOREM 3.1. If the sample {x,,i = 1,2,...} represents a random sample
from a continuous distribution, then V, — V almost surely.
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Proor. Let M, (T') and M(TI') be defined by (2.1) when the average refers to
the sample and population, respectively, and let A, (T) = tr{M,(T)?} and
A(T) = tr{M(T")?} for symmetric positive definite matrices I of order m. Since
tr{M,(T)} = tr{M(T)} = m, it follows that m < h(T') < m? and m < h(T') <
m?. Furthermore, h,(I') = m or A(T') = m if and only if M (') = T or M(T') = I,
respectively. Let C be any compact set such that for all T in C, tr(I'"!) = m and
tr(I') < K < oo, where K > m. It is to be shown that

(3.2) sup |h,(T') — A(T)| - 0 almost surely.
recC

It is also to be shown that under Condition 2.1(ii),

(83.3) T, is a critical value of 4, if and only if M, (T,) = L.

Without loss of generality, assume V = I and hence M(I) = I. Let C be chosen
so that it satisfies the aforementioned conditions and contains I in its interior.
Since h(I) =m < h(l) for T € C, T # I, and A(T) is continuous, statement
(3.2) implies with probability one that for large enough n, h,(I) is less than
h,(T) for any value on the boundary of C. Hence, with probability one, A,
contains a local minimum in C for large enough n. By (3.3), this implies with
probability one that V! is eventually in C. Since C can be chosen to be
arbitrarily small, it follows that V! — I almost surely and hence V,, — I almost
surely.

PROOF OF STATEMENT (3.2). For x € R™, x # 0, define
G(x,T) =T'"2xx'T"%/x'Tx.

It can be shown that the function G is an equicontinuous function of I on C in
the sense that for all ¢ — 0 there exist §, < 0, which is not dependent on x # 0,
I'y€ C, nor T € C, such that if ||I' — I})|| <4, then ||G(x,T') — G(x, IH)|| <e.
Since C is compact, for any 8, > 0 there exist a finite partitioning of C, say
{C, 1}, such that ||, — T,|| < 8, for ', € C, , and T, € C, . Choose one element
from each of the sets C, ,, say T, ,, and label the set C,. Since P(X = 0) = 0, it
follows from the equicontinuity of G and the strong law of large numbers that

sup | M,(T) — M(T)]|
TecC

< max sup {||M,(T) — M,(T, )il + [IM(T) — M(T, »)II}
k rec
(3.4) “k
+ ml?'x”Mn(re,k) - M(Fe,k)
< 2me + ml?.x"Mn(I‘e’k) — M(T, ,)|| = 2me

almost surely. Since ¢ can be chosen to be arbitrarily small, it follows that
supr e ol|M,(T) — M(T)|| = 0 almost surely, and hence (3.2) holds. O

PROOF OF STATEMENT (3.3). The critical points of A, can be found by using
the expansion

(83.5) hy(T + I') = hy(T) + 2m tr[{B(T)IB(T) — C(T)}T] + o(112),
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where
B(T') = ave{xx}/x/T'x;}
and
c(l) = ave[{x;FB(I‘)I‘x,/(xgl‘xi)z}xix’i].

Thus, T, is a critical point of A, if and only if B(T,)I',B(T,) = C(T,). Multiply-
ing both sides of this last equation by {B(T,)} !, which by Condition 2.1(ii)
exists, and then taking the trace gives

(3.6) 1 = ave[8/M,,(T,)8; x ;{M,(T,)} '8,
where
0, = IV?x,/x/T, x;.

However, by Kantorovich’s inequality, equation (3.6) holds only if 6, is
an elgenvector of M(T,), 1 <i < n. This contradicts Condition 2. 1(ii) unless
M(T,) =

Rather than using the general theory for M-estimators, the asymptotic
normality of V, can be proven directly. The most cumbersome part involves
specifying the form of the asymptotic covariance of V,. For this reason, the
asymptotic distribution of V, , = mV, /tr(V~'V,) rather than V,, is given in the
next theorem. Note that V; , represents the unique symmetric positive definite
solution to (1.2), which is standardized so that tr(V-'V,, ,) = m. For any well
defined function of the scatter parameter, that is functions satisfying Condition
11, H(V, ,) = H(V,).

