The Annals of Statistics
1986, Vol. 14, No. 4, 1419-1430

INVARIANTS AND LIKELIHOOD RATIO STATISTICS

By P. McCuLLAGH AND D. R. Cox

University of Chicago and Imperial College, London

Because the likelihood ratio statistic is invariant under reparameteriza-
tion, it is possible to make a large-sample expansion of the statistic itself and
of its expectation in terms of invariants. In particular, the Bartlett adjust-
ment factor can be expressed in terms of invariant combinations of cumulants
of the first two log-likelihood derivatives. Such expansions are given, first for
a scalar parameter and then for vector parameters. Geometrical interpreta-
tion is given where possible and some special cases discussed.

1. Introduction. Suppose that Y is an n X 1 random vector having a
density depending on the p X 1 vector parameter §. Write I(6;y) for the
log-likelihood function for # given an observation y on Y. The hypothesis 6 = 6,
can be tested via the likelihood ratio statistic

(1) w(6,) = 2{U(6;y) — U(65; )},
where § is the maximum likelihood estimate of 6.
Under rather general regularity conditions, when 8 = 6,,, w(6,) has asymptoti-

cally the chi-squared distribution with p degrees of freedom. Further, again
when 6 = 6,

(2) E{w(8,)} =p{1 + b(6,)/n + O(l/n3/2)}.
If w(8,) is divided by the Bartlett factor, {1 + b(6,)/n}, the approximation to
X, is improved. In fact, excluding lattice problems,

(3) w'(6,) = w(8,){1 + b(6,)/n} "’
has the x2 distribution with error O(1/n%?) [Lawley (1956) and Barndorff-
Nielsen and Cox (1984)]. :

Confidence regions can be formed from (3) as the set of § not “rejected” by
the statistic w’(#). Further, the results are readily extended when only certain
components of 6 are of interest; it will then typically be necessary to use a
consistent estimate of the Bartlett factor.

The direct evaluation of b(6) via (2) can be arduous; Barndorff-Nielsen and
Cox (1984) give an indirect method, which is sometimes simpler.

An important conceptual advantage of w’(6,), and of the confidence regions
based on it, is their exact invariance under reparameterization. The object of the
present paper is to exploit this invariance to explain the general structure of
b(6). For simplicity of exposition, we start with scalar 6, p = 1; see Cox and
Hinkley (1974), page 339, for a rather unenlightening explicit form for b(f) in
this case.
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1420 P. McCULLAGH AND D. R. COX
2. One-dimensional parameter.

2.1. Invariant random variables and generalized information measures.
Throughout, expectations and derivatives are taken at a fixed value of 8, which
in the testing context of Section 1 is the null hypothesis value, §,. For simplicity,
we consider primarily the special case when Y consists of n independent and
identically distributed components with density f(y; #), say. The key require-
ment, however, concerns the asymptotic dependence on n of the random vari-
ables and cumulants that follow.

We write A, for the rth cumulant of d log f(Y; 8)/d0, A, for the joint (r, s)
cumulant of d log f(Y; 8)/36, 32log f(Y; 8)/38% and so on. For the standard-
ized cumulants corresponding to A,, we write p, = A,A;"/% so that p,, for
example, is the usual measure of skewness of the score statistic. Note that
AL=0,A, = —Ay.

The key to the direct evaluation of b(8) is to write

(4) 21(0;Y)/00 = VnZ,,  3%(0;Y)/38% = n\y, + VnZ,,

and so on, where Z,, Z,, are random variables of zero mean normalized to be
O,(1). Further, because of the relation to sums of independent random variables,
we have that, for example, A, (Z) = A, ,n~"/275/2*1 in an obvious notation.

Now suppose that we reparameterize in terms of ¢ = ¢(8). If we denote by an
asterisk quantities referring to ¢, it is easy to show that in particular

(5) ANy = =N = }\2‘92,
(6) Zx =20, Zy=27,0°+20, Z}=2Z8°+3Z,00+280,

where § = df/de, and so on. Now transformation by multiplication by a power
of 6 is the one-dimensional version of tensor transformation and leads im-
mediately to an invariant, for example by multiplication by an appropriate
power of A,.

