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ASYMPTOTIC PROPERTIES OF NEYMAN-PEARSON TESTS
FOR INFINITE KULLBACK-LEIBLER INFORMATION

BY ARNOLD JANSSEN
Universitit Siegen

In the present paper we will improve the results concerning the rate of
convergence of the error of second kind of the Neyman-Pearson test if the
Kullback-Leibler information K(F,, P,) is infinite. It is pointed out that in
certain cases the sequence exp(—g, ,) is the correct rate of convergence if
~q,, » denotes the logarithm of the critical value of the Neyman-Pearson
test of level a and sample size n. Therefore we generalize the classical results
of Stein, Chernoff, and Rao which deal with the error probability of second
kind and state that g, , ~ nK(F,, P) if the Kullback-Leibler information is
finite. Moreover the relation between g, , and the local behavior of the
Laplace transform of the log-likelihood distribution with respect to the
hypothesis is studied. The results can be applied to one-sided test problems
for exponential families if the hypothesis consists of a single point. In this
case it may happen that g, , is of the order nl/P for some p, 0 < p < 1.

1. Introduction. Let E" = (Q", /" (P}, P')) be an n-fold binary experi-
ment and suppose that P(A) = [,(dP'/dPy)dPy + PM(ANN,), A e«" is
the Lebesgue decomposition of the nth product measure P]* with respect to £y’
for some N, € #", n € N. Suppose that the P density dP'/dPj of the
absolutely continuous part of P is defined to be equal co on N,. Then we
consider the Neyman—Pearson test ¢, , of level a € (0,1) for the test problem
H = (P} against K = {P["},

1 ifdPr/dPr > c, ,
(pa,n= Ya,n if dPln/dPOn= ca,n’
0 itdP/dP}<c, ,

satisfying Ep.¢, , = a. It is well known that the error probabilities of second
kind Ep.(1 — @, ,) and the critical values c, , satisfy

(1.1) lim [Ep(1 - @, ,)]"" = lim cl/2 = exp(~K(Py, P,))
n—o0 n—oo

if K(Py, P,) = [log(dP,/dP,)dP, denotes the Kullback-Leibler information
(compare with Chernoff (1956), who referred to Charles Stein; Rao (1962); Krafft
and Plachky (1970)). Suppose that log is continuously extended on [0, co]. Note
that (1.1) contains only little information if K(P,, P,) is infinite. Therefore we
are interested in the correct rate of convergence in the general case. Observe that
for example the case K(P,, P,) = co appears in connection with one-sided tests
in exponential families and the local structure of exponential families; cf. Janssen
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(1986). To fix the idea of this paper let us first suppose that K(P,, P,) is finite. If

(1.2) 9. .= —logc, ,
then (1.1) implies
. 1/ a,n
(1.3) lim [Ep(1 = @, )] /%" = exp(~1).

Since (1.3) is independent of K(PF,, P,) we ask whether (1.3) holds in a more
general situation. It turns out that this result can be proved for a large class of
interesting experiments having infinite Kullback-Leibler information. Thus
1/q,, s the correct speed of convergence. Note that

(1.4) n/q, ,—0 iff K(Py, P,) = .

On the other hand it is pointed out that there is some connection between ¢, ,
and the Laplace transform

(1.5) w(t) = f exp(t log dP,/dP,) dP,

of Z(log dP,/dP,|P,), which exists for ¢ € [0,1]. Note that

(1.6) d*log w(t)/dt|,_, = —K(P,, P,)

and

(1.7) nlogw(l/q, ,) = —1 forn — o« if K(P,, P,) < .

In order to prove the results we apply a convergence theorem for Laplace
transforms. Only partial results are obtained by theorems for large deviations.

2. Preliminaries. In connection with the tests ¢, , the behavior of the
log-likelihood distributions of product experiments is used. Therefore we first
recall some facts for binary experiments E = (@, «,(F,, P,)). Let », be the
log-likelihood distribution
(2.1) vy = £ (log dP,/dFy|F, ),

where Z(Y|Q) denotes the distribution of a random variable Y with respect to .
If p is a finite measure on [ — 00, c0) then

(2.2) w,(t) = [exp(ty) dp(y)

defines the Laplace transform of p where exp is continuously extended on
[ —o0,0]. Let Y be a random variable. Then wy denotes the Laplace transform
of its distribution. Returning to E let us remark that , is bounded by 1 on
[0,1]. Moreover

(2.3) vo({=0}) = lim (1 - o, ()
t>0
and

(24) Z(log dP,/dP,|P,)(A) = fA exp(x) dv(x) + (1 = ©,(1))e,(A)
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for each Borel subset A of (— o0, c0]. In addition
(2.5) K(Py, P) = - [xdy,(x) and 0<K(R,P) < co.