The followmg conventional notation is used. For a symmetric positive semi-
definite matrix A, let A* represent its unique Moore-Penrose generalized
inverse. If B is a b X t matrix, then vec(B) is the transformation of B into the
bt-dimensional vector formed by stacking the columns of B. If Bis b X ¢t and C
is ¢ X u, then the Kronecker product of B and C is the bc X fu partitioned
matrix B ® C = [b;;C]. The commutation matrix is the ab X ab matrix

a b
=X XJ;ed)

i=1j=1
_where J;; is an @ X b matrix with one in the (i, j) position and zeroes elsewhere.
A good overview of the algebraic properties of the vec transformation,
the Kronecker product and the commutation matrix is given by Magnus and
Neudecker (1979). These properties and the properties of the Moore—Penrose
generalized inverse are to be used without further reference. For the sake of
brevity, many algebraic manipulations used hereafter are not explicitly stated
since most are fairly straightforward but cumbersome.

Let M (T) = mave{T'"?xx;I'"/2/x/T'x;} where the averageisover1 < i < n.
For random samples from continuous populations in R™, the central limit
theorem implies n*/*(M,(V~') — I} - Z in distribution, where vec(Z) is multi-
variate normal with mean zero and covariance matrix =, which depends on the
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fourth moment of § = V-12X /(X’V~1X)!/2, Specifically,

S = m[ZO - m”lvec(I){vec(I)}’], where =, = mE(060’ ® 60").
Since 0 has a continuous distribution on the unit m-sphere, Var(6’B08) = 0 if and
only if B=AI or B+ B’ = 0. This implies vec(B) is in the null space of =

if and only if B satisfies the aforementioned property. Hence, rank(Z) =
im(m — 1) — 1 and the orthogonal projection onto the range of = is

Q=1i(I+K,, ,)—m ‘vec(I){vec(I)} .

THEOREM 3.2. If the sample {x;,1 < i < n} represents a random sample
from a continuous distribution in R™, then n'*/*(V, , — V) — N in distribution,
where vec(N) is multivariate normal with mean zero and variance—covariance
matrix

Sy(V) =4m(V2 @ V) (I + K,, . )(I-34)}"
XZo{ (I + K o )(I = Z0)} (V2@ V),
where 3, is previously defined. The rank of Z\(V) is tm(m — 1) — 1.

ProoF. Applying the identity
(xiVeix) = (xv7ix,) T = =y (Vo k- VO )=y {xV o, X XV 1x )

to the equation M,(V; ») = I gives

A, =M(V™') — mave{0,6/( A, — 1)0,6//6/A,%,},
where
1/2

A,=V"V, VY2 and 6=V ""2x/(x/V 'x,)
This equation can be restated as
(8.7) {I-3, (A2 ®A;?)}vec(A, — I) = vec{M,(V™) — I},
where

21’ n— m ave{ﬁiei' ® eioil/ei’A; lﬂl} .

The term 2, , can be bounded above and below by A.'(A,)Z,, and
ATY(A)Z, 5, respectively, where A(A,) and A, (A,) are the largest and small-
est roots of A,, respectively, and X, , = mave(8,8/ ® 6,0/}. Since A,, > I almost

surely and by the large numbers 2, , — 2, almost surely, it follows that
2, » ~ 2, and hence

(3.8) (I —32,){n*2vec(A, —I)} - vec(Z)
in distribution. The range of (I — Z,) contains the range of the orthogonal
projection
Q=1(I+K, ) —m vec(I){vec(I)},
and furthermore
Qvec(A,—I)=vec(A,—I) and Q vec(Z) = vec(Z).
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This implies
2vec(A, — I) > (QI — 24)Q) " vec(Z)
in distribution, or equivalently
(3.9) n'%vec(V, ,) = vee(N) = (V2@ VV2){Q(I - 2,)Q) " vec(2)
in distribution. This gives
2,(V) = (V20 V2){Q(I - 2)Q} " 2{QU - 2,)Q} " (V@ VV/?),

which reduces to the form given in the statement of the theorem after noting
that

(QU-2)Q) "= {QU-2)Q}" @, ~Q2Q=m3,
since @ vec(I) = 0, and
Q(I - 2O)Q = %(I + Km,m)(I - 20)

since (I — 3,)vec(I) = 0. O

If the continuous distribution being sampled has an elliptical distribution,
then 0 is uniformly distributed on the unit m-sphere. The distribution of 8 is the
same as PO for any orthogonal P and 67 has a B{3}, (m — 1)} distribution.
These two properties imply after some calculations that

S,=mE(00'®00") =(m+2) ' [[+K, .+ {vec(I)}{vec(I)},].

