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Professor Wu has made a substantial contribution to a difficult area: the
study of resampling methods in regression. The idea of weighted jackknife and
bootstrap estimates of variance is an intriguing and potentially useful one.
However, I feel that this paper falls short of providing any definitive answers
because it overemphasizes unbiasedness and fails to address some important
statistical issues. I will elaborate on these points as they relate to estimates of
variance in regression, then I will conclude with a few remarks about confidence
procedures. Despite the mostly critical comments that follow, I want to make it
clear that I wholeheartedly endorse one of the major thrusts of the paper,
namely Professor Wu’s recommendation that “important features of a problem
should be taken into account in the choice of resampling methods.” This is good
advice—it is just not clear yet how to do this in many problems.

Before computing an estimate of variance in a regression, there are two
important questions that we should ask: (1) is our model adequate for the data
and (2) do we want an estimate of the conditional or unconditional variance? Let
us consider the first point. Given that we are going to use a linear model, the two
main types of model inadequacy are misspecification of the mean of the response
and nonhomogeneity of errors. Professor Wu assumes throughout that the mean
part of the model is correctly specified. In fact, it is when the mean is mis-
specified that the unweighted procedures can still give a reliable estimate of
variance. This is what I believe Efron and Gong meant in their claim about the
robustness of the unweighted bootstrap. We will return to this point later, but
for now we will assume that the mean is specified correctly, with possible
heterogeneity of error variance.

Regarding the second point, Professor Wu uses the conditional variance, that
is, the variance conditional on the observed X'’s, as his gold standard. An
alternative gold standard is the unconditional variance, averaging over the
marginal distribution of the X ’s. Which is the “correct” variance is an arguable
point when the X ’s are not fixed by design, although ancillarity arguments can
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1336 DISCUSSION

be given for the conditional variance in the normal case. Now the unweighted
jackknife and bootstrap procedures are estimates of the unconditional variance:
the bootstrap simply replaces the unknown joint distribution of the X’s and Y
by their empirical joint distribution, and the jackknife is a linear approximation
to the bootstrap (Efron (1979)). Not surprisingly, the estimators of the uncondi-
tional variance overestimate the conditional variance, because they include the
marginal variation of the X'’s. Professor Wu’s clever idea is to weight the
jackknife and bootstrap by the determinant of the subsample design matrix so
that they approximate the conditional variance estimate. In particular he shows
that his weighted jackknife is unbiased for the true conditional variance. Note
however that the difference between the unconditional and conditional variances
is not usually large (although it is in the small sample example given in Section
10). In fact if we look closely at Professor Wu’s analysis of Section 5, where he
shows that E(v,,) = var(B)(1 + O(1/n)), we find that this is also true for the
(unconditional) estimator v;, and hence conditioning affects the bias only by
O(1/n). To see this, note the formula for v; is the same as (5.2) except that
r2/(1 — w,) is replaced by r2/(1 — w;)%. Now w; is assumed to be O(1/n) and
thus '

E(r?) =1 -w)e? + 0(1/n) = (1 — w,)’e? + O(1/n)

and the result follows.

It is also important to remember that unbiasedness of an estimator is not
everything: variance is also important. For example, if the variance estimate is to
be used for form a confidence interval for a regression parameter, then the
accuracy of the resultant confidence interval will be a function of the mean
squared error of the corresponding estimate of standard error. To pursue this
point, I reran part of Professor Wu’s first simulation study. The regression
coefficients B were chosen to be (1, 1, 5). (Note that the bias of the estimates is
independent of B but the mean squared error is not.) The root mean squared
error of the estimates is shown in Table 1. The unweighted and weighted
bootstrap estimates were not included: they are likely to perform similarly to the
unweighted and weighted jackknife estimates, respectively. In all cases, the
biases of the estimators (not shown) were close to those obtained by Professor
Wu. In both problems v, easily outperforms the unconditional estimate v; but
has higher mean squared error than either v or vy, especially in the equal
variance case.