Because for fixed 6, the values of §, §,... can be chosen arbitrarily, it follows
from (6) that Z,, the deviation of Z, from its linear least-squares regression on
Z,, of Z; from its linear least-squares regression on Z,, Z,, and so on, are one
choice of random variables with the required transformation properties. Thus we
write

(7) R, = _‘_351_ R. = (Zy — YaR1) R. = (Zy — vy R, — vnR,)

1 ‘/E ’ 2 }\2 ’ 3 }\3 2/2 PR
where v,, = cov(Z,, R,)/var(R,) = cA;,/ \/E, . Here ¢ = +1 according as 6
is a strictly increasing or a strictly decreasing function of some fixed (but
arbitrary) reference parameterization.

If, as would typically be the case, we want invariance under the change from 6
to —#@, then we need dependence on c2. Subject to this, invariant functions of the
random variables (7) and expectations thereof are themselves invariant and
hence the choice of R, R,,... is not unique.
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In particular R?, R,, R,, R\R;,... are invariant as are
(8) 03(R,) = p3/n, p(R)) = py/n, var(R,) = (}\02>‘2 - }\211)/}\32,
cov(RZ, Ry) = (Agyhy — Apyhg)/(nV203), ... .

Some other invariant expectations take on simplified versions when terms that
are O(1/n) are neglected.

2.2. The Bartlett factor. Following Lawley (1956), the direct technique for
evaluating b(6) is first to express § — 6 in terms of the Z s, up to and including
the term of order n~3/2, and thence to obtain

Zi  Zow | ZiZ,

6) = =L +
w(f) A, 3nl2N% 0 nl/2N,

Z{t}\OO()l Zi‘}\QOOI Z13Z2}\001

) 12nX%, 4nX’, nX%,
Z3Z, 772
oy 2122 o(n ).
3nXs,  nX (=%%)
Note that
Agog T 3N +A;=0,
(10) 001 11 3

Aooor T 4A 101 T 3Age + 6Ay + A, = 0.

Now w(8), but of course not § — 8, can be expressed in terms of the invariant
random variables, in fact to the order required in terms of a linear combination
of R%, RIR,, p,R3, R}, RIR%, and R3R,. If we take expectations in (9) and use
(10), (8), and (9), it follows that E{w(6)} indeed has the form (2) and further
that, by invariance and the structure of (9), we must have

(11) b(8) = ko + ko2 + kyp, + kivar(R,) + kicov(R2, R,),

where R,, R, refer to a single observation. Here &, k,, k,, k{, k} are constants,
i.e., are independent of n and of the A’s. It is important that, to this order,
cumulants only of R, and R, are involved.

Our objective here is more to explain the structure of b(8) than to simplify its
calculation, although some simplification can be achieved by examining special
cases.

If the observations have a full one-parameter exponential family distribution
then R, = 0 and only the first three terms contribute. Further, if the observa-
tions are normally distributed with unknown mean, w(f) has exactly the x?
distribution, p; = p, = 0, so that k2, = 0. Also, although we know of no direct
probabilistic interpretation, the same distributional result holds exactly for the
inverse Gaussian distribution, for which it is easily shown that 3p, = 5p2. Finally,
for the exponential distribution, b(6) = ¢, so that the first two terms in (11) are

(12) (503 — 3p,).
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Thus these measure the nonnormality or noninverse normality of the first
derivative of the log-likelihood.

The last two terms in (11) depend on the departure from simple exponential
family form, var(R,) being the square of the curvature of Efron (1975). Evalua-
tion of k{ and kj} is probably most easily achieved via comparison of the
coeﬂicients of Ay, and Ay;:in fact k{ = {, k5 = — 1, so that

(13) b(6) = 35 (505 — 3p,) + jvar(R,) - ycov(R,, RY).

2.3. Nonlinear regression. As a special case we consider one-parameter
exponential family nonlinear regression. Suppose that each random variable Y
has g components independently distributed in some one-parameter exponential
family distribution with canonical parameters a,(6),.. a,(0). Let k(0) be the
associated cumulant function, so that the log-hkehhood function corresponding
to a single Y is

(14) i‘, [a:(0) — k{a;(0)}].

The s1mplest special case has Y; normal with mean a;(#) and unit variance, when
k(w) = 1w? The further spe01al case ¢ =2, a,(0) =6, ay(0) = ch® has been
studied in detall by Efron (1975).

For asymptotic considerations we suppose we have available a large number of
independent realizations of the above; an alternative asymptotic argument
would involve large g with some restrictions placed on the a,(8).

