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INFLUENCE FUNCTIONALS FOR TIME SERIES'

By R. DoucLAS MARTIN AND VICTOR J. YOHAI

University of Washington and University of Buenos Aires
and CEMA, Buenos Aires

A definition is given for influence functionals of parameter estimates
in time-series models. The definition involves the use of a contaminated
observations process of the form yY=(1 - 2})x, + z/w, t=12,...,
0 < y < 1, where x, is a core process (usually Gaussian), w; is a contaminat-
ing process, and 2} is a zero—one process with P (z} = 1) = y + o(y). This
form is sufficiently general to model such diverse contamination types as
isolated outliers and patches of outliers. Let T(u}) denote the functional
representation of a given estimate, where the measures p%, 0 <y < 1 for »
are in an appropriate subset of the family of stationary and ergodic measures
on (R*®, B*). The influence functional IF is a derivative of T along “arcs”
traced by pY, as y — 0, and correspondingly pY, — p.. Although this influence
functional is similar in spirit to Hampel’s influence curve ICH for the i.id.
setting, it is not the same as ICH. However, a simple relationship between the
IF and the ICH is established. Results are given which aid in the computa-
tion of IF and insure that IF is bounded. We compute the IF for some robust
estimates of the first-order autoregressive and first-order moving average
parameters using various contamination processes. A definition of gross-error
sensitivity (GES) for the IF is given, and some estimates are compared in
terms of their GES’s. Also the IF is used to show that a class of generalized
RA estimates has a certain optimality property. Finally, some possible gener-
alizations of the IF are indicated.

1. Introduction. The influence curve, introduced by Hampel (1974), has
been referred to as “ perhaps the most useful heuristic tool of robust statistics” by
Huber (1981) in Chapter 1.5 of his recent book. Indeed the usefulness of the
influence curve in situations where the data consist of independent and identi-
cally distributed (i.i.d.) random variables or random vectors is reflected by its
appearance in many papers on robustness, and by attempts to extend its
definition to cover situations other than the standard point estimation problems.
For example one finds recent papers on influence curves in the context of errors in
variables (Kelly, 1984), quantal bioassay (James and James, 1983), problems
involving censoring (Samuels, 1978), and for parameter testing (Lambert, 1981;
Ronchetti, 1982), and goodness of fit tests (Michael and Schucany, 1985).

In spite of the pervasive nature of the influence curve and the length of time
elapsed since Hampel’s initial contribution, a completely satisfactory definition of
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influence curve for the time-series setting has not yet been given. A number of
authors have suggested carrying over Hampel’s definition of influence curve to
the time-series setting: Martin and Jong (1976), Portnoy (1977), and Martin
(1980) mention this possibility, while Kunsch (1984) has pursued the use of
Hampel’s influence curve for obtaining infinitesimal optimality results for autore-
gression estimates. See also Chernick, Downing, and Pike (1982). However, we
shall argue that while Hampel’s influence curve plays a central role in reflecting
the “influence” of contamination in the i.i.d. setting, it does not adequately
capture the nature of contamination effects in the time-series setting. We at-
tempt to remedy the situation by providing a useful definition of influence
functional (IF) for time-series parameter estimation problems which seems natu-
ral and closely coupled to intuition.

One of the chief features of the time-series setting is the fact that estimators
which take account of the time-series structure are not invariant under permuta-
tions of the data, as in the case of estimators for i.i.d. situations. Consequently,
basic permutation dependent issues of contamination, such as the distinction
between outliers which occur in isolation versus outliers which occur in patches,
become important. Such distinct types of behavior are common occurrences in
real data, as any careful and experienced practitioner knows all too well. Our
definition of influence functional reflects the difference in impact of these two
types of behavior, as well it should. These differences are clearly revealed in some
explicit computations of influence functionals.

As a point of departure we briefly recall Hampel’s (1974) definition of influence
curve and its properties. The context is that of possibly vector-valued indepen-
dent observations y,,...,y, with common distribution F, and an estimator
T,=T,¥:--.,¥,) which may also be vector-valued. It is assumed that T, may
be obtained from a functional T = T(F') defined on a suitably rich family of
distributions by evaluating T at the empirical distribution function F,: T, =
T(F,). Let F, = (1 — v)F + v§, be a contamination distribution, where §, has all
its mass at y. Then Hampel’s influence curve is the directional or Gateaux
derivative at F of the functional T, in the “direction” determined by &,

. T(F,) - T(F)
(1.1) ICH(y) = ICH(y; T, F) = lim —————
y—0 Y
The influence curve is both an asymptotic and a local (or infinitesimal) tool.
The influence curve has several useful properties (Hampel, 1974):

(P1) an appealing heuristic interpretation;

(P2) a convenient role in formal asymptotics;

(P3) an indicator via gross-error sensitivity (GES) of maximum bias due to
infinitesimal contamination;

(P4) the construction of optimal estimates under the constraint of a bounded
gross-error sensitivity (GES).

Results on (P4) for ordinary regression may be found in Hampel (1975, 1978),
Krasker and Welsch (1982), and Huber (1983). Similar results based on ICH for
autoregression have been obtained by Kiinsch (1984).
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The remaining parts of the paper are as follows: As preliminaries, Section 2
introduces a general class of contamination processes which is useful for our
definition of influence functional (IF), along with several particular types of
contamination, and, also, some notation used in the remainder of the paper.
Section 3 discusses functional representations for time-series parameter esti-
mates, introduces ¥ estimates, the main class with which we work, and gives
some specific ¥ estimates.

Section 4 introduces our definition of IF, gives results which aid in the
computation of the IF, and which insure boundedness of the IF. Section 5 gives
specific results for generalized M-estimates and RA estimates of first-order
autoregressive and moving average models. The results given in Sections 4 and 5
address Kiinsch’s (1984, Section 2.6) second open question in the context of our
definition of time series IF: namely, we include the case where the estimator
depends upon the measure for the process (not just on finite-dimensional margi-
nal measures). In particular, it is shown that although bounded psi functions (i.e.,
bounded summands in estimating equations) yield a bounded IF for AR(1)
models, this condition is not sufficient to insure a bounded IF for MA(1) models.
On the other hand, redescending psi functions can yield a bounded IF for MA(1)
models. These results revel a key distinction with regard to robustness between
models having moving average components and those which do not.

Section 6 introduces a definition of gross-error sensitivity (GES), and com-
putes GES’s for the estimates and models treated in Section 5. Section 7
introduces a class of generalized RA-estimates and establishes, using the defini-
tion of IF, a certain optimality of these estimates. Section 8 sketches some
possible generalizations of the IF through applications to a white-noise test
statistic, and to spectral density estimation. Finally, proofs of theorems are
collected in Section 9.

Throughout, we keep (P1)-(P4) of the ICH in mind, with a view toward
preserving the most essential of these in the time-series setting. Our preference
ranking for these properties makes (P1) and (P3) paramount, with (P4) highly
desirable.

2. Contamination processes for time series.

2.1. The importance of outliers’ time configurations. In the case of estimates
which are intended for use in the i.i.d. setting, such as ordinary location M
estimates, the influence curve may be defined asymptotically as in (1.1), with
Hampel’s (1974) attendant finite-sample size approximation, by placing all the
contamination at a single point. This approach works essentially because most
estimators intended for use with i.i.d. data are invariant under permutations of
the data, and may be obtained from functionals T of the marginal distribution
function F by evaluating T at the empirical marginal distribution function F,.
Under such conditions, the specific ime configuration of observation times at
which the contaminating points occur is irrelevant.

