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BAHADUR REPRESENTATIONS FOR ROBUST SCALE
ESTIMATORS BASED ON REGRESSION RESIDUALS

By A. H. WELsH
University of Chicago

We investigate the asymptotic behaviour of the median deviation and the
semi-interquartile range based on the residuals from a linear regression model
by deriving weak asymptotic representations for the estimators. These repre-
sentations may be used to obtain a variety of central limit theorems and yield
conditions under which the median deviation and the semi-interquartile range
are asymptotically equivalent. The results justify the use of the estimators as
concommitant scale estimators in the general scale equivariant M-estimation
of a regression parameter problem. Finally, the results contain as a special
case those obtained by Hall and Welsh (1985) for independent and identically
distributed random variables.

1. Introduction. In this paper, we investigate the asymptotic properties of
two popular robust scale estimators, the median absolute deviation from the
median (sometimes called MAD or, at least since Hampel (1974), the median
deviation) and the semi-interquartile range, applied to the residuals from a linear
regression model. An important (but not the only) motivation is the problem of
concommitant scale estimation in M-estimation.

Suppose that we observe Y,,..., Y, where

(1.1) Y=xi6,+e, 1<j<n,

with {x; = (x;;,...,x;,)’} a sequence of known p-vectors (p = 1), §, a unique
unknown regression parameter to be estimated, and {e;} a sequence of indepen-
dent and identically distributed random variables with unknown distribution
function F. Relles (1968) and Huber (1973) investigated the class of M estimators
of the regression parameter 6, as solutions of equations of the form

n

Y x(Y, - xj0) =0,

J=1

where {: R — R. In general, scale equivariant M-estimators may be obtained by
calculating a location invariant and scale equivariant scale estimator ¢, from the
data and then solving the system of equations

n
Y 2y ((Y; - x8)/0,) = 0.
J=1
Huber (1964) made three proposals for obtaining a suitable scale estimator o,,.
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The asymptotic theory of the estimators resulting from proposals 1 and 2 may be
derived from the results of Huber (1967); proposal 3 has proved efficacious for a
particular M-estimator in the regression problem (see Welsh (1985) for references)
and has been investigated for M-estimators in the location subproblem by Bell
(1980). Another conceptually and computationally simple approach is to apply an
explicit robust scale estimator to the residuals. This procedure is frequently
adopted in the location subproblem for which the median is a natural initial
estimator. The small sample performance of the resulting regression M-estima-
tors has been investigated by Holland and Welsch (1977), Hill and Holland
(1977), and Denby and Mallows (1977). The asymptotic results of Bickel (1975)
and Yohai and Maronna (1979), which implicitly assume that F' is symmetric, are
applicable provided there exists a scale estimator o, such that n'/%(s, — o,) is
bounded in probability for some o, > 0. However, the results are incomplete in
that no robust scale estimator satisfying the above requirement has been
exhibited. We will show in this paper that under very mild conditions, the
median deviation and the semi-interquartile range are appropriately bounded in
probability.

Our main result (Theorem 2) yields a central limit theorem for the median
deviation in the general asymmetric case and establishes that (Corollary 2.1)
under mild conditions implied by symmetry, the semi-interquartile range is
asymptotically equivalent to the median deviation.

2. Results. We assume throughout that the model (1.1) holds so that, for
any § € R”, the residuals from 6 are

e(0)=Y —x0=e—x(0-6,), 1<j<n,

almost surely, and e;(§,) = e;, 1 <j < n, almost surely. Under mild smoothness
conditions on F, the results below hold for any initial regression parameter
estimator 6, such that

(Ci) n'?(8, — 6,) is bounded in probability,
provided that

;=1 1<j<n and there exists a positive definite matrix A

.o n
(Cii) such that lim n™! ), xixf=A

n—oo j=1
holds. Condition (Ci) holds for a large class of estimators including M-estimators.
It is convenient but not necessary to assume that 6, estimates an intercept; with
z;=(1,x}), 1 <j<n, instead of x;, 1 <j < n in condition (Cii), the results
below still hold. For examples of estimators which do not estimate an additive
main effect, see Jaeckel (1972) and Welsh (1985).

We derive weak Bahadur representations for the median deviation and the
semi-interquartile range through the sample quantiles. For § € R? in the neigh-
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borhood of 6, let

n
F(x,0)=n"') I{e[(0) <x}, x€R,
J=1
where [ is the indicator function. For simplicity, set F,(x, 8,) = F,(x). The gth
sample quantile £, () is defined by

F(£,,(0),8) = q,
and the population quantile £ is defined by
F(¢,)=q 0<gq<Ll

The first result which is of independent interest, slightly generalises Lemma 1
of Ruppert and Carroll (1980) by weakening their first condition. The result may
be proved by an extension of the argument of Ghosh (1971) with Lemma 4.1 of
Bickel (1975) or using results of Pierce and Kopecky (1979) or Loynes (1980) or by
modifying the argument of Ruppert and Carroll (1980). The proof is omitted.

THEOREM 1. Suppose that conditions C hold and the derivative of F exists
in a neighborhood of §,, is continuous at &, and F'(¢,) > 0. Then for fixed q,

0<g<1l,
Fn gq - 9q 1/2=
n1/2{£nq(0n) - gq} +n'/? { ;’(iq) } tn /2x/(0n - 00) -5 0.

In the special case that 6, is known, conditions C are redundant and the
smoothness condition can be weakened to yield the result of Ghosh (1971). The
representation in Theorem 1 is useful in determining the joint asymptotic
distribution of any finite number of fixed quantiles, possibly in conjunction with
other statistics. In particular, we immediately obtain a Bahadur representation
for the semi-interquartile range.