Suppose that E = {P,, P} and F = {Q,, Q,} are two binary experiments. Then
#(logdP,® Q,/dF,® Q P, ® Q)
= (log dP,/dP|P;) * #(log dQ,/dQ,|Q;),

where * denotes the convolution of measures on the topological semigroup
([ — 0, ©), +) equipped with the usual topology; cf. Janssen (1985c), (9.4) and
(9.21). Let P™ denote the n-fold product measure of P, ¢, the Dirac measure
defined by a. Let E, be the expectation with respect to P and suppose that »*”"
denotes the nth convolution product of ». Two positive functions f, g are
equivalent for x — 0 or + 00, g(x) ~ f(x), if the ratio tends to 1.

In the sequel a continuity theorem for Laplace transforms is needed.

(2.6)

LEMMA 2.1. Suppose that p,, n > 0, is a sequence of probability measures
on [— o0, ) such that sup,, w,(1) < K for some K > 0. Then the following
statements are equivalent:

(2‘7) By - Bo weakly,
(2.8) @, (¥) = w,(y) forall ye (0,1).

ProoF. Put p, = p,*e_,,,x and define p, = L(exp(-)|p,). Then
Jxdpj(x) < 1 follows and w,(y) = [x”dp/(x) is the Mellin transform of p},. The
continuity theorem for Mellin transforms shows that (2.8) is equivalent to the
weak convergence of p, to pj; cf. Strasser (1985), Theorem (5.16). Thus the
lemma is proved. O

Note that Lemma 2.1 does not hold in general if , (1) is unbounded.

3. Main results. First of all we study the connection between the Laplace
transform of v, (2.1) and the logarithm g, , = —log c, , of the critical value ¢, ,
in order to generalize (1.6). Therefore we always assume that

(3.1) P,#P, and P,< P,

If the second condition is not fulfilled then c, , = 0 finally holds. Note that (3.1)
implies that », # ¢, and v, is concentrated on R. Put

(3.2) ¢ =logw,.

Then ¢ is a convex function such that ¢(¢) <0 on (0,1) and lim, _, ,¢(¢) = 0.
Thus for n > (1 — log oz)(supte(O,l)ltp(t)|)‘1 =: y there exists an increasing se-
quence of reals (%, ,), such that

(33) ?(1/k,,,) = —(1 — log ) /n.
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LEMMA 3.1.
(a) kyn<qun fornz=y;
(b) log a — 1 < liminfne(1/q,, ,) < limsupne(l/q,, ,) <O0.
n— oo

n—oo

ProoF. (a)Let Y,,...,Y,: (2, &, P) > R be independent random variables
with common distribution »,. For © € R we apply the following well-known
inequality of Chernoff (1952):

P({Y, + -+ +Y, > nu}) < P({exp(t(Y, + -+ +Y, — nu)) > 1})
< (exp(—tu)w,,o(t))n for t > 0.
Hence
loga <log P({Y, + -+ +Y, > —q, ,}) < n(e(t) + tq, ./n).

Inserting ¢ = 1/k, , then the result follows.
In order to prove (b) we first remark that

lim ne(1/k,, ,) < liminfre(l/q, ,)
n— o0 n— o0

by (a) since ¢ is a convex function. Now assume that lim, _, . n,9(¢/q,, ,,) =0
for ¢t = 1 and a subsequence n,. Then the limit is equal to 0 for all ¢ € (0,1). Let
(Y,),,cn be a sequence of independent copies of random variables having the
distribution »,. Then Lemma 2.1 implies that

123
(34) 9 2 Y

j=1
tends in distribution to 0. This yields the desired contradiction since

ng
{ XY > —%qa,n,,}

Jj=1

(3.5) a>P .O

It should be remarked that (a) also follows from statement (14) of Krafft and
Plachky (1970). The next theorem is well known for experiments having finite
Kullback-Leibler information K(P,, P;) without further restrictions concern-
ing F.