The form of 2, in Theorem 4.2 then simplifies to
(310) 2,= (1 +2/m)[(I+K, ) (Ve V)+2m vec(V){vec(V)} ].

Note that the asymptotic distribution is not dependent on the particular
elliptical distribution being sampled, that is, it does not depend upon the
“nuisance functional parameter” g in (1.1). This is not a consequence of the
asymptotic theory.

THEOREM 3.3. If the sample {x;,1 < i < n} represents a random sample
from a population with an elliptical contoured density (0, V; g) (see (1.1)), then
for n> m(m + 1), the distribution of V, , does not depend on the function g.
Furthermore the distribution of Z, = V-2V, V-2 is invariant under the
transformation Z — P’ZP for any orthogonal P

Proor. With probability one, the random matrix Z, is defined implicitly as
the unique symmetric positive deﬁnite solution to the equations
m ave{Z,'/%00/Z, 1/2/()’Z 8} =1 and tr(Z,)=m

where 6, = V-/2x,/x/V"'x,. The theorem then follows after recalling that 6;
is uniformly distributed on the unit m-sphere, irregardless of the functional
form g. O
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Although the distribution of V;, , does not depend upon the specific elliptical
distribution from which the sample is taken, the exact distribution theory
appears to be formidable. In any event, Theorem 3.3 has important implications
if one wishes to simulate the distribution of V; , or some function of Vj, ,,.

REMARK 3.1. The estimate V, can be viewed as the “most robust” estimate
of scatter for elliptical distributions in the following minimax sense. Suppose
the function g is known, and let V, represent the maximum likelihood estimate
of V. Under the usual regularity conditions, the limiting distribution of
vec(n/¥V, , — V,)}, where V, = mV/trx(V) and V,, , = mV,/tr(Vy 'V,), is multi-
variate normal with mean 0. The asymptotic covariance matrix can be shown to
be o, [(I+ K, ,)V,® V;) — 2m~'vec(V;){vec(V;)}'], where o, , is a scalar
dependent on g but not on V. The scalar o, , is strictly bounded above by
(1 + 2/m); see Tyler (1983), Theorem 1 and Section 4 for a more detailed
discussion. Consider a real-valued continuously differentiable function H(V)
satisfying Condition 1.1. It follows from (3.10) and the bound on ¢, , that over
the class of continuous elliptical distribution satisfying the aforementioned
regularity conditions, the maximum asymptotic variance of H(V,) is less than
the maximum asymptotic variance of any other consistent and uniformly
asymptotically normal estimator of H(V).

4. Estimating scatter when location is unknown. The simultaneous
affine invariant M-estimators of multivariate location and scatter are defined by
Maronna (1976) to be the vector t, and the symmetric positive definite matrix
V,, respectively, which satisfy the equations

ave{u,(d;)(x; — t,)} =0
and
ave{uy(s;)(x; — t,)(x; - t,)'} =V

where
d,=s}?= {(xi —-t,)V, (x; - tn)}1/2'

Sufficient conditions on u;, u, and the empirical distribution are given by
Maronna (1976) and Huber (1981) to insure the existence of a joint solution
(t,, V.,). The proof of joint existence depends on showing that for a fixed t, the
solution to the second equation, say V,(t,), is a continuous function of t,,. As far
as the author is aware, the uniqueness of the joint solution is still an open
question.

The corresponding limit to (1.2) of the Huber-type estimator for u, is
u,(d) = d~'. This choice of u, possesses the property that for a fixed V, the
solution t, to the equation ave{u,(d;)(x; — t,)} = 0 is invariant under multipli-
cation of V,, by a positive scalar. This property is necessary if the equation is
used in conjunction with (1.2). Unfortunately, although it is possible to show
that the solution to (1.2) is a continuous function of t for t # x;, 1 < i < n, the
discontinuities at the sample vectors are not removable. These discontinuities
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prevent the direct application of Brouwer’s fixed point theorem, as in Maronna’s
(1976) proof, in proving the joint existence when u,(d) = d~! and u,(s) = ms™.
The author has not resolved this difficulty.