By way of contrast, the time configuration of the contaminating points will be
important in the case of estimates which make use of the time-series structure.
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For the sake of specific illustration consider the ordinary lag-one correlation
coefficient

‘\::l=2ylyz—l
Ef’=1yi2

with estimation of the mean ignored for simplicity (the behavior to be described
is qualitatively the same when y is included). It is clear that the values of a fixed
number & of isolated outliers appear quadratically in the denominator of p, but
only linearly in the numerator; by “isolated” we mean that each pair of outliers
is separated in time by at least one nonoutlier observation. If the outliers have a
common value or “amplitude” {, then p — 0 as { = oo, and the effect might be
described as bias toward zero. On the other hand, if the % outliers of common
amplitude { are contiguous, i.e., if they form a patch of length k, then
p — (k—1)/k as { = oo. For long patch lengths %, the effect might be described
as bias toward unity.

Since different time configurations can have quite different impacts on an
estimate, it will be natural when defining an influence functional for time series
to work with contaminated processes which have the flexibility to provide
different time configurations of contamination or outliers, as well as a controlled
contamination fraction.

ﬁ:

2.2. The general replacement model. 'The following component processes and
associated stationary and ergodic marginal measures on (R*, #*) are used to
construct the contaminated process:

x, ~ ., thenominal or core process, often Gaussian,
w, ~ 1, acontaminating process,
2z} ~ nY, a0-1 process,

where 0 < y < 1, and

(2.1) P(z7=1) =g(y) =y +o(v)

for some function g. The contaminated process y is now obtained by the general
replacement model

(2.2) Y =(1-2))x + 2w,

where yY ~ p?, and pf;, = p,, i.e., zero contamination results in perfect observa-
tions of x,. In general we may wish to allow dependence between the 2z}, x,, and
w, processes in order to model certain kinds of outliers. Correspondingly, the
measures pY, 0 < y < 1, are determined by the specification of the joint measures
Prw, 0<y=<L

The pure replacement model. Here 2}, x;, and w; are mutually independent
processes, i.e.,

Blwe = PRl
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The AO model. Allowing dependence between x, and w, means that the
additive outliers (AO) model

(2.3) ¥y, =x, + of

used in previous studies (Denby and Martin, 1979; Bustos and Yohai, 1586) may
in some situations be obtained as a special case of (2.2). This is the case for
example when the v} have, for marginal distribution, the contamination distribu-
tion F, = (1 — v)8, + yH with degenerate central component §,. Just set w, =
x, + v; with v; having marginal distribution H, let g(y) = y in (2.2), and let 2
be independent of x; and v,. Here pl,, = uln,, = plp, .., Throughout the
remainder of the paper we use the version of the AO model obtained from (2.2)
with w, = x; + v,

The two main time configurations for outliers are (a) isolated outliers, and (b)
outliers occurring in patches or bursts. The need for modeling the latter behavior
is well recognized by those who have dealt with real time-series problems. It may
also be desirable to combine these two situations in order to adequately model
some time-series data.

Independent outliers. Since isolated outliers are typically produced by inde-
pendence in the w, or v,, we shall use the terms “independent” and “isolated” as
interchangeable adjectives.

Situations in which the outliers are mainly isolated are easily manufactured
from either the pure replacement or AO form of (2.2) by letting 2} be i.i.d. with
g(y) = v and w, an appropriately specified process. For example, w; could be an
i.i.d. Gaussian process with mean zero and suitably large variance, or the w; could
be identically equal to a constant value ¢.

Patchy outliers. Patches of approximately fixed length can be arranged in the
following way. Let w;, and v, be highly correlated processes. In case these
processes are identically equal to a constant ¢, they will be regarded as highly
correlated. Now let 2% be an i.i.d. binomial B(1, p) sequence, and set

(2.4) 27:{1, if 37 ,= 1forsomel=0,1,...,k -1,

0, else.
Here we set y = kp, with & fixed and p variable. Then since
P(z}=1)=1-(1-p)* =kp +o(p)
we have

(2.5) g(y)=v+o(y)

and the average patch length is & for y small. We denote the probability measure
of the process {z}} by p”7.

2.3. Some notation. In the sequel we shall use the following notational
conventions. Finite sets of contiguous x; will be denoted

(2.6) X/ =(x,%,_1,..,%;), J<i,
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and similarly with w;. We often need dummy arguments which are shadow
representatives for observations, and we use y,’s for this purpose. Correspond-
ingly, finite segments of y,’s are denoted

(27) yzj = (yn yi—ly"" y,): J < l

We will have little need to refer to finite segments of 3 and z. However, we
do need semiinfinite sequences of y’s (with measure p?) and x,’s (with measure
1), as well as semiinfinite sequences of dummy arguments y,. These we denote
by

(28) yzy = (y,?, yzy—l"")’
(2.9) x,=(x,,%,_1,---),
(210) yl= (yw yl—l"")’

and so on. The use of y,Y and x, is almost exclusively reserved for computations
involving expectations under pY and p,, respectively, and since these are sta-
tionary measures, our typical arguments are y; and x,. Since y; is usually a
dummy argument, we usually use y;.

Semi-infinite sequences such as (2.8)—(2.9) may be regarded as points in R>.
Doubly infinite sequences such as (..., ¥_1, ¥, Y1, Yo, - - - ) are points in the space
R~ > of all doubly infinite sequences.

3. Time-series parameter estimates and functionals. It is assumed
throughout that the observations y, are realizations of a stationary and ergodic
process on R~ with associated probability space (R~ *, &, n), # being the
family of Borel sets in R~ *, with p in the set P, of all stationary and ergodic
measures on (R~ %, #). In this time-series setting, it is usually possible to
represent the asymptotic value of a parameter estimate as a functional, T = T(p),
defined on a subset P, of P,,.

The basic definitions of influence functional and gross-error sensitivity for
time-series parameter estimates, which we give subsequently, are for quite
general functionals T(p). However, all specific ensuing results are for a special
class of functionals T associated with those time-series models parameter esti-
mates T, which may be computed as a solution to the estimating equation

n
‘I'i( Yiseeos yl’Tn) = Z ‘I'z(yzl’Tn) =0.
i=1

Here each ¥, is a function from R'X R™ to R™ Both ¥, and T, may be
vector-valued, as when estimating the parameters of an autoregressive-moving-
average model of orders p and q. For the sake of notational simplicity we take
the y, to be scalar-valued, but all of what follows applies equally well to the case
of vector-valued time series.

The subscript i on ¥; accounts for “end effects” which vanish either after a
finite number of observations (as in Example 1 to follow), or asymptotically (as in
Examples 2-4 to follow). In either case the asymptotic value T = T(u) of T, can
usually be determined through the use of a fixed psi function ¥ which for each t

(3.1)

i
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satisfies
(3.2) hm ¥(a,,...,a,t) = lim ¥(a,t), Va=(a,,a,,...)<E R”.

l—’OO
A specml case of such a ¥ is one which depends only on a finite number of
coordinates: for each t

(3.2") V(a,,...,a,t) =¥(a,t), i>k,VaecR™.

Example 1 to follow falls into this category, whereas Examples 24 require the
general form of V.

Under suitable regularity conditions, which include ergodicity, one expects to
have

n—oo N o n

n . 1 .
lim — Z Y(y,..., Y1st) = hm — Z ¥(y, t) = E¥(y,,t).
i= 1=1
Therefore we assume that the asymptotic value T(p) is defined by

(3.3) [¥,T) dp(y,) = 0.

We shall assume that (3.3) either has a unique root t, = T(n), or that a
well-defined solution is available in the case of multiple roots. T is then defined
on P, consisting of all p in P, such that the integral in (3.3) exists and is finite.

An estimate T, defined by (3 1) is called a ¥ estimate, and this term will also
be used to descrlbe the associated asymptotic version T defined by (3.3). The class
of ¥ estimates is quite large and contains both classical and robust parameter
estimates, as the examples to follow show.