By a standard property of the exponential family, £("{a,(8)} = A (Y)), the
rth cumulant of Y. It is convement to simplify the notation by writing m,

m(8) = da,(0)/d6, A (Y,) =

Direct calculation from (14) shows that

ImiXg, ImiX,.

T .. \3/2° Py= T— 3>
(thz}\Z; i)3/2 ) (thz}\Z, i)2
weighted measures of skewness and kurtosis. Further
Emih s, = (Emamidy, ) (EmiNy, )
(Zm 12>\ 2; i)2
Emimihy, ; — (Emmidy )(ZmiAy ;)" (Emirg, )
(Em?)xz; i)z .

For normal-theory problems p; = p, = cov(R,, R?) = 0, and for the special
case [Efron (1975)] described below (14),

(15) Ps =

-1

(16) var(R,) =

(17) cov(R,, R?) =

a2

(1 + 4a202)®"

Expressions (15) have a direct interpretation as weighted average skewness
and kurtosis. The remaining terms (16) and (17) have a quite direct geometrical

(18) b(6) = jvar(R,) =
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interpretation as follows. Take the g canonical parameters of the exponential
family as coordinate vector and consider

(19) r(8) = (a,(9),...,a,(0))

as a curve in this space. In all of the discussion so far, 8 is regarded as the fixed
true parameter value. For example, identities (10) apply only to derivatives at
the true parameter point. However, when we consider r(6) as a curve in space,
is an arbitrary value identifying a point on the curve. In the following discussion,
it is essential to distinguish between fixed quantities evaluated at the “true”
parameter point, 8*, and other quantities that vary as we move along the curve,
in particular, @ itself. Normal practice [Amari (1982), Equation 2.4] is to regard
the space as g-dimensional Riemannian or as affinely connected, with variable
metric tensor diag(A,.,,..., A, ). However, we choose to regard the space as
Euclidean with fixed metnc tensor diag(A%.,, ..., A%, ), where A%, ; = var(Y; ; 0%).
In other words, just as the distribution of the log-hkehhood derlvatlves is
determined not just by the point of differentiation, but also by the value of 6%,
so too, distance in our space is determined not by position in space but by the
prevailing true parameter value. Thus, the element of arc length along the curve
is
ds? = 1(6; 6*)(d6)?,

where 1(6; 6*) = Ym?(0)N\%,; and I(8*) = I(6*; §*) is the Fisher information.
The tangent vector to the curve is

dr dr df do
t(0) = Ak (m,,...,mq)g,
leading to
1 Ym;miN%,

e T | ()~ ()|

If we write
— =7n,

(21) -

where n is the unit normal and y = y(6; 6*) the curvature [Efron (1975)], it
follows that, at 6 = 6*,
(22) var(R,) = v2.

If, further, we write, again at 6 = *,

= {1(0)}71’”?}\3; i/}\z;i’

(20)

dt

it is easily shown that
(23) cov(R,, R?) = yn - &,
so that the final term depends on the curvature and on the relation between the

unit normal and a vector defining the magnitude and direction of the skewness of
the efficient score.
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The above interpretation is based on a constant metric assumption giving rise
to Euclidean geometry, and seems appealing at least in the context of signifi-
cance tests where all probability calculations are performed under H,. If a
variable metric tensor is used as part of the geometrical description, differentia-
tion gives rise to an additional term in (21) above. A referee has pointed out that
the rate of change of the normal component in the tangential direction is then a
simple combination of y? and cov(R,, R?).

3. Multidimensional parameter.

3.1. Expansion in arbitrary coordinates. A different notation is convenient
when we generalize to a p-dimensional parameter § = (8',..., 7). The log-like-
lihood derivatives for the full data are written

U =9l(6;Y)/00,
U,=3%06;Y)/36736°,
and so on. The corresponding cumulants, all assumed to be O(n), are
nk, = E(U;0) =0, nx,=E(U,;9),
nk, = cov(U, Us0),  n, = cov(U,, Uy 0),
nk, ... = E(UUU,; 0) = cum(U}, U, Uy ),

and so on. See McCullagh (1984) for other illustrations of this notation. Thus
K, s = —K,s is the average Fisher information per observation. Furthermore, (10)
generalizes to

(24)

Krst + Kr,st + Ks,rt + Kt, rs + Kr, s, t = O’

Krstu + Kr,stu[4] + Krs,tu[3] + Kr,s,tu[G] + Kr,s,t,u = O’

with summation over all partitions of three and four indices, respectively.
Following Lawley (1956), we obtain an expansion for the log-likelihood ratio
statistic w(@) in terms of