Alternatively, rather than simultaneously estimating location and scatter, an
estimate of scatter can be obtained by replacing the location parameter t in (1.2)
by some estimate say t,. For example, t, could be taken to be the sample mean,
the componentwise median, or some other componentwise estimate of location.
One drawback to componentwise estimates of location, except for the sample
mean, is that they are not affine equivariant, and so the resulting estimate of
scatter will not be affine equivariant. If affine equivariance is desired, rather than
using the sample mean vector, t, can be taken to be one of the affine equiv-
ariance M-estimates of location previously discussed. In the following discussion,
t,, need not be affine equivariant.

If the estimate t, is equal to some sample observation and t, replaces t in
(1.2), then a solution to (1.2) for V, does not exist. This poses no problem when
using the sample mean since such an event has zero probability when sampling
from a continuous distribution. However, for some other estimates of location,
e.g., the componentwise median, such an event has positive probability. Rather
than restrict the choice of the location estimate, define the estimate of scatter
V,(t,) to be the symmetric positive definite matrix satisfying tr{V,(t,)} = m
and

(4.1) mave*{(x; - t,)(x; — t,)"/(x; = t,) V' (t,)(x; — 1)} = Vi (t,),

where ave* refers to the average over 1 < i < n for which x; # t,. A heuristic
justification for this estimate is given in Remark 2.1. Hereafter, it is assumed
that {x;, i =1,2,...,} represents a random sample of a continuous random
variable X of dimension m. This guarantees the existence and uniqueness of
V,(t,) when n > m@2m — 1).

LEMMA 4.1. If n > m(2m — 1), then with probability one, V,(t) exists for all
t € R™ and is unique for each t.

Proor. With probability one, no ¢ + 1 points lie in any (¢ — 1)-dimensional
plane. Also, with probability one, no m + 1 planes generated by m + 1 distinct
subsets of size m from {x;,1 < i < n} contain a common point. Without loss of
generality, consider t = 0. The lemma follows after noting that on
the intersection of the two aforementioned events n, > n — m? and P,(S) <
{R(S) + 1} /n, and so Condition 2.1(iv) holds. O

Without loss of generality, it is still assumed that t = 0 and hence V,(t,)
estimates the parameter V defined by (3.1). The consistency and asymptotic
normality of V,(t,) are established in the following two theorems, provided ¢,
converges to t = 0 at an appropriate rate. It is interesting to note that in order
to establish consistency and asymptotic normality, the population distribution
cannot be too heavily concentrated about the center. Intuitively, such a condi-
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tion seems necessary since small changes in t, would result in large changes in
the direction of x — t,, for x near t,.

THEOREM 4.1. Assume there exists a sequence of random variables T,, such
that for some a > 0, n°t't, < T, and T, converges almost surely or in distribu-
tion, with convergence to 0 when a = 0. If E{|| X||~2/@*%} < oo for some norm
then V. (t,) — V almost surely or in probability, respectively.

Proor. Let M(T), M (T), (T) and h,(T') be defined as in the proof of
Theorem 3.1, and define
(4.2) M,(T,t,)= mave*{I‘l/z(xi - t,)(x; — t,)T?/(x; - t,) T(x; — tn)}

and h(T,t,) = tr{M(T,t,)?}. Statement (3.3) is valid if 4,(T) and M,(T,) are
replaced by A, (T,t,) and M, (T,,t,), respectively. As with Theorem 3.1, Theo-
rem 4.1 follows if it can be shown that suppco|h,(T,t,) — A(T)| — 0 almost
surely or in probability, depending on the condition on t,. The set C is defined
as is (3.2). The almost sure case is considered here. The in probability case is
analogous. By (3.2) it is sufficient to show suprc c||4,(T,t,) — A, (T)|| = 0 or

(4'3) Sup”Mn(I"tn) - Mn(r)ll -0
recC

almost surely. Since norms are equivalent in finite dimensional spaces, let the
norm in (4.3) be defined by ||A||> = tr(A’A) for any m X m matrix A.

The event x; = t, for at most one sample vector and x; # 0 for 1 < i < n, has
probability one. Therefore, notation is restricted to such events. Let G(x, I') be
defined as in the proof of statement (3.2), and note ||G(X,T)|=1 for x# 0
and so ||G(x—-t,,T)— GxTI)|<2for x+#0and x # t,. For x;, € &,(y) =
{x|(x-t,)(x—-t,)>yx'x},where 0 <y <1,

IG(x; - t,, T) — G(x;, T)|?
= 2{(t;zrtn)(x§rxi) - (t;rxi)2}/{x§rxi(xi -t,)T(x; - tn)}
(44) =< 2(t;Tt,)/(x; - t,)T(x, - t,) '
< 2MT)tt,/(x, — t,) (x; — t,)
< 2Ay Tt /x!X;,

where A(T') is the ratio of the largest to the smallest root of T, and A =
maxr  oA(I") < oo since C is compact. The preceding results imply for I' € C,