Our examples consist of two classes of robust estimates of the parameters of
first-order autoregressive, AR(1), and first-order moving-average, MA(1), models.
The AR(1) model is

(3.4) X, =¢x,_, tu
and the MA(1) model is
(3.5) x;=u,—Ou,_,,

where the innovations u, are assumed to be ii.d. with a common N(0,1)
distribution. The assumption of a known innovations scale o, = 1 and known
location p = 0 is made to simplify the exposition.

ExXAMPLE 1. GM/BIF estimates for the AR(1) model. Here T, =¢is a
generalized M estimate (GM estimate) or bounded-influence estimate (BIF
estimate) of ¢. These estimates are ¥ estimates, with ¥, = i, given by

(36) \Lz(yzla ¢) = "I(yl - ¢yi—1’ yi—l(l - 4)2)1/2)’ l = 2)
for some bounded function n = (-, -). Correspondingly, the limit ¥ function is
(3.7) ‘I’(YU 9) = "7( Y1~ $Yo» yo(l - ¢2)1/2)~

The two main variants of GM/BIF estimates are as follows (see Denby and
Martin, 1979; Martin, 1980; Bustos, 1982).
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Mallows variant.

(3.8) n(£1, &) = ¥(€)¥(£,)

for some bounded robustifying psi function . This type of estimate was sug-
gested by Mallows (1976) in the non-time-series regression setup.

Hampel-Krasker—Welsch (HKW) variant.
(3.9) n(£1, &2) = ¥(£.6,)

for some bounded robustifying function .

The choice n(§,, §,) = £,9(£,) yields the ordinary M estimate of ¢ (see for
example Martin, 1982). As we shall see, this estimate does not have a bounded
influence function, using either our definition or Hampel’s definition as extended
to the time series context (see Section 5). The ordinary M estimate and the
Mallows and HKW type estimates all reduce to the least-squares estimate, which
has an unbounded influence function, by either definition when i is the identity
function.

EXAMPLE 2. RA estimates for the AR(1) model. Recently Bustos and Yohai
(1986) have introduced a new class of estimates for ARMA models. These
estimates are called RA estimates because they are based on robust estimates of
residual autocovariances. For the AR(1) case the RA estimate ¢ is defined as
follows. Let

(3.10) r(9) =5 — ¢y,
and let
(3.11) 9 =v(9) = ; 271( (), 1(¢)) 0<l<n-2,

denote a robust lag-/ autocovariance estimate for the residuals, with robustifying
function 1 = (-, -). Then ¢ is a solution of the estimating equation

n—2 n i—2

(3.12) Y ¢ v(é) =— Z ¢ n(ri(), r,_i(8)) = 0.
=1 1=31=1

Estimates obtained for the choices n(&;, &) = ¢(§)¥(§,) and n(§,, &) =
Y(£,£,) are again called Mallows and HKW estimates, respectively. It may be
shown that if n(§,,&,) = £,§,, then ¢ is asymptotically equivalent to the
least-squares estimate, and if n(§,, &,) = ¥(&,)€,, then é is asymptotically equiv-
alent to an M estimate.

Again ¥, = 11:L is scalar-valued, and {,(y/, ¢) is given by the inner summation
in (3.12), w1th ¢ replaced by ¢, and the limit ¥ function is

0

(3.13) P(yne) = L o/ 'n(y — oY, 21— dy_,)-

Jj=1

EXAMPLE 3. GM estimates for the MA(1) model. In order to motivate the
definition of GM estimate for the MA(1) model, we first note that the least-squares
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estimate 0,5 of @ is a solution of the equation

(3.14) Y sk (Bis)rx(8.s) = o,
1=2
where
1—1
(3.15) s¥8) =X (j+1)8%,_;
Jj=0
and
1—1
(3.16) rX(8) = X 0%y,
j=0

It is easy to verify that when y, = x, with x; the MA(1) model (3.5),
lim, , varr*(0) =1 and lim,_, vars*(0) =1/(1 - 0 ). Therefore, by analogy

1 — o0 1 — 00

with the AR(1) model, we define the GM estimate b of 6 by

(3.17) Z n(r(8), sx,(8)(1 - 82)'7) = 0.

Here 1y}, 0) is given by the ith summand above, with s* () and r*(6)
expressed in terms of the y; for 1 <j < i. The limit ¥ functlon is

(3.18) 331, 0) = n(r(6), so(6)(1 — 67)'%),

where

(3.19) (0) = X (G085, n(0)= X o,
Jj=0 Jj=

EXAMPLE 4. RA estimates for the MA(1) model. The RA estimates f for
the MA(1) model have exactly the same form of estimating equations as in the
AR(1) case:

(3.20)

u[V]=

>: n(ri(8), . (B)) = 0

with the residuals given by
i-1
(3.21) r(8) =X ajyi—j'
j=0
It can be shown that when 5(§,, &;) = §,4,, 6 is asymptotically equivalent to the
least-squares estimate.
The function ¢ (y #) is given by the inner summation of the estimating
equation (3.20), with § replaced by 6. The limit ¥ function is

(3:22) P(y,0)= 2 07 | X 0%y 4, X 0ky1—k—j .

Jj=1 k=0 k=0
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4. Influence functionals for time series.

4.1. ICH for time series and the need for a new definition. Since we deal
only with estimates which are defined asymptotically by functionals T = T(u), it
might at first blush be tempting to simply apply Hampel’s definition (1.1) in the
time-series parameter-estimation setting. To do so, one would replace the uni-
variate contaminating distribution ¥, by the process contamination measure

= (1 - y)r + v8,, where in general y = (..., Y Yo» Y-15---) E RT®, &
the unit mass at y, and p is a measure in P,,. We assume that aV¥ estlmate
T = T(p) is defined by (3.3) for not only statlonary and ergodic measures
p, for the core process x, in (2.2), but also for the contamination measures
=1 -y, +7v8, 0<y<1 Since §, ¢ P, this places some restriction
ony.

DEFINITION 4.1 (ICH for time-series ¥ estimates). We define

T - T
(4’1) ICH(y’Ta P«) = liII}) %—(—’J‘)—a
‘Y‘—)

providing the limit exists.

Under suitable regularity conditions (4.1) and (3.3) yield

(4.2) ICH(y,) = ICH(y,, T, 1,) = —C "¥(y;; t,),
where t, = T(p,) and the nonsingular matrix C is given by
(4.2') C = [(3/9)E¥(x,,t)] i,

This possibility is most tempting when T depends only on a finite-dimensional
marginal measure p*, as in the case of GM/BIF estimates for autoregression,
where the analogy with ordinary regression is suggestive. For such cases one
would set u, = p,y 1 —ypr+ ¥8y-#+1, where 8y-«+1 has all its mass at y, CRrL
Such a definition was suggested by Martln and Jong (1977), Portnoy (1977), and
Martin (1980), and pursued in a more serious vein by Kiinsch (1984), who focused
on Hampel-type optimality results based on ICH. Kiinsch in fact proved that
(4.2)-(4.2") holds for pth-order autoregressions, and in that context also provided
an empirical interpretation in the context of adding a single observation at the
end of the series.

The ICH (4.1)-(4.2) does typically give the correct asymptotic variance—
covariance matrix for T,,:

(4.3) V=V, + Y (V,+V]T),
=1

where

(4.4) V, = var[ICH(y,), ICH(y, ,,)].

In the case of estimating location with an ordinary M estimate V reduces to the
expression obtained by Portnoy (1977). In the case of autoregression GM/BIF
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estimates, V coincides with the expression stated in Martin (1980) for the
Mallows variant, and established rigorously by Bustos (1982) for a general class
which includes both Mallows- and HKW-type estimates. '
Unfortunately there is a very basic sense in which ICH is not the most
appropriate definition for the time-series context: the definition does not corre-
spond to any interesting contaminated time series. The reason is simple enough.
One computes ICH by letting p, = (1 — y)u + v8,, where §, on (R™>*, %)
puts all its mass at the point y € R™°*. But the mixture structure of . implies
that each sample path of the series is generated either by u or by 8, and this
hardly reflects the nature of any real contaminated series arising in practice.