It is interesting to take a closer look at the unequal variance situation. The
estimators v, v, v, and vy, are all of the form (X‘X)~'E167x,x{( X' X) ™! for
some estimates 62. They use, respectively, 6% r2/(1 — w;)?, r?/(1 — w;) and
r2/(1 — k/n) for 7. Professor Wu shows that v, has bias only O(1/n), but it
appears from Table 1 that variance is the dominating factor. Both Hinkley’s
estimator, which replaces the w; in v, by its average value, and v which goes
further by replacing r2/(1 — k/n) by its average value, outperform v,,,. Ironi-
cally, none of the estimators were able to improve substantially on v, which
assumes equal error variances. As an alternative, I tried using the scaled
cross-validated residual r2,/(1 + w;), as an estimate of o. (7;, is ; minus the fit
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TABLE 1
Variance of the least squares estimator and root mean squared error of variance estimators.

@1 @,2) @,3) 2,2) 2,3 3,3)

Equal variances

var(f) 1.01 —0.42 0.03 0.21 ~0.02 0.00
rmse(v) 0.48 0.20 0.00 0.10 0.00 0.00
rmse(v,) 1.62 0.74 0.07 0.40 0.04 0.00
rmse(0y;,) 0.83 0.31 0.03 0.13 0.01 0.00
rmse( vz1,) 073 0.27 0.02 0.11 0.01 0.00

Unequal variances

var(f) 1.50 -0.79 0.08 0.48 -0.05 0.01
rmse(v) 1.28 0.48 0.04 0.24 0.02 0.00
rmse(v,) 3.45 2.10 0.24 1.32 0.16 0.02
rmse(vy,1,) 1.00 0.52 0.05 0.31 0.03 0.00
rmse( vz 1)) 0.78 0.41 0.04 0.25 0.03 0.00

at x; with the ith point removed, and can be shown to equal r,/(1 — w;).) There
is reason to believe that this should be a better estimate of o? than r2/(1 — w,).
However, it performed much worse than v;,, in the problem of Table 1,
displaying large variability, even if the 62’s were smoothed.

Table 2 shows the results of a number of variance estimators, with the same
true model as before, but with the quadratic term left out of the fitted models.
Also, instead of fixing a set of X ’s, the data were generated by sampling the X ’s
with replacement from the original set of X values, then adding a N(0,1)
random variable to the quadratic curve. The table shows the median bias and
median absolute deviation of each estimate from the true unconditional vari-
ance. (Medians were used because both jackknife methods occasionally produced
a very large variance for the (1,1) entry.) We see that v; has much less bias than
vy, Or v; this is to be expected because v, is a linear approximation to the
unweighted bootstrap, which makes no special use of the form or correctness of
the regression model. However, v; shows greater variability than the other
estimators and hence the median absolute deviations are all comparable. (I
believe that in larger samples v, would have smaller variability and be preferable

TABLE 2
Analysis of incorrect model case.

11 1,2 2,2)
var(£) (unconditional) 635.02 -153.27 43.70
median bias (v) —279.00 96.04 —30.98
median bias (v;) 93.54 —8.98 =17.50
median bias (v,) —160.78 47.14 —18.00
MAD (v) 278.99 96.04 30.98
MAD (vy) 366.45 83.01 24.97

MAD (v,;,) 303.86 76.87 24.02
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to v or v,,,.) Note that all of the estimators considered here are poor estimators
of true conditional variance, in particular 6% averaged about 60, which is 60
times too large.

We can summarize these results as follows (being careful not to put too much
faith in the results of one simulation study). If the mean part of the model is
correctly specified, then v, v,,, or vy,, provide reasonable estimates of the
conditional variance. Neither v, or vy, improve upon the standard estimator
v even under heteroscedasticity. The (unweighted) estimators v, (and by impli-
cation v*) are poor estimators of the conditional variance if large conditioning
effects are present. If the mean is incorrectly specified, then none of the
estimators are good estimators of the conditional variance. The conditional
estimates are very biased for the unconditional variance, while the unconditional
estimate v, is not very biased but shows large variability.