IM,(T,t,) — M,(T)]|
< mave*{|G(x; - t,,T) - G(x;,T)||} +2n"'m
< mn(n - 1) [ PA£2(v)) + @M1 A(tt,)"

Xave{(xgxi)_l/z}] - 2n"'m,

(4.5)

where P, represents the empirical probability measure of {x;, 1 < i < n}. Since
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t,, — 0 almost surely, P,{%,(y)} — 1 almost surely. From Marcinkiewicz’s SLLN
(see, e.g., Loéve (1963), result 16.A.4.4), n~*/2ave{(x/x;)”'/?} — 0 almost surely
since E{|X||~2/¢+®} < co. Thus by the conditions on t, in the theorem, the
right-hand side of (4.5) goes to zero almost surely. Statement (4.3) follows since
the bound in (4.5) is uniform for I € C. O

As an example, suppose t, is taken to be the sample mean X. By
Marcinkiewicz’s SLLN for a < 1, n®/2% — 0 almost surely if E{|[X||>/®~ 9} < oo.
In addition, n'/2X converges in distribution if E{||X||?} < 0. Thus, if
E{|X||>/@~®} < o0 and E{|X||"*©@*®} < oo hold for @ = 1, then V,(X) is weakly
consistent, and if they hold for some 0 < a < 1, then V() is strongly consistent.

As another example, suppose t, is taken to be the sample componentwise
median. If each population componentwise median is unique and has positive
density at the median, then n'/%t, converges in distribution and by the LIL for
medians, n%/?t, - 0 almost surely for any a < 1. Under the aforementioned
conditions on the marginal distributions, V,(t,) is weakly consistent when
E{|X||"%/3} < co0 and strongly consistent when E{|X||~>**®} < co for some
O0<a<l

Turning now to the question of asymptotic normality, let V, ,(t,) =
mV,(t)/tr{V-V(t,)}. Also define ¢ = E(S™'/?8) and C = E(S™"0 ® 66),
where again § = V~2X /8%% with S = X'V™'X.

THEOREM 4.2. Assume there exists a sequence of random variables T, such
that nt't, < T, and T, converges in distribution. If E(]| X||"3/?) < oo for some
norm, ¢ = 0 and C = 0, then n'/?(V, (t,) — V} = N in distribution, where the
distribution of N is same as in Theorem 3.2.

Proor. Let M(T), M, (T,t,) and G(x,T) be defined in the proof of The-
orem 4.1, and let =, ,, =, , and 6, be defined as in the proof of Theorem 3.2.
Also, let

An(tn) = V—1/2‘/0’ n(tn)V_l/z’
ei(tn) = V_l/z(xi - tn)/{(xi - tn)'V_l(xi - tn)}

1/2

for

X, # £y, 2y o(t,) = mave{8,(t,)0(t,) @ 0,(t,)0,(62) /0,(t,) An(t,) "8(t,))
and
S, n(t,) = mave*{6;(t,)8(t,)" ® 0,(t,)8,(t,)’}.

Statement (3.7) holds if =, ,,, A, and M, (V"™ 1) are replaced by =, ,(t,), A.(t,)
and M (V~1,t,), respectively. It is to be shown that =, ,(t,) = 2, in probabil-
ity and n"(M,(V~-Lt,) — I} > Z in distribution. This implies (3.8) holds
whenever A, is replaced by A,(t,). The remainder of the proof of the theorem is
then identical to the proof of Theorem 3.2.
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Unless stated otherwise, all convergence statements for the remainder of the
proof are understood to be in distribution. To prove =, ,(t,) = Z,, as in the
proof Theorem 3.2, since A,(t,) — I, it is sufficient to show 2, ,(t,) = Z,, and
since 2, , = 3,, it is sufficient to show ||Z, ,(t,) — =, .|| = 0. Using the identi-

- ties, tr(A; ® A,) = tr(A))tr(A,) and (4, ® A,)(B, ® B,) = A,B, ® A, B, when
the matrices are conformable, one can note |[b,b; ® b,b/|| = 1 if bib, = 1. Also

1/2 , 1/2

Ilo,1; ® byb; — byb; @ bybg| = 21/%(1 — (biby)*) "~ < 2(1 = (biby)’)
if byb, = byb, = 1, where again ||A||2 = tr(A’A) for any m X m matrix A. Using
these results, one obtains
”20, n(tn) - 20, n" .