THEOREM 3.1. Let F be the distribution function of v, = £(log dP,/dP,|F,).
If F is positive and satisfies

(3.6) limsupF(Ayx)/F(x) <1 forsome A, > 1
then

(3.7) limsupgq, ,/k, , < o,

(3.8) [Ep(1 = go,)] /" = exp(-1).

(3.9) If 0<a <a,<1 then limintq, ./q,, ,>0.
n—oo
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Proor. Note that (3.7) and (3.9) follow from (1.6), (1.7), and (1.1) in the case
K(P,, P,) < . Therefore we may assume that K(F,, P,) = oo. Then by (2.5)

(3.10) fxdvo(x) = —oo.
Let a(A) denote limsup, _, _, F(Ax)/F(x). Then a(N}) < a(A,)” and
(3.11) }\lim a(A)=0

since F is increasing. First of all we show that (3.6) implies
(3.12) lim limsupe(st)/@(t) = 0.

=0+ 40+

Therefore we put w = w, and fix1 > s > 0. Since ¢(¢) = log w(¢) = w(¢) — 1 +
o(w(t) — 1), we remark
(313) i o(st i w(st) — 1
. imsup ——— = limsup ————.
t—o+ () 1o+ () —1

Integration by parts (Feller (1971), page 150) yields

(3.14) 1- () = tf" F(x)exp(tx) dx — tg(¢),
— o0

where

a(t)= [ “(1 = F(x))exp(tx) dx

is continuous for ¢ = 0 + , g(0) < co. Thus
1-w(st) [2 F(x/s)exp(tx) dx — sg(st)
1-o(t) [ F(x)exp(tx) dx ~ g(2)

Note that the denominator of the right-hand side tends to infinity for ¢ —» 0 +
because of (3.10); see Feller (1971), page 151. Therefore it is sufficient to prove

19 JF(x/s)exp(tx) d ( 1 )
3.16 lim su — .
(3.16) o T Fmen(m) e < s
Choose x, < 0 such that F(x/s) < (a(1/s) + &)F(x) for x < x,. Then

fo F(—E)exp(t:x)dx < x| + (a(%) + e)f_OooF(x)exp(tx) dx.

Hence (3.16) follows since the denominator tends to infinity for ¢ —» 0 + . In the
sequel we omit the index a if possible and write ¢, ¢,, ¢,,, £,- Now it will be
pointed out that (3.12) implies (3.7).

Suppose that there exists a subsequence such that lim; wln,/k,, = 0. Then

o((1/k,)(tk, /4, ))
o(1/k,)

(3.15)

(3.17) njq)(t/qnj) =(—-1+loga)
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if we take (3.3) into account and observe that ¢ is decreasing in a neighbourhood
of 0.

In view of (3.4) and (3.5) statement (3.17) is impossible. In order to prove (3.8)
we remark that

(@18 fa-e)dPrs[  ew(x)dugn(x) < expl=q,)

X< —g,

if we observe (2.6), (2.4), and note that the absolutely continuous part of
ZL(log dP'/dP)'|Pl") has the v}" density exp(x). Next we prove the converse
inequality. Let Y;: (R, &, P) — R be a sequence of independent random variables
having common distribution »,. Then for d > 1 and W, = LY,

Ja-9)arr> exp(W,) dP
{_qn> WtZ _dqn}

+(1 - vu)exp(—gq, ) P({W, = q,}).
Suppose that n; is a subsequence such that
(3.20) [ f (1-g,)dPy
is convergent. Then we prove that either

(3.21) a=-exp(—1) or limian({q;jlmj e (-d, —1)}) =48>0.
j—o oo

(3.19)

- a

] 1/g,,

Therefore we introduce the distributions p, = £(q, 'W,|P). Since log v, (1) =

ne(g; ') is uniformly bounded (compare with Lemma 3.1) we note that (p,,),, is a

tight sequence of probability measures on [ — 00, c0). Therefore each subsequence

has a weak accumulation point in the set of probability measures on [ — o0, c0).
In order to prove (3.21) let us assume that

(3.22) P({g;'W, e (-d,-1)}) >0
for some subsequence of n,. Passing to a further subsequence we may assume
that
(3‘23) nu‘n, - Q
tends weakly to some probability measure @ on [ — oo, o0).