(25)

Zr = n_1/2l]r’ er = n—l/z(l]rs — Nk, ), ert = n_1/2(zjrst - nKrst)’
and so on, which, using the summation convention, may be written
w(8) =«k"Z.Z,
+n"V2(I"™Z,2,2, + k"2, 2,2,,)
(26) +n Y Lwm 0 kit V7,7 2,7,

+n (k" °Z,, 2,2, Z, + k7o V7

ru”—s

z,2,7,

rtvs

+k" kb7 2 7. 7 ) + Op(n_3/2),

svTuTw

where k" = K, k" k* kb k" ! and k™ * is the matrix inverse of K, o
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The mean of w(f) can now be calculated and the Bartlett adjustment
obtained from

— 1,78t r,s t,u 1 rstu
pb(0) = 3%, + k"% + Ky Ky

+1 rst uow + 1 rst uovw

K K

rsKtuvw rusv'ct,w

(27)

rst . u,v P t,u
+K K (2Kru s + Kru v s, t) + Krst u K

+ K" Kt “K”’w(x + K + Krp soku w)-

rt, u sv,w rt, w sv,u rt,sovu,w

From a geometrical viewpoint, the fundamental difficulty with the above
expansions is that the individual terms are not invariants and therefore they
have no interpretation independent of the coordinate system chosen. However it
is interesting at least to rearrange terms in (27) and to show that E{w(6); 6}
depends only on cumulants of the first two log-likelihood derivatives. This
follows from identities (25), which express «,,, and ., + x, .,[4] in terms of
the cumulants of the first two log-likelihood derivatives alone.

3.2. Invariant expansion of w(f). Instead of working directly with the
log-likelihood derivatives U,, U, ... it is more convenient to work with derived
quantities V,, V. ..., which are constructed so as to satisfy the transformation
law of covariant tensors. In other words if ¢ = (¢',..., $*) is a new coordinate
system and if 8! = 36'/3¢", then the tensorial derivatives in the new coordinate
system are

‘/tarly V,lﬁr‘ﬂsf, ‘/ukartasjatk,

and so on. By contrast, the log-likelihood derivatives in the new coordinate
system are

U#bi, U,0%6; + UBL,
Ukalajak + U 0l0 t[3] + l]l rst»

and so on. Compare with (5) and (6) for the scalar parameter case. Thus the
vector of first derivatives is a tensor but subsequent higher-order derivatives are
not.

There are many ways in which the V’s may be constructed but it seems
sensible, in order to use (26), to insist that they be ordinary log-likelihood
derivatives in some coordinate system. This criterion excludes least-squares
residual derivatives and also covariant derivatives, which are generally not
symmetric under index permutation. One possibility is to work with derivatives
in the geodesic coordinate system, also called symmetric extension derivatives
[Richtmyer (1981), page 212]. Another possibility, slightly more convenient for
our purposes, is to define the V'’s inductively by

U=V, U,=V,+ B:;w
(28) Urst rst + Brs‘/tt[g] + rst

Urstu = ‘,rstu + Brfs‘/ttu[e’] + ﬁrlsﬁtju ij[3] + rst‘/tu[4] + :Brstu i
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and so on, where
i i
L= kb Uk,

= jcirJ
J,rs? rst K> K

Jyrsty o
and the sums are over all distinct partitions of the free indices.

We refer to the V’s as Mobius derivatives because of the connection with
inversion on the partition lattice [Rota (1964)]. In fact the V’s are ordinary
log-likelihood derivatives in the coordinate system tangent to the original system
for which all second- and higher-order derivatives are uncorrelated with the first.
The tensorial nature of these derivatives under coordinate transformation can be
verified directly although this is a rather tedious task even up to fourth order. Of
course, V.. is the residual second derivative after linear regression on V;, but
subsequent derivatives do not have such a simple statistical mterpretatlon