4.2. The time-series influence functional and its properties.

DEFINITION 4.2 (Time-series influence functional). Suppose the estimator
sequence {T,} is specified asymptotically by a functional T = T(p) defined on a
subset P, of P,,, and suppose that p} is given by (2.1)—(2.2). Then the influence

se’

functional IF of T is defined as

(45) IF(yw,T,{ug})==ugzﬂﬁﬁéli%EXEEZ

provided the limit exists.

Note that the influence functional depends not only upon the estimator T, the
nominal model u,, and the contamination process measure p,, as “main” argu-
ment, but also upon the particular ¢rajectory or arc of contamination measures
{u1} = {u%: 0 <y <1}, as the fraction of contamination g(y) = vy + o(y) tends
to zero. By way of contrast the ICH for time series depends only on T, the
nominal measure p, with g = p, in the present context, and the “main” argu-
ment 8. Correspondingly, ICH is a directional or Gateaux derivative with
direction specified by p, and §,. In order to capture the essential features of
time-series contamination in an influence functional, we take derivatives along
particular arcs {u}} top, in P,

It turns out that there is a rather simple connection between IF and ICH
under certain conditions, and it is a connection which facilitates the computation
of IF. The first theorem to follow gives sufficient conditions to insure that a
trivial expansion argument will yield the key relation (4.6) below.

THEOREM 4.1. Assume that T is a ¥ estimate with

(a) lim'y—»OT(M‘g) = T(p‘x) = tO'
(b) Put

m(y,t) = E¥(y}, t).
There exists an ¢ > 0 such that
D(y,t) = (d/9t)m(y,t)
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exists for 0 <y <eg, |t — 1ty <e and D(y,t) is continuous at (0,t,). Also
C = D(0,t,) is nonsingular.

(c) lim, _, ym(y,t,)/y exists.

Then

E ICH(y;
(4.6) IF(p,, T, {s}}) = lim —Y(—y)
Y—)

COMMENT 4.1. For the case where ¥ depends on finitely many arguments the
above expression coincides with (1.18) of Kunsch (1984), which in that case is
valid for more general contamination than those considered here.

Suppose that a ¥ estimate is selected with a view toward use in the ii.d.
setting. For example, ¥ might define an ordinary M estimate of location or scale.
Then the ith summand in (3.1) depends only on the ith observation and T, is
permutation invariant by virtue of the equality

¥ (vl t) = ¥(y,t), i=12,...,n.
The following corollary shows that IF is a strict generalization of ICH in the

sense that the two coincide for such estimates when y) is an ii.d. pure
replacement process.

COROLLARY 4.1. Suppose that the ¥ estimate satisfies
‘i’,(y,l,t) =¥(y,t), vt,i=1,2,...,n,
and that yY is given by (2.2) with zY i.i.d, g(y) = v, and w; = &. Then
(4.7) IF(p,, T, {1)}) = IF(¢,T, (1})) = ICH(¢).

Assumption (b) in Theorem 4.1 is quite restrictive. The next theorem gives a
useful set of conditions to insure that the relation (4.6) between IF and ICH
holds for many types of estimates of interest, including GM and RA estimates,
when the process {2z} is independent of {x,,w,} and has distribution p”?
corresponding to patches of length k& generated according to (2.4) of Section 2.2.
The theorem also shows how to compute IF in these cases.

THEOREM 4.2. Let T be a ¥ estimate with t, = T(n,) and suppose that
Brws = Reoh® Y. Assume ICH is given by (4.2)-(4.2') and that:

(@) T(py) = t, = O(y).

(b) E¥(x,,t) is differentiable at t = t, and the derivative matrix C given by
(4.2’) is nonsingular.

(c) For m = 1 put

Hm(t) = SuplE\i,(yf_m’yl—m’t) - E‘i’(yf_m’ yl*—m’t)l’
where the supremum is with respect to every Y™™ = (Y1, Yor-++» Youm) Yi-m =
(Yi—ms Yomseo 1 ¥1om = (Vs Y¥ s+ .) such that each y, _; and yy¥_, may be

-J
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and put
H*(e) = sup H,(t).

t—tyl<e

either x,_; or w,_;,

There exists e, > 0 such that
Y H*(e,) < oo.
m=1
(d) Put
Hy(t) = sup E¥(y,, 1),

where the supremum is with respect to every y, = (y, Yo, --.) such thaty, _, may
be either x,_; or w,_;, and put

Hi(e) = sup Hy(t).

t—tol<e

_j,

There exists ¢, > 0 such that H(e,) < oo.
(e) For any y, = (¥, Y- - - ), Where each y, _, is either x,_, or w,_,, we have

lim ¥(y,,t) = ¥(y,,t,) a.s.
t—t,

and there exists € > 0 such that
E sup |¥(y,,t)| < oo.

t—tol<e
Then (4.6) holds, and
1 0
(4.8) IF(,, T, {uh7}) = - ZC ZOG]*,
j=
where
E¥(w! 7/ x_ .t fo<j<k-1,
(48’) ij= ~( 11_‘4—’z 11_0') o
E‘I'(x1 4 ,w_j{”z,x_j,to) ifj > k.

COMMENT 4.2. We will see in Section 5 that the assumptions of this theorem
are satisfied under general regularity conditions on the n function for GM and
RA estimates for the AR(1) and MA(1) models (Theorems 5.2 and 5.4, respec-

tively).

As in the case of the Hampel influence curve, boundedness of IF is of interest
in connection with robustness. The following theorem gives sufficient conditions
for boundedness of IF. We introduce some notation. Given an n X m matrix A,
let ||A|| be defined as sup{]Au|: fu] = 1, u € R™}. Let N, be the set of nonnega-
tive integers. Given a subset I C Ny, lety, ;= {y,_,: k € I}.
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THEOREM 4.3. Let T be a ¥ estimate such that (4.6) holds. Assume also
0
(a) ¥(y,,t) = Z '“'j(yLIj,t),
J=1

where the I, are subsets of N, such that the number of elements in each I, is
uniformly bounded by a finite integer h, and

(b) Em(x, ,.t)) =0, Vj.
SUPWJ'(YLIIJO)‘ <K,
.1,
with
0
J=1
(c) E¥(x,,t) is differentiable at t =t,, and the derivative matrix C is
nonsingular.
Then
(4.9) [TF(p,, T, {3})| < 2RK|ICY.

CoMMENT 4.3. The above theorem applies to GM and RA estimates of
autoregressive models if ¥ is bounded—see (3.7) and (3.13). However, bounded-
ness of ¥ is not in general sufficient for the boundedness of IF. In Section 5.2 we
give an MA(1) model example where estimates with bounded ¥ have unbounded
IF, the reason being that the m; depend on an infinite number of coordinates for
moving-average models.

5. Influence functionals for AR(1) and MA(1) models with additive
outliers. The computation of time-series influence functionals will be carried
out for both GM estimates, denoted T°M (cf. Examples 1 and 3) and RA
estimates, denoted TR (cf. Examples 2 and 4). Throughout this section and the
remainder of the paper the only outlier model we deal with is the AO model as
described following (2.3), and with Gaussian AR(1) and MA(1) x; processes (3.4)
and (3.5). We selected the AO model for our computations primarily because it
has been used in previous studies (e.g., Denby and Martin, 1979; Bustos and
Yohai, 1986). We hope later on to make computations for pure replacement
models, higher-order AR and MA models, etc.