I conclude with a few remarks:

1. Of the seven confidence interval procedures discussed in the second Monte
Carlo study, only the jackknife and bootstrap percentile methods can produce
intervals that are asymmetric about 6. This can be important because good
small small confidence intervals are often asymmetric.

2. Professor Wu has reported the coverage and length of the intervals but not
how closely the endpoints of each matches the Fieller interval endpoints.
Thus we can not properly evaluate their performance. For example, an
interval could be much shorter than the Fieller interval on the left and longer
by the same amount on the right. The length and overall coverage would be
just right but the interval would be a poor one.

3. In remark 4 of Section 11, Professor Wu says that refinements of the
bootstrap and jackknife histogram are called for, because of their poor
performance in the simulation study. If indeed they performed poorly, I think
that it is due to the fact that they are unconditional methods (in the sense
described earlier) that are being assessed by their conditional coverage. The
refinements of Efron (1985, 1986) are improvements on the percentile interval
to achieve second-order correctness. However, Efron (1985) has shown that in
the simple (nonregression) version of the Fieller-Creasy problem, the per-
centile interval is second-order correct, so the refinements are unlikely to help
here.

4. The warning in Section 6.2, about careless use of the unweighted bootstrap, is
valuable. In the example given, the parameter of interest is u = a + 8% and
thus depends in an explicit way on the observed set of X ’s. It makes no sense
to use an unconditional method like the unweighted bootstrap or jackknife for
such a parameter. Focussing instead on a (which is defined independently of
the observed X'’s) alleviates the problem. In general, we can heed the
following warning: When using a resampling method, we must think carefully
about what components of the problem are to be considered fixed. The
resampling method must take this into account.

5. The general problem of resampling residuals (Section 7) can be expressed in
another way. As Professor Wu notes, bootstrapping the residuals doesn’t work
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under heteroscedasticity because it implicitly assumes that the true residuals
all have the same distribution. We can assume instead that the distributions
are different, say H; for the ith residual and estimate each H; in some way.
Professor Wu'’s suggestion amounts to estimating the joint distribution of the
residuals by a distribution having marginal mean 0 and variance r2/(1 — w,).
There are two problems with his suggestion: a) The resampled residuals are
uncorrelated but not necessarily independent, as they should be, and more
importantly, b) only the first two moments of this distribution are specified,
so there is no hope of capturing higher-order effects. A method that estimated
each H; with the empirical distribution function of the residuals in some
neighborhood of the ith point might hold more promise.

Acknowledgment. 1 would like to thank Brad Efron for suggesting mean
squared error as a relevant measure.
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Wu’s paper should be praised for clarifying the relationship between the
various weighted and unweighted versions of the jackknife and the bootstrap
and for giving simple examples to demonstrate the shortcomings of various
methods. The paper also stresses the role of the jackknife in regression analysis
as a means of obtaining an estimator for the covariance matrix of the least,
squares estimator, B, which is robust against heteroscedastic errors. This feature
of the jackknife has not received enough emphasis in regression literature.

As noted by Weber (1986), Hinkley’s weighted jackknife variance estimator,
V), 1s effectively the robust estimator proposed by White (1980), commonly
used in econometrics. The new estimator V;,, has the consistency property of
Vuay but also has the advantage of being unbiased when the model has
homoscedastic errors.

The bootstrap procedure in regression does not lead to a robust, consistent,
estimator of the covariance matrix of B. The bootstrap method based on
resampling the residuals has the obvious shortcoming of imposing a linear model
structure on the resampled values, forcing the error terms to be independent and
identically distributed. Such a procedure loses any variation in the distributions