Let us first assume that @ is a Dirac measure. Since —1 is a (1 — a)th quantile
of u,, we conclude @ = ¢_,. Together with (3.22) we note that p, ((— 00, —1)) = 0.
Thus (1 - v,)P(W, = —¢q,}) > 1—a since 1 —a)=p,((-o,-1)+@1-
Ya)ia({—1}). Hence

1/9p,

(3.24) [(1 - y,,‘)exp(—qnl)P({Vl{l' = —qnl})] ™ exp(—1)

and (3.19) proves (3.21).
Suppose in the second case that @ is not a Dirac measure. Then we first show
that @ is concentrated on R. Therefore we apply Lemma 2.1 which proves

log wy(t) = lim n,-tp(t/qnl) for t € (0,1).
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Using the technique of (3.17) we conclude that
(3.25) lim log wp(t) =0
t—0+

by (3.12). The assertion follows from (2.3).
Next we shall prove that

(3.26) (—d,—1) iscontained in the support of Q.
Since @ is the limit distribution of an infinitesimal triangular (or null) array it is

infinitely divisible. If @ has a normal factor then the claim is obvious. Otherwise
the Lévy measure n of @ is nontrivial and

(3.27) niF(g,x) = n((-o0,x]), x<0,
(3.28) nz(l - F(qn,x)) - n([x’ OO)), x>0,

for all continuity points x of the distribution function of 7; see Feller (1971),
page 585. Let us prove that 7n vanishes on (0, ). Therefore consider
feexp(x) dry(x) < oo which implies n(1 — F(nx)) — 0 for all x > 0. By (1.4) the
inequality 1 — F(q,x) < 1 — F(nx) follows for sufficiently large n. Moreover let
us show that

(3.29) n((—¢,0)) > 0 foreach e > 0.

Since @ is not degenerate there exists a continuity point x, € (—¢,0) such that
n((— o0, x,]) > 0. Choose A > A, such that A 'x, is a continuity point of
x = 1((— o0, x]). Then by (3.6) and (3.27)

. F(qn,xo) _ n((_oo’xO])
(3.30) 1> lim ( BEETRS

ino F(q, A 'x,
It is well known that the support of @ is equal to R or (— oo, ¢] for some ¢ € R
in view of (3.29); compare with Tucker (1975). Note that the case [¢, c0) can be
excluded since @ contains a factor which is a compound Poisson distribution
having the support (— o0, 0]. Since —1is a (1 — a)th quantile of p, the inequality
¢ > —1 holds and (3.26) follows. The Portmanteau theorem yields

(3.31) liln_l)glfP({q;llW,l e (-d,-1)}) 2 Q((-d,-1))

and (3.21) is proved. Returning to (3.19) we compute
1/qn,,
liminf[ [G-9.) dP{‘-]
100

» i =, 0, -, )
= exp(—d).

If d tends to 1 then the result follows since all accumulation points a of (3.20)
are equal to exp(—1).

The proof of (3.9): Suppose that liminfgq, ,/q,, ,=0. Passing to subse-
quences there are probability measures @,,@, on R such that Pa,n, =

(3.32)
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.?(q;p‘,,’WnllP) — @, weakly for j = 1,2 and
(3.33) lim Qal,nl/an,n, = 0’

1— o0
Note that —1 is a (1 — a;)th quantile of o, n, But (3.33) implies that
(9, n/ Yy, n,) (W, /4, »,) tends to 0 in distribution, which is impossible. O

EXAMPLE. Suppose that the distribution function F satisfies the condition

(3.34) F(x) ~ |x| *L(x)B(x) forx - —oo,
where the index p is positive, B is bounded away from zero and infinity:
(3.35) 0<m<B(x)<M forx < x,.

Let L be a positive function varying slowly at — oo, i.e., L(xA)/L(x) — 1 if
x — —oo for all A > 0. Then (3.6) is satisfied. The condition (3.34) implies that
K(P,, P)) = w0 if p <1 and K(P,), P,) < oo for p > 1 (use integration by parts).

It should be remarked that (3.6) is not satisfied if F is slowly varying at — co.
In this case the rate of convergence of g, , can be computed and (3.9) is no longer
true.