Corresponding to the special cases treated, it is convenient to replace the
notation IF = IF(u,, T, {p}}) by IFyq , = IFag (i, T, \) where T = TM or
T = TRA and A = ¢ or 6. Here, the subscript % indicates the patch length for
patchy outliers, and with p, fixed, specification of pu, is equivalent to specifica-
tion of u,, for the AO model. When % = 1 we have independent outliers. We also
replace ICH by ICH.

5.1. AR(1) models. We first state results concerning the ICH, and asymp-
totic variance (in central limit theorem form) of TM and T®4 at the Gaussian
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model. The need for the asymptotic variance under the nominal Gaussian model
arises when comparing the IF’s of different estimates: their tuning constants will
be adjusted to obtain matched asymptotic efficiencies at the nominal model. The
following assumptions will be used to prove these results:

(A1) n(-, +) is continuous and odd in each variable.
(A2) |n(uy, uy)| < K|u,|*|uy|*2, where k, and k, are either 0 or 1.

377(”1’ u2) .
(A3) n;(uy, uy) i P 1,2,
are continuous and
[ny(uy, uy)| < K|uy|™, [na(uy, uy)| < K |uy|"2,
where A, and %, are either 0 or 1.
(A4)
(5.1) B =E{v-(d/0x)n(x,0)|,-,} # 0,

where u and v are independent N(0, 1) random variables.

Observe that the LS estimates satisfy (A2) with &, = k, = 1 and (A3) with
h, = hy,=1. M estimates with bounded ¢ and ¢’ satisfy (Al) with k2, =0,
ky, =1 and (A3) with A, = 1 and A, = 0. GM and RA estimates with bounded 7
satisfy (A2) with &k, = k, =0, and if they are of the Mallows types with {’
bounded, they satisfy (A3) with h, = h, = 0, while if they are of the
Hampel-Krasker type with ¥’ bounded, (A3) is satisfied with A, = h, = 1.

THEOREM 5.1.
(i) Under (Al), (A3), and (A4) we have

_a\1/2
(5'2) ICH(yl’ TGM’ ¢’) = Q’%‘)_"?(’H(‘P), yO(]' - ¢2)1/2)a
(5.3) ICH(y,, TR, ¢) = - ;¢ iw-ln(nw), ri_{(¢)),

where r(¢$) =y, — ¢¥;_y.
(i) Let T, denote either TSM or TEA, and set

(5.4) A = En(u, v)

with u, v independent N(0,1) random variables. If (A1)~(A4) and the Gaussian
AR(1) model (3.4) hold, then

n'*(T,— ¢) -, N(0,V)
with

(5.5) V=(1- ¢2)§—2.
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THEOREM 5.2. Suppose that the AO model holds, i.e., w,= x, + v, in (2.2),
with v, independent of x,. Assume (A1)-(A4) and that E|v,|*1**2 < o0, where k,
and k, are as in (A2).

(i) For independent outliers we have

(1 _ ¢2)l/2

1/2
B )

(5.6) IFyo ,(u,, TM, ¢) = En(u1 ~ ¢y, (x5 + 1y)(1 — ¢%)

and
2

B
(ii) For patches of outliers of length k > 2 we have

(1 _ ¢2)1/2
kB

X [(k - 1)E'q(u1 + 0, — 0, (% + v)(1 — ¢°)

+E"I(u1 - ¢Uo’(x0 + DO)(I - ¢2)1/2)]

(5.7) IFuo,(p,, TRA, ¢) = En(u, — vy, Uy + 0g)-

IFAO,k(""u’ M, ¢) =

(5.8) 1/2)

and

1-—¢°
IFAO,I?("”U’TRA’ ¢)= kB

k—2
X[ Y (k—h=1)¢" "En(u, + v, — ¢vy, Uy 5+ 015~ 9V_4)
h=1
k—1
(5.9) + ¢h_1E"I(u1 +0; = ¢Uy, Uy, t Dl—h)
=1
-1

;>

+ " En(u, — dvg, Uy _p+ 0,5 — dv_4)
h=1

+¢" En(u, — dvg, uy_p + 0, ) |-

COMMENT 5.1. The expectations in (5.6)-(5.9) are with respect to the mea-
sure p,, = M M, Where p yields all the necessary joint distributions for the x,
and u, in the AR(1) model. Here the measure p, € P,, is quite general. We
specialize to the leading case of degenerate measures 8, corresponding to v, = ¢,
when computing IF’s in Section 5.3.

5.2. MA(1) models. The following theorem gives the ICH’s and asymptotic
variances of TR’ and TM for the MA(1) Gaussian model, as given in Examples
3 and 4, respectively, of Section 3. The scalar-valued limit ¢ functions for T®*
and T M are given by (3.18) and (3.22), respectively.
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THEOREM 5.3. (i) Under (Al), (A3), and (A4) we have

_ p2\1/2
(510) ICH(y,,TM,9) = — %n(n(ﬂ), so(8)(1 — 62)'%),
(5.11) ICH(y,, T®*,0) = - —(—1—_3—0- i 8/ 'n(r(0), r,_(8)),

where B is given in (A4), r(0) and s,(8) are given by (3.19).
(ii) If T, represents the GM or RA estimate, and (Al)-(A4) and the Gaussian
MAQ) model (3.5) hold, then

(5.12) n/*(T, - 6) - ,N(0,(1 — 62)A/B?),
where A is given by (5.4), and B is given in (A4).

The following theorem gives the IF’s of TM and T®* for patches of length
one (i.e., independent outliers).

THEOREM 5.4. Assume (Al)-(A4), and that the AO model holds, i.e., w;, =
x,+ v, with v, ~ p, and independent of x,. Further suppose that the process
{2} is independent of the processes {x,,v,}, with 2z} an i.i.d. Bernoulli se-
quence. Assume also that E|v,|**' < co, where h = max(h,, h,) with h,, h, as
in (A3). Then

1-6%)"
IFAO,](IJ‘U’ TM, 0) == L——B—)—
(5.13)
X Y En(u1 + 0%, uy + j(1 — 02)1/20j_101)
J=1
and
1-— 6?2
IFAO,I(:"‘U’TRA’e) = _S—B—_l
(5.14)

[ee] 0
X Y 0771y Eq(u, + 0%, uy + 0°7,),
=1 =i
where u, and u, are independent N(0,1) random variables, with u,, u, indepen-
dent of v,.

COMMENT 5.2. From formulas (5.13) and (5.14) it is easy to see that for the
MA(1) model the influence functional of GM and RA estimates is unbounded
when 7 is monotone but bounded. Just take the supremum of the above influence
curves over {, with u, = §,. Thus boundedness of the ¢ function in (3.18) and
(3.22) does not insure boundedness of the IF for MA(1) models. This is a general
feature of models with moving-average components.
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However, it is possible to show that when 7 is of the Mallows type (3.8) or
HKW type (3.9) based on redescending i, e.g., ¥ s given by (5.15), the corre-
sponding RA and GM estimates have bounded IF. These results are illustrated in
calculations to follow.

5.3. Some influence curve computations. Although general measures p, are
used in the IF expressions of the preceding subsection, a leading case for
expressing the intuitive notion of the “influence” of a configuration of contamina-
tion points is obtained by using a degenerate measure for u, (cf. Sections 2.1
and 2.3 on configurations). Thus for both i.i.d. and patch “configurations” we
shall let P(v, = {) = 1, for a constant { (among other possibilities one might let
P(v,=¢) = P(v,= —¢{) = 3). This allows one to step down from the abstract
view of the IF as a functional on measure space. One can now compute and plot
IF’s as a function of the contamination value ¢, thus retaining the rich heuristics
attraction of the ICH. Correspondingly, we use the term influence curve, 1C =
IC(§), to describe this special case of an influence functional

We calculated IC({) for least-squares (LS), GM, and RA estimates of the
HKW type at the following AO models: (i) AR(1) with both independent and
patch outliers, and (ii)) MA(1) with only independent outliers. Two psi functions
are used for each of the choices of 7, namely the Tukey redescending bisquare
function

u(l - (u/a))’, |ul<a,

(5.15) Vg, ou) =

0, lu| > a,
and the Huber function
(5.16) Yh o(u) = min(a, max(u, —a)).