The cumulants of the V’s are also tensors and are given in terms of the «’s by

— — — r,s — ,.r,s
v,=k,=0, Vs =K, o, v k"
— — 1) =
Vs = 'Crs’ Vrost = Kp st Bst'c' - 0’
Vrst = Kps rs 11[3] rst + 'Cr st[3] r s, t
= — l,.l
Vrs,tu Krs,lu Krs, thu,j ’
, =k — K, g Ky A0
r,s,tu r,s,tu r,s,ivtu,j ’

and so on. Identities (25) apply to the V’s giving

+Vrst 0 and Vrstu rstu[3]+ rstu[6]+ rstu=0‘

Indices are raised by multiplication by »™° giving, for example »™‘=
vt vl sk ynet =y, pbryloykt and VT =V, ph /e, Scalars formed
from tensors by contraction are invariants, a simple consequence of the tensor

transformation property. Thus
ViVl = ViVl i, s IRVYYL n T,
are invariant random variables while
Vt jvt J =D, Vi’j’kyl’m’nvi,jvk,lym,n =pﬁ%37
Vi 1% mVk, n = PPa3; o) k’l"i,ﬂ’k,z = PPy,
and are invariant constants measuring the total standardized variance, squared
skewness (two terms) and kurtosis of the efficient score vector.

The second skewness term is positive definite in »; ; , and was given by
Mardia (1970) as a measure of multivariate skewness: the first skewness term is
positive semidefinite and vanishes, for example, for the uniform multinomial
distribution. Both skewness terms arise in the log-likelihood expansions that
follow. The kurtosis scalar satisfies the familiar inequality p, > p%, — 2 and the
less familiar p, > p3; — p — 1: for the multinomial distribution with index m we
have p, = p2; — 2/m independent of the probability vector.

An invariant expansion of w(8) is obtained by substituting V and » for U and
k in (26). The first three invariant terms are

n—lvr, SVr‘/s _ n—3/2vr,s,t‘/r‘/sv/3 + n—3/2vr,svt,uv;‘/l(‘/su _ nVsu)
corresponding to R, p,R3, and R?R, in the notation of Section 2.1.

rst

pb s le’ m,n
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The Bartlett adjustment involves six invariant scalar functions, namely
(29) b(0) = #5(35%; + 2p% — 3p,)

1,.,—-1 r,s tu _ —
+ 4p 14 4 (2”rt,su Vrs,lu 2Vr,s,tu)’

where the correspondence with (13) is clear. Since b(6) is a function of the
cumulants of V, and V,, alone the particular choice of third- and higher-order
tensor derivatives in (28) is immaterial. The final term in (29) can be written as
ip—1{2E(322) — var(S,;) — 2cov(S,, Sz)}»
where
nSu = W‘Gyi’j, n1/2S2 = (‘/U - nl’ij)Vi’j,
nSy = t(Vif) = Vi, Vil = (VY = m¥)(V,, — nvy).
The arguments of Section 2.2, when applied here to the multiparameter
problem, lead to a Bartlett adjustment having the form
b(ﬁ) =ko+ k1f_’%3 + kzﬁga + k3p,

+p—1Vr,svt, "(k4yr + k5Vr + kGVr, t,su + k7Vr,s,tu)’

where the &’s are constants, independent of n, p and the »’s, to be determined.
Comparison with (29) shows that k; = 0. In other words, the cumulants of
S112 = V*VAV,; — nv;;) do not appear in b(8), even though S,,, appears in the
O,(n~'/?) term in the expansion (26).

t,su s, tu

3.3. Normal-theory nonlinear regression. Suppose thatY = (Y!,...,Y")are
jointly normally distributed with mean vector E(Y®) = u(#) and covariance
matrix A>/, assumed known and independent of 8. We regard p=(u,...,u" as
a point in R" and the set of points p(@), 6 € O, as a p-dimensional surface, S,
in R". The derivatives of u* with respect to the components of # are denoted by
pi, gl ..., where p is a covariant tensor with respect to 6-transformations but
s is not a tensor.

The log-likelihood
0(6;Y) = —3(Y = pw')(Y/ = p)A,
has derivatives
U =pA (Y =), Uy= —plpdh+ i A (Y - ), ..,

all of which are linear in Y. Because of this, the Bartlett adjustment (29) may be
written in the form

(30) b(a) = ip—lvr,svl, u{2Vrt,su - Vrs,tu}’

only the “curvature” terms being involved on account of normality. This expres-
sion agrees with Johansen (1983), Theorem 5.6. Our objective here is to express
b(8) in terms of deviations from flatness of the surface S, in R™. Of course,
b(8) = 0if S, is flat.
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The surface S, inherits the fundamental metric tensor g,, = ,,u;}\, ; Ky s
from the space R" in which it is embedded. The tangent space at 6 is spanned
by the p vectors with components p’. For « = 1,..., n — p, let N, with compo-
nents N be an orthonormal set of vectors in R" orthogonal to S, at 0, i.e.
satlsfymg N} ‘N JA = 0,5, and N, f}\ = 0. The tensor derivative of 1 denoted
by p! [Weatherburn (1950), Sectlon 70] is