< 2mave*{||G(x; — t,, V™) — G(x;, V7I)|I} + 2n"'m
on the event x; = t, for at most one sample vector and x; # 0 for 1 <i < n,
which without loss of generality is assumed to hold. As in (4.5), the right-hand

side of (4.6) goes to zero.
To show n'/2((M (V-Lt,) — I} - Z, it is sufficient to show

M, (V-Lt,) - M (V1)) - 0.

(4.6)

Using the expansion

x'x/(x—t)(x—t) =1+2t'x/x'x + e(x,t)/(x — t)'(x — t),
where

e(x,t) = {4(t'x)2 - (t't)(x'x) — 2t'tt'x} /x'x,
for x; # t, one obtains
0,(t,)8,(t,) =08/ + R, + Ey; + Ey,,
where
’ R;= {2¢88; — V'V2(xt' + t,x;)V 2} /s,

with ¢; = x/V~1t, and s, = x;V"'x,,

E, = e(V_l/in’ V_1/2tn)0i(tn)0i(tn)'
and

By = VT2 [(1 + 2¢/8)t87, — (2e/5:)(t,x] + x,)] V%5,

Note that if x; = t, then R, =0, e(V~?x,, V"%t ) = 1 and E,; = —0,;. Let

a,=1ifx;#t, forl<i<n and a,=n/(n-1)if x;=t, for one such i.

The results of this paragraph imply

(47) M,(V4t,) = a,{M,(V"!) + mave(R;) + mave(E,,)}
+mave*(E,;).

_After some algebraic manipulations, application of Marcinkiewicz’s SLLN gives
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n'/%ave(|| E,;|)) > 0 almost surely and
n'2ave*(||E|) < n/?ave*{le(V~2x,, V~1/%,)|}
< annl/zave{le(V'szi, V-12¢,)} -0

almost surely. Algebraic manipulations using the vec operator give vec(R;) =
{206, ® 6,6/) — (I + K,, ,,)(6; ® I)}s;/*V~1/2¢ , which implies

(4.8) |vec{n'?ave(R;)} — {2C — (I + K,, ,,)(e ® I)}V~1/2(n'/2t )| - 0.

Thus, if ¢ =0 and C = 0, then n'/?|M,(V~Lt,) — M (V1) = 0. This com-
pletes the proof. O

If ¢ #+ 0 or C # 0, then Theorem 4.2 is still valid if nt/t, — 0 in probability.
More realistically, suppose ¢ # 0 or C # 0 but

[n/2t,, R4 (M (V) - I}] > (Y, Z)

in distribution, where (Y, Z) is jointly multivariate normal with mean zero,
2y(V) = E(YY'), 2,4(V) = E{vec(Z)Y’} and the covariance matrix for vec(Z)
is given prior to Theorem 3.2. It follows from (4.7) and (4.8) that Theorem 4.2
still holds for this case but with vec(IN) being multivariate normal, mean zero
and covariance matrix

(49) A(V){mZ,+ Z,yB(V) + B(V)Zyy + B(V)ZyB(V) JA(V),
where

A(V) =2(V20 V) {(I+ K,, ,)(I-20)}"
and

B(V)=(I+K, ,){C—(c®I)}V1/2

The form of (4.9) is obtained by using arguments similar to those after (3. 8) and
by noting @{2C — (I + K,, ,,)(¢ ® I)}V"1/? = B(V) with @ defined prior to
Theorem 3.2.

For distributions that are symmetric, i.e., £(X) = £(—X),c=0and C=0
and so Theorem 4.2 holds provided the other conditions of the theorem are met.
In particular, for elliptical distributions, the asymptotic distribution of Theo-
rem 4.2 does not depend on the particular functional g in (1.1), at least for
those g under which t, satisfies the conditions of the theorem and for which
E(|X]I"%?) < . Thus, if t,, is the sample median, then Remark 3.1 applies over
the class of continuous elliptical distributions for which E(|X||~%%) < . Fi-
nally, for elliptical distributions, the condition E(|X||#) < co is equivalent to

(4.10) / s(B+m=2/2g (s)TL;< .

For normal populations, (4.10) is satisfied for m > —pB, and so Theorem 4.2
applies to normal populations.
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