The tuning constants @ were adjusted for each estimate to obtain 95% efficiency
at a perfectly observed Gaussian AR(1) process. The values of the constants are
given in Table 5.1.

The results of these IC calculations are shown in Figures 1-3. Figure 1 shows
the AR(1) results, with ¢ = 0.5, for independent outliers and patches of length 20.
Figure 2 is the same except that ¢ = 0.9. The least-squares influence curve is
quadratically unbounded in both cases. The general messages for the robust
estimates are clear: (i) the bisquare psi function is preferred to the Huber psi
function; (ii) the RA estimates are preferred over the GM estimates for indepen-
dent outliers, while the reverse is true for long patches.

TABLE 5.1
Tuning constants

HKW estimate Mallows estimate

' 2.52 1.65
Vps 9.36 5.58
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-10 -5 0 5 10

Magnitude of Outliers in Patches of Length 20

F16. 1. Influence curves for the AR(1) model. Hampel- Krasker— Welsch estimates at ¢ = 0.5.

Our preference orderings here are based on the gross-error sensitivities (GES’s)
of the IC’s, the GES’s for these particular examples being simply the supremum
of [IC({)|. The GES’s here have property (P3), just as in the case of the GES for
Hampel'’s influence curve ICH.

Figure 3 shows IC’s for the AO MA(1) model with § = —0.5 and § = —0.9
(with our sign convention this gives positive correlation for the x, process at
lag-one). The results are in keeping with Comment 5.2: GM and RA estimates
based on the monotone Huber psi functions have unbounded IC’s (though
apparently not quadratically unbounded as in the case of LS), while the bisquare
Y function leads to bounded IC’s for the MA(1) model. Also, the GM estimate
seems to be preferable to the RA estimate.
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-5 L1 ! [
-10 -5 0 5 10

-40 -20 0 20 40
Magnitude of Outliers in Patches of Length 20

F1G. 2. Influence curves for the AR(1) model. Hampel-Krasker—Welsch estimates at ¢ = 0.9.

This last observation surprised us, as we had been somewhat pessimistic about
using GM estimates for MA and ARMA models since such estimates seemed
particularly natural only for AR models. We are now motivated to take the
possibility of using GM estimates for ARMA models more seriously, and under-
take a careful study.

We have carried out a parallel set of IC calculations based on GM and RA
estimates of the Mallows type. The Mallows type IC’s are displayed in Figures
4-6 of Martin and Yohai (1984a), and differ from the HKW type IC’s presented
here only by virtue of having slightly different shapes and slightly larger GES’s.

COMMENT 5.3. Some proposed robust ARMA model parameter estimates are
not tractable with regard to obtaining closed-form expressions for their influence
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Magnitude of Independent Outliers
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100

80

Magnitude of Independent Outliers
(b)

F16. 3.  Influence curves for the MA(1) model. Hampel-Krasker- Welsch estimates (a) at § = —0.5
and (b) 8 = —09.

functionals or influence curves. This is the case for example with the AM
estimates based on robust filter cleaners (see, for example, Kleiner, Martin, and
Thomson, 1979; Martin, 1981; Martin and Yohai, 1985). However, one can
estimate influence functionals for such estimates via simulation. Some work has
been completed along these lines, and will be reported elsewhere.

6. Gross-error sensitivity. In this section we give a general definition of
gross-error sensitivity (GES) based on the IF. Specific results are then given for
the GES’s of GM and RA estimates of the first-order autoregression parameter.
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6.1. The gross-error sensitivity. Suppose that the contamination process y,
is given by (2.2) and its related assumptions. Then for a fixed set of measures
{BYw:} = {Phu: 0 <y <1}, we have a particular arc {p}} = {p}: 0 <y < 1} of
contaminated process measures in P,,. Suppose that the IF (4.5) exists for a given
family P of arcs {p'} with each arc in P,,. This family P will be generated by
letting the contamination process measure u, vary over a family P,, in
a manner consistent with the dependency structure {uY,.}, while {u?} =
{p¥: 0 <y < 1} and p, are fixed. Often {u)} will be independent of p.,,, and then
P will be generated by letting p, vary over P, in a manner consistent with the
dependence structure of p,,. For the pure replacement model given in Section
2.2, ., = Mo, SO P is then determined by simply letting u, range over P,. In
the AO model where w, = x; + v, with x, and v, independent, the measures
Prw = By 2+, are specified by p, and p,, and P is generated by letting p, range
over a prescribed family P,.

DEFINITION 6.1. The gross-error sensitivity (GES) of an estimate T at the
family P of arcs {p}} is

(6.1) GES(P,T) = sup |IF(p,,P,{n})|.

{n}} P

CoMMENT 6.1. Since ICH has leading argument y by virtue of being a
directional derivative determined by the point mass contamination measure §,
Hampel’s (1974) GESH is the supremum over all y of [ICH(y)|. Our IF depends
on the arc {u)}, with each p, € P, specifying a particular {y}} € P, and so our
GES involves the supremum over arcs {u}} in P.

COMMENT 6.2. In either a pure replacement model or an AO model where the
family of arcs P is generated by P, or P,, respectively, a leading case of GES is
obtained when w, = v, = {, and correspondingly P, = P, = {8} where §, is the
point mass on R*. In this case we replace IF by IC (for influence curve), replace
the argument p, by {, take the supreraum over all {, and replace the GES
argument P by {ulp_}.

6.2. GES computations. In Table 6.1 below we give GES’s corresponding to
the Mallows estimate IC’s computed for AR(1) models in Section 5.3. Specific
formulas which allow one to compute these GES’s are derived in Martin and
Yohai (1984b). The estimates are matched by the choice of tuning constants a to
have the same asymptotic efficiencies at the Gaussian model. This means that
Suprl‘P BS, a,(r)l > SuprI‘PH, az(r)l’ and Correspondingly, supu,olnBS, al(u’ D)I >
Sup,, ,|My, o (%, )| Yet, as Table 6.1 shows, the GES’s for the bisquare psi
function are often smaller than those for the Huber psi function.

The GES’s for the HKW estimates are smaller than those of the Mallows
estimates, but the differences are only slight.
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TABLE 6.1
AR(1) GES'’s for additive outliers

¢ = 0.5 ¢ = 0.9
Estimator k=1 k=20 k=1 k=20
LS %) %) o) 0
GM-H -2.8 2.6 —-14 1.3
RA-H -2.5 4.3 -0.6 3.3
GM-BS -1.9 1.6 -1.8 0.4
RA-BS -15 3.1 -1.5 2.5
TABLE 6.2
MA(1) GES’s for additive outliers

Estimator 6=-05 6=-09

LS ) 00

GM-H %) 5

RA-H o) 00

GM-BS 4.0 10.0

RA-BS 3.8 38.0

CoMMENT 6.3. In Martin and Yohai (1984b) it is shown that for indepen-
dently located additive outliers, RA estimates have smaller GES’s than GM
estimates. On the other hand, for long patches GM estimates are better. These
properties are reflected in Table 6.1.

Table 6.2 gives GES’s corresponding to the IC’s computed for MA(1) models
with 2 = 1 (independent outliers) in Section 5.3. The striking feature here was
already evident in the IC calculations: For the MA(1) model, a redescending psi
function ¢ is needed to obtain a bounded IC. Although the GM-BS estimate is a
bit worse than the RA estimate at § = —0.5, it is much better at § = —0.9
where the x, process is correspondingly more highly correlated.