THEOREM 3.2. Suppose that the distribution function F of v, is positive and
slowly varying at — . Then

(3.36) nF(-gq, ,) > —loga, ne(q;l) > —logy,

q"‘l,ﬂ

(3.37) lim

=0 fO0<aq <a,<1l1.
n—»ooqaz’n

ProoF. We use the notation of the proof of the preceding theorem. Integra-
tion by parts yields

(3.38) w(t) = [_°°w(1 — F(x))texp(tx) dx

and
(339) (1 - () ~ [° F(x)exp(tx) dx — [~ (1 - F(x))exp(tx) dx.

— 0
The second term on the right-hand side is continuous for ¢ = 0 + . Moreover
(5.22) of Feller (1971), page 447, can be applied to F(0 — )_IVOI(_OO,O). Thus
(3.40) —@(t)= —logw(t) ~1—w(t) ~F(—-1/t) fort—>0+.

According to Lemma 3.1 let us choose a subsequence n, such that n,«p(q;,‘) -
¢ < 0 is convergent. By (3.40)

n;log w(sq, ! F(-s7q,

(3.41) lim —( an, ) = lim ————( 9 ') =

1— o0 n,logw(q;‘) i— o0 F(_q'l,)
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for each s € (0,1). Thus
(3.42) lim ni(p(sq;ll) =c.
1—> 0

Let (X;);<n be a sequence of ii.d. random variables having the distribution 7%
Then n,qJ( 8q,, 1) is the logarithm of the Laplace transform of Y, = qn T X
By Lemma 2. 1 Y, tends in distribution to @ where wg(s) = exp( ¢) for s e (O 1).
Hence

(3.43) Q@=(1-a)e_, +ag, a=exp(c).
Moreover the value —1 is a (1 — a)th quantile of the distribution of Y, .
Therefore a = a and (3.36) is proved if we take (3.40) into account and remark

that ¢ = log a does not depend on the special choice of the subsequence.
Note that by Seneta (1976), Theorem (1.1),

i F(as)
x—}IIloo F(x) B
uniformly in s for s €[a,b], 0 <a<b<oo. If we assume that s, =
9, nlq;; n, = 8 > 0 is bounded away from 0 then (3.44) contradicts

F(—qa2 n, n,) logal

3.45 li = #* 1. O
(8.45) i~ Fl-q, ) loga

(3.44)

4. Applications to one-sided test problems in exponential families. In
contrast to the classical results (1.1) and (1.6), the rate of convergence of the error
of second kind and the critical value depend on the level a if K(P,, P,) = o
Therefore let us study some examples and applications.

In connection with local behavior of one-sided test problems for a simple
hypothesis the critical value of the test can be estimated if the hypothesis
belongs to the domain of attraction of a stable law; see Janssen (1985b), (1986).
Therefore suppose that @ is a probability measure on R such that wg, is finite on
some interval [0, b) for b > 0. Let E = (R, %,(Q;)5<[0,5) be the exponential
family generated by @ such that

(4.1) dQ"(x) (0) exp(d9x) for0 <9 <b.

Let us consider the test problem H:{Q,} against K:{Q,: ¢ € (0, b)} of sample
size n.
The most powerful a test is equal to

n
1 if Y x,> —dan
i=1
n
Po n(xI’ X )= ?n ifle=—(7an
i=1
Ln
0 if E‘x1< —qa,n
i=1
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if E4., , = a. Note that
(4.2) exp(—ﬂqa’n - nlong(l‘})), 0 <4,
is a critical value of the level a test for {€"} against {@}}. Suppose in the sequel

that @ belongs to the domain of attraction of a nondegenerate stable law P with
the index p > 0 of stability on R, i.e.,

(4.3) L(T; Q)" + e
weakly for some a, € R and a sequence (8,), of positive numbers tending to 0.
Define T;(x) = §,x. As pointed out in Janssen (1986)

(44) Sn(_qa,n) + a, > u,

follows where u, is the (1 — a)th quantile of P. If p > 1, the first moment of @
exists and K(@Q, ,) is finite. The classical results imply

(4.5) [Eq(1 — &..)]"" - exp(~K(Q,Q,)),  #>0,

where K(Q, Q) = —¥#/xdQ(x) + log wy(?). Note that (4.5) does not depend on
a. If p < 1, the first moment of @ no longer exists and hence K(Q, @,) = oo for
& > 0.