COROLLARY 1.1. Suppose that conditions C hold and that the smoothness
condition of Theorem 1 holds for q=3/4 and q=1/4. Let Q,9,) =
{gn,3/4(0n) — &, 1/4(0n)}/2 and @, = {53/4 - £1/4}/2- Then

n1/2{Q (0 ) - Qo} + n1/2F”(£3/4) —3/4 Fﬂ(gl/‘i) - 1/4

2F(£,,,) 2F (£, "

The next result, the Bahadur representation for the median deviation, is the
main result of this paper. The sample median deviation S (4,, §, , »(6,)) is the
median of |e(0,) — £, 2(0,)],1 <J < n, while the population median deviation
8o > 0 is defined by F(§, , + 59) — F(§,, — 9 — ) = 3.

THEOREM 2. Suppose that conditions C hold and

() F(§,/, + x) exists for x in a neighborhood of the origin and is continu-
ous and positive at x = 0;
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(i) F"(§,,5 £ 50 + x) exists for x in a neighborhood of the origin and is
continuous at x = 0;
(iii) F'(my + x) + F'(my — x) > 0 for x in a neighborhood of s,,.

Then
18,8, £,1/2(6,)) = 5o)

+n1/2{Fn(£1/2 + SO) — Fn(£1/2 — 5, _) _ %}/gl

_nl/z{Fn(£1/2) - %} {82/31F'(§1/2)} -p0,
whereg, = F'(§, 5+ o) + F'(§, 5 — so)and g, = F'(§, 5 + 8¢) — F'(§1,2 — So)-

OUTLINE OF PROOF. Let 7, = (0,; + £, 1 /5(6,), 0,9, ---,0,,) and 7§ = (65, +
§1/25 002, -+ +» 0pp) so the median deviation is the median of |Y;—xi7,| ,
1<j<n,and S(6,,§,,/,0) = S,,). For r € R? in a neighborhood of 7,
put N

G(z,7)=n'Y {F(xjr+2) - F(xjr—2z-)}, z2=0.
j=1
By condition (iii), for 7 in a neighborhood of 7y, s,(7) defined by G,(s,(7), 7) = 3
is unique and s,(7,) = s,. Now

n1/2{Sn(Tn) - sO} = n1/2{Sn(Tn) - sn(Tn)} + n’l/2{sn( Tn) - sO}’
The first term may be handled by a modified version of the proof of Theorem 3 of
Hall and Welsh (1985) with Lemma 4.1 of Bickel (1975), while the second term
may be handled by a one-term Taylor series expansion since s,(7) is differentia-
ble at 7, and s)(7,) = —(8,/8.)% at 1,. O

If (1.1) does not include an intercept, the above argument applies with
Tr: = (gn,l/2(0n)’ or’z) € Rp+l’ T(; = (51/2’ 06) € Rp+1, and xj replaced by zj7
l1<j<n.

If the regression parameter 6, is known, the result generalises Corollary 3.1 of
Hall and Welsh (1985) by discarding their fourth condition. The resulting
Bahadur representation provides an alternative derivation of the central limit
theorem (Theorem 2) of Hall and Welsh. For the present problem, the condition-
ing argument used by Hall and Welsh to prove their central limit theorem is of
limited utility because conditioning on the estimate of the regression parameter
does not simplify the structure of the problem.

Combining Corollary 3.1 and Theorem 2 we obtain the following analogue of
Corollary 3.1.1 of Hall and Welsh (1985).

COROLLARY 2.1. Suppose that in addition to the conditions of Theorem 2,
1- F(£1/2 + 89) = F(§1/2 —so— ) and F'(§1/2 +59) = F'(§1/2 — 8y). Then
n1/2{Sn(0n’ gn,1/2(0n)) - Qn(an)} —‘)P 0

The above conditions hold if F is symmetric, has connected support, and a
positive, continuous density on its support.
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If we include an intercept in (1.1) and assume that £, , = 0 so the underlying
error distribution F is centered about the origin, we may consider the alternative
scale estimator R,(6,), the median of |e;(6,),1 <j < n. Note that the estimator
R,(6,) is only location invariant if 6, includes an intercept estimator but @ ,(6,)
and S,(0,, &, ,,(0,)) are location invariant whether or not 6, includes an
intercept estimator. Specifically, if 6, = (a,, B.)’, a, € R an intercept estimator,
and Bn € Rp_l’ then Qn(an) = Qn(Bn) and Sn(an’ gn, 1/2(0n)) = Sn(Bn’ gn, 1/2(Bn));
if a, is the median of Y; — x/B,,1 <j < n, then R, (0,) = S(6,, £, ,/,(0,))- If
the conditions of Theorem 2 hold, then, by the same argument as that used to
derive Theorem 2, it follows that

1/2 {Fn(rO) - F,(-r) - 1/2}
F'(ry) + F'(—r,)

n2R,(8,) = 1) +

{F'(ro) - F’(_"o)}
F'(ry) + F'(—1,)

n/2%4, - 0,

where 7, > 0 is defined by F(r,) — F(—r,) = 3. Moreover, it then follows that if
in addition F is symmetric about the origin, S,(6,, £, , »(0,)), R ,(0,) and @,(6,)
are all asymptotically equivalent.

Finally, many regression parameter estimators (including least squares, least
absolute deviations, and other M estimators) admit a representation of the form

n
n'/%(8, — 6,) —n 2} A 'x;v(e;) —=p 0,
J=1

for some real function y. It is straightforward to use such a representation and
the results of the present paper to obtain central limit theorems for

gnq( 0n)’0 <q < 1’ (072’ Sn(on’ gn,1/2(0n))),’(gn,1/2(0n)’ Sn(an’ gn, 1/2(0n))),, ete.
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