7. An optimality property of generalized RA estimates. As one applica-
tion of the IF in constructing good estimates, we define here a class of gener-
alized RA estimates (GRA estimates) for the AR(1) model (3.4) and show that a
member of this class has a certain optimality property which we shall establish.
A GRA estimate for the AR(1) model is a ¥ estimate with ¢, of the form

i—2

J’?RA(yl’ ¢’) = an(r1(¢)’r1—j(¢)’ ¢)3 iZ 33
j=1
where 7,(¢) =y, — ¢,_,, and the limit ¥ function is assumed to be

(1) 3451,9) = T n,(ri(#), 79, 9):

Jj=1
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The AR(1) RA estimate of Example 3 in Section 2 has ¢ function (3.13), which is
a special case of the above GRA ¢ function.

We will show that for a large subclass of general ¥ estimators there exist GRA
estimates with smaller asymptotic variance, and the same IF at AO models, when
the outliers are independent and x, is a Gaussian AR(1) process.

Consider a general  estimate with limit ¢ function expressed in the form

(7.2) V(31 9) =9 (r(9), 7o(9),-.., 9).

We will define our “optimal” GRA estimate J* by (7.1) with the particular g ;i
functions

(7.3) "7;“(“1, Ui—j» ¢) =E [4‘;+(u1’ Ugs-err ®)|Uy, ul—j] )

where the u; are the autoregression innovations in (3.4). Call T' the estimate
based on ¥, and T* the GRA estimate based on y*.
We will use the following assumptions:

(C1) {" is differentiable in each variable, and for all j > 1, £ =1,1 — j,
(3/3uk)'q}‘(u1, Up—j» ¢’) = E[( 3/3uk)xp+(u1, Ugy U_1s---5 D) Uy, ul—j] )

and
(8/3t)ms(wy,uy 5 8)|,., = E[(8/3uy)

x$ (uy, ug,u_y,..., t)lul, ul_j”,=¢.

(Cz) J/+(_a1’ Ay, Agy..., 4’) = _$+(a1’ Ay, A3y ..., ¢)

(C3) 1!’/_"((11, —Qy, —QAg,..., ¢) = _4/+(a1’ Ay, Agzy..., ¢)'

(C4) Y(y,, ¢) is bounded in y, for each ¢ € (—1,1).

(C5) The order of integration and differentiation in (4.2’) may be interchanged,
and with D = (d/d¢),

C; = EDy(x,,¢) # 0.
The same is true of J* in place of .

(C6) T and T* satisfy (4.6), and v satisfies the conditions of Theorem 4.2.
(C7) T and T* are asymptotically normal with variances given by (4.3)—(4.4).

Notice that the GM estimates of the Mallows and Hampel type with odd ¢
functions satisfy (C2) and (C3). (C2) guarantees the Fisher consistency of the
estimate when the u;’s have a symmetric distribution.

The following theorem gives the optimality property of the GRA estimate T *
based on {*.

THEOREM 7.1. Assume (C1)-(C7), and suppose that x, is a Gaussian AR(1)
process. Then

(i) AVAR(T *) < AVAR(T), where AVAR denotes asymptotic variance when
V=X,
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(ii) Suppose that v; is independent of x,. Then
IFyo, (s T*,¢) = IFp0 (1, T, 9).

EXAMPLE 7.1. For a GM estimate of the Mallows type we have

J’(YD ¢) =v(y - ¢y0)4’(y0(1 - ¢2)1/2)
and the corresponding GRA estimate is given by
"Ij("v ry_j ¢) = ‘J/(rl))\(dj(qf‘)rl—j, 3‘(‘?5)),
where
di(6)=¢""(1-¢)"%  sie)=[1- (1~ )]
Aa, b) = Ey(a + bu),

(7.4)

with © ~ N(0,1).
ExaMPLE 7.2. For the HKW-type GM estimate

J/(Yp ¢) = ‘P((yl - ¢y0)y0(1 - ¢2)

and the corresponding GRA estimate is given by
"1,'("1: T o) = }\(dj(¢)r1—j + sj(¢)r1)~

We note that if ¢ is of the Huber type ¢ ., then

Aa, b) = lbl[fzv(flz_la) - fN(El;,Ta)

1 /2)

c+a)

+ (c+ a)FN( ]

( \F c— a)
—(c—a — | —a,
”( 5]
where f, and F, are the standard normal density and distribution functions,
respectively.

8. Generalizations and further applications. In defining the influence
functional for time series, we have for convenience concentrated on: (i) the use of
a particular type of contamination model, namely the general replacement
model (2.2), and (ii) application of the influence functional to the study of some
particular estimates of AR(1) and MA(1) parameter estimates. Neither of these
two narrow points of focus adequately reflects the potential utility of the
time-series influence functional as a tool for studying the effects of many types of
contamination on statistics used in a wide variety of time-series problems.

With regard to contamination type, any realistic model of contamination can
be used for which the derivative (4.5) defining the influence functional exists. It
would of course be extremely helpful if the IF admits a tractable analytic form,
but this is not absolutely essential (see comment at end of Section 5).

As for IF’s for other time-series statistics, the following two examples should
give some indication of the range of possibilities which remain to be explored.
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8.1. Testing for white noise. Given a zero mean time series y,,..., y, with
measure u,, one can test for whiteness of the series using the statistic

L
= Z rl2’
=1

where

n
= PIIRY, 2%
A n 2
t=1Y¢

is the lag-/ autocorrelation estimate. The functional Ty, ; = Ty, ,(r,) associated
with VL is

L
TW L= Z P%,
=1
where
Ey,y, -,
(el v

is the lag-I autocorrelation estimate.

Under the null hypothesis that p, = ul ” ) is a white-noise measure, nV* con-
verges in law to a chi-squared distribution x2, with L degrees of freedom. In this
case it is easy to check that for the general replacement model (2.2)

IF(p> Tw, 1{n}}) = 0

for any p,, and any arc {uY} such that ), — p9 as y — 0. This is the usual von
Mises expansion type of result for a statistic having an asymptotic chi-squared
distribution. One therefore expects a nonvanishing second derivative, and hence
we define the second-order influence functional for such cases as

IF® (o, Ty, 1, (1)) = (32/8v*)T(1})1, -0
For contaminated processes u), with patches of length &, one finds that

IF (2>(“,,,,TW L {11})

2
k2 y Z [mm(k J)Exw, ;+ Ewx, ;) + max(k — j,0) Eww, j] .
Oy J=1
When x, is independent of w,_;, /| =1,2,..., this expression reduces to
1 min(L, k—1)

B T () =gz (b= O (B )

x =1
In the AO case where w, = x, + v,, with x, white noise and v, independent of x,,
we have
Ewlwl_l = Evlvl_l, l > 1.
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If v, = £, this gives the influence curves

§4 min(L, 2—1) )
IC(2)($)——ZF Z (k-1), k=1,2,....
=1
We have IC{Y(£) = 0 as expected, and IC{?(¢) increases with £ until & = L + 1,
as is intuitively reasonable.
Of course, since IC? is unbounded, the test statistic V;© is not robust, and one
is motivated to find a robust alternative.

CoMMENT 8.1. Since the same test can be obtained using different test
statistics which have different influence curves, it is necessary to standardize a
test statistic in order to make fair comparisons in terms of influence curves. This
can be done for example as described by Ronchetti (1982) and Lambert (1981).
Similar standardizations should be considered in order to convert IF( to an
influence curve for tests.

8.2. Spectral density estimates. Let S(F) = S(f,u,) denote the spectral
density functional of a stationary, zero mean process y, with measure p . Of
course S(f) in fact depends only upon second-order properties of y,. It is
common practice to estimate S(f) with a smoothed version S,(f) of the
periodogram based on “tapered” data, smoothing being needed to obtain con-
sistency. Such estimates may be written as

n

Si(f) = X w, ()R (1)e* ™,

I=—n
where w,(1) is an appropriate “lag window” and

RD=~ 2 (=9 n-5)

t=|l|+1

is an estimate of the lag-/ covariance R(!) = R(l, u,) of the process y,. Under
certain conditions Rn(l ) is a consistent estimate of R(!), I =0,1,..., and S,(f)
is a consistent estimate of S( f ). Thus, the functional associated with S,(f) is

S(f) = é R(1)e?".