Let us first study the case p < 1. Following the arguments used in Janssen
(1985b), (1986) let us remark that P is one-sided stable on R having a support

(4.6) supp P =(—o0, a] forsome a € R.

- P

an

The centering procedure of Feller (1971), page 580, implies

(4.7) a,—a since Z(T;|Q)""*e, ,— Pxe , weakly.

—a a

In order to estimate the rate of convergence we recall some known results
(Janssen (1985b), (1986)):

(4.8) logwp(y) = —¢,y” + ay forsome ¢, > 0andall y > 0,
(4.9) logwe(y) ~ T2 =p)(p—1) 'e,y’L(1/y), y—-0+,
(4.10) Q((—o0,t]) ~ cylt| PL(lt]), t— —oo,

where ¢, > 0 and L is a positive function varying slowly at infinity. Suppose

that ka’ . 18 increasing defined by
(4.11) log wQ(ie;‘ )=—(1-loga)n!

,n

for sufficiently large n. If a,, a, € (0,1) then
(4.12) Goy i) n = (@ =, )@ —u,)"
if we observe (4.4) and (4.7).

THEOREM 4.1. If p <1 then
(4.13) 0,do n =0 — U,
(4.14) nlogwg(d,,) = —¢ela—u,) ",

g 1-loga\”
(4.15) Za’n—)( . & ) (a—u,).
1
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If a, > a €[0,1] then (foruy= a, u; = — o)
(4.16) lim [EQ‘,,.(I - (i)am,,)]s" = exp(®(u, — a)).

PROOF. Let g, , be defined by (1.2) for {Qg} against {@3}. Then
(4.17) Qo n =Gy, , + nlogwy(?).

According to (1.4) the result follows from (3.8) and (4.4) since ¢, ,/q, , — @ for
fixed a. In general the result follows from the monotonicity of the error function
for a and the continuity of the right-hand side of (4.16).

The proof of (4.14) and (4.15): Put b = (1 — log @)/c,)/?(a — u,). Then by
(4.9)

log wo( b4, %,)
log wo( % ",)
since nlogwy(8,) = logwp(l) = —c; because L(T; |@)*" — P*e_, weakly;
compare with Janssen (1985b), (1986).

It is well known that (4.18) implies ka’an;ln — 1 since log wg is regularly
varying; compare with Janssen (1985a), Lemma 7c. O

(4.18) -1

REMARK 1. It is well known that §, is of the order
(4.19) 8,=n"Y?L(n),

where L denotes a positive function varying slowly at infinity. If the index of
stability p is less than 1 then (4.13), (4.16), and (4.17) show that (4.19) contains
the correct rate of convergence of the interesting quantities for a € (0, 1) which is
faster than the classical speed of convergence 1/n.

REMARK 2. A straightforward calculation proves that, in view of (4.16), x[?a’ .
can be substituted by the test sequence y,, , for fixed level a which was proposed
in Janssen (1986), Theorem 13. Note that ¢, , is an asymptotically most
powerful test sequence for {Qg} against {Q7 ;).

REMARK 3. For p =1 we only have a partial result. If (wg(3,y))"exp(ya,)
tends to w,(y) = exp(cylog y) for y € [0,1] and some ¢ > 0, then @ belongs to
the domain of the one-sided stable distribution P with index 1. In general a,
does not converge and Theorem 4.1 no longer holds. For example, if P = @ for
¢ = 1 then @ is not strictly stable and

1 1 1
q"‘”= _nu“—nlog_’ a, = —log_’ ‘Sn:_y n..>_2:
, n n

and (4.17) yields the connection between g, , and g, ,, where u, is the (1 — a)th
quantile of P. In this special case we obtain that for fixed # > 0 the exponent
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1/q,,, of (1.3) and (3.8) is equal to
1 1

94,n

1
log wo(?) — u, — log;

which is a faster rate of convergence than 8, = 1/n.

REMARK 4. In the case of Theorem 3.1 statement (3.9) proves that the order
of the rate of convergence of

(4’20) log EP,"(]‘ - (Pa,n)

is the same for all a € (0,1). But the exact rate of convergence of (4.20) may
depend on «; cf. (4.16). On the other hand, (4.16) shows that a different order of
the rate of convergence occurs if a, — 1. This phenomenon is also new compared
with the results of Krafft and Plachky (1970) who showed that (1.1) still holds if
(1—a,)/"—1.
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