=t { f s
where { } is the Christoffel symbol for S, and is in fact the regression coefficient

of U,, on U,, otherwise written as 8/, in (28).
For fixed r,s, p,, is a vector of R"™ orthogonal to S, at # and so we may
write

(31) ,"‘l, rs Q;‘stai

and, in fact, if the basis vectors N, are chosen appropriately only min(n — p,
p(p + 1)/2) are required in (31) [see Eisenhart (1926), Section 47]. Viewed from
the direction N,, 22 is the second fundamental tensor of the surface and the
principal curvatures are the p roots, v/,..., Y, of the determinantal equation

|Qgs - Yagrs' = 0
The sum of these principal curvatures,

= Xy =08
J

depends on the particular direction N, chosen. However, the mean curvature
normal vector [Eisenhart (1926), Section 50], M = M*N,, whose components in
R™ are given by ¥ M°*N/} = p‘ &, 1s independent of the choice of basis vectors
N, and plays an important role in what follows.

To understand the connection with b(8) we note that

— i J
nVrs tu = M 'rsuu"tuxij

is the metric tensor for the jp(p + 1)-dimensional space spanned by the vectors
. »s. Thus

ny, rs tu — sz SaBQ

tur

so that
n—lvr b u rs tu Z(Mlx = 2(0)

is the squared length of the mean curvature normal vector at 6.

To derive the scalar M?%() is was necessary explicitly to consider S, as a
Riemannian space, with metric tensor g,,, embedded in Euclidean space R" with
metric tensor A;. By contrast, the so-called scalar curvature, R(#), can be
computed in S, without reference to the embedding space R”. In other words,
R(0) is a function of the metric tensor g, and its derivatives alone. Such scalars
are said to be intrinsic or independent of the embedding. This usage of the word
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intrinsic is to be contrasted with Bates and Watts (1980) who use the term to
refer to any invariant scalar.
The Riemannian curvature tensor [Weatherburn (1950), Chapter 7] for S, can
be shown to be
Rrstu = n{Vrt,su - Vru,st}

and the scalar curvature at 6 is
R(o) = grtgsuRrstu

= vr’tvs’u{”rt,su - vru,st}/n
=X X
a r#+s

The interpretation of R(8) in terms of the sum of pairwise products of principal
curvatures is nonintrinsic because the principal curvatures themselves cannot be
determined from measurements in S, alone.

Thus the Bartlett adjustment (30) is given by

4n"'pb(0) = M?%(0) — 2R(9)
= S{Z() - e}

r#+s

(32)

Note that, since g,, = O(n), the principal curvatures are all O(n~?), M*(6),
and R(0) are O(n1), and b(8) = O(1) as required.
In the particular case, p = 2, b(#) reduces to

2n~(0) = ¥ (v¢ — v5)%,

the sum over the principal normal directions of the squared differences between
pairs of principal curvatures. This result seems counter-intuitive but can be
checked, at least for y, = y,, by considering S, as the surface of a sphere in R3
when it is easily verified directly that indeed 5(8) = 0. We note further that, for
p <2, b(8) > 0 but that, for p > 3, b(#) may be negative.

The calculations given here differ from those of Beale (1960) and Bates and
Watts (1980) although the objectives in both cases are similar in spirit but
different in detail. Beale’s adjustment factor is 1 + N, for p = 1 and, for p > 2,
1+ (p + 2)N,/p, where 4N, = (vfys)?, the “mean square intrinsic curvature”
[Bates and Watts (1980), Section 2.6]. From Equation (2.12) of Beale (1960) it
appears that

4(p + 2)N¢ = vr,svl, u{”rs,tu + 2Vrt,su}/n
=3M?*(0) — 2R(6).
The above expression differs from (30) only in the sign of one term. Furthermore,
N, > 0 and the effect of Beale’s adjustment is always to increase the size of the
confidence regions in the presence of curvature. For p > 3, Bartlett’s adjustment
can have the opposite effect. Beale’s adjustment is therefore conservative, at

least in large samples, as indeed noted by Beale (1960) and Johansen (1983). The
two adjustments coincide only for p = 1.
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