The spectral density S( f ) is an infinite-dimensional parameter and we get an
infinite-dimensional influence functional IF(u,,S,{p}}) = IF(g,, f, S, {n}}),
through the pointwise definition:

s(f,u;>—s<f,n‘;), fe( 1 1]

Y

IF([.Lw,f,S,{[.L}',})=)l/l_1;I}) 2’2 :

The abbreviated notation IFg(p,, f) will be convenient. Denote the influence
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functional for the lag-/ covariance IFg(p,,, {) = IF(p,, R(I), {¢}}). Then

0

IFS(p‘w’ f) = Z IFR(""w’ l)eﬂﬂﬂ‘

I=—-o0

For the AO model with independent outliers of amplitude £, the influence curve
for R(l) is

2 =
R,

which gives the spectral density influence curve
ICs(¢, ) =82  fe (-1

As one might expect, the influence curve in this case is quadratically unbounded,
and independent of f. Other kinds of contamination—such as constant-level
patches, sinusoidal patches, or patches with nonflat spectral structure—will lead
to influence functionals and influence curves for S(f) which depend on f in a
nontrivial way, and are quadratically unbounded in the amplitude of contamina-
tion. It will be interesting to compute ICg for these and other types of con-
taminations motivated by applications.

Robust alternatives to the smoothed periodogram estimates have been pro-
posed in Kleiner, Martin, and Thomson (1979) and Martin and Thomson (1982).
We intend to study these estimates in terms of their influence functionals and
curves, which will probably have to be computed via simulation.

b

9. Proofs of theorems.

PROOF OF THEOREM 4.1. According to the definition of a ¥ estimate

m(y,T(u})) = 0.

By assumption (a) there exists y, > 0 such that [T(u}) — to| <& for vy <,
where ¢ is as in assumption (b). Therefore by (b) and the mean-value theorem we
have for y < min(y,, &),

m(y,t,) + D(y,t*(¥))(T(n}) — T(n,)) = 0

and, by assumption (a), t*(y) > t, as y = 0. Then by assumption (b),
D(y,t*(y)) - C = D(0,t,) as y — 0. Then (4.6) follows. O

Proor oF THEOREM 4.2. (i) Patches of length % are generated by letting
2f = max(éf’ ZP ..., éi”—k-#l))

where the 27 are i.i.d. Bernoulli random variables with P(Zf = 1) = p, and
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vy = kp, with & fixed. For fixed m > 1, put

m—1
(9.1) Chr={2r;=1}n| N {2,=0}|, O0<j<m-1,
o
m—1
(9:2) Chr = {27, =0},
=0
m—1
93)  ChAL.= U [{(22,=1}n {zr,=1}]
£,Lj*=j(]
Then for 0 < j < m — 1 we have
(9.4) P(CkP) =p + dy u(p) =P + o( D).
We also have
(9.5) P(Ck2)=1+d, ,(p)=1+0(p)
and
(9.6) P(CEA ) = ds m(P) = o(p).

According to the definition of T we have
E¥(yy,T(n})) = 0.

Then
E¥(y7,to) + E[¥(y7, (1)) - ¥(y1,t,)] = 0.
Since CJ{“;,{’, 0 <j < m + 1, is a partition of the sample space of (27, 28,...,25_,)
we have
N m+1
(9.7) E¥(yl,t,) + ¥ ¢(m, p)P(CHP) =0,
Jj=0
where
(9.8) ¢i(m, p) = E[¥(y7, (1)) - ¥(y1.t,)ICHP].
For j > 0,lety, ;= (¥, » Y%, »---) be given by
1-j .
(w1 ,x_~), O0<j<k-1,
(9.9) yl,j= 1—j+k Jl_j .
(xl 1W—j+k’x—j)’ J =k

Conditioned on C};?, for 0 <j<m —1 we have y_, = Yi-i - For 0 <i<
m — k and for i > m — k, y}_, is either x,_; or w,_;. Thus we have

(910) |E [‘i’(ygyt)lc‘f’nf’] - E\“]?(yl,j’t)lS Hm—k+l(t)! 0 Sj <m-1.
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Then
|cj(m’ p)l < ‘E[\i'(yl,j’T(p‘_yy)) - ‘i'(Y1,j,to)] |
+Hm—k+1(T(p‘_yy)) + Hm—k+l(t0)'

Therefore by assumptions (a) and (e), and the dominated convergence theorem,
we get

|cj(m’ p)l = bj(m’ p) + Hm—k+1(T(P‘,yy)) + Hmfk+1(t())’

(9.11)

0<j<m-1,
where
(9.12) lim b,(m, p) = 0.

p—0
We will now show that for |t — t| < ¢,, where ¢, is as in assumption (c), we have
(9.13) |E[¥(y1,0)ICk 2] — E¥(x,,t)[<p ¥ Ht).
i=m—k+1

We have

E[¥(y1.0ICh 5] = (1 - p)E[¥(yi,b)] m',:, 2= 0]
+pE[~1f (7 0)IC 5, 20 = 1],
Since conditionally on C}'2, yy ;= x,_,,0 <i < m — k, we have

|E[\i'(yly’t | m:m’ Zlfm = 1] - E“i’(xl’t’)|S HInvk+1(t)'
Then
|E[¥(yy,t)IChr] — E¥(x,,t)|
(1—p)|E[‘I’ Y1’t| 1, m+1] E\P(x1’t)|
+p|E[‘I’ yly,t|Ck hoEp = 1] - E‘i’(xl,t)|

= |E [q’(yly,t)IC,ﬁx”l,mH] - E‘I'(xht) | + pH,, ;. \(t).
Iterating this relationship, we get
|E[¥(yr,0)IC0] - E¥(x,,0)|

m—k+h+1

Sp Z H(t)+|E[‘P yly’tl +h+1m+h+1]_E‘~P(x1’t)|-

i=m—k+1

Since the second term of the right-hand side is no greater than H,,, , ., .(t),
which by (c) tends to 0 for |t — t,| < ¢, we get (9.13). Using (9.13) we get

|en(m, p) = E[¥(x,, T(k})) = ¥(x,,t,)] |

<p X [H(T() + B,

t=m—-k+1
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Then according to (a) and (b) we get
|len(m, p) = C[T(n}) — T(n,)]|

9.14 0

019 <a(p)+p ;k 1[H,-(T(Iﬂy)) + Hi(t,)],
where

(9.15) a(p) = o(p).

We also have

(9.16) lCmr(m, P)I < Ho(T(k3)) + Hy(to)-

Using (2.5), (9.4)—-(9.7), (9.11)~(9.12), and (9.14)-(9.16), along with assumptions
(a), (c), and (d), straightforward computations give (see Martin and Yohai, 1984a,
for details):

E¥(yi,t,)  C[T(k}) - T(p,)]
&(y) &(v)

and thereby (4.6) follows.
(i) Using (9.1), (9.2), and (9.3), we have

- 0(1)

m

+1
E¥(yi,t,) = L E[¥(y7,t0)ICH2] P(ChP).

j=0
Then using (9.4), (9.5), and (9.6) we get
E¥(yy,t 12
(yl 0) = Z ij
&(v) k j=0
p+d .(p) " -
—_— E|¥(y/, C’”’ G
5 E IElsonane] - o
1 p+d, .(p)|™
(9.17) 2 m A G|+~ G*
PRl EOI | ,Zm' |

1+d2 m(p) ~
+ — B[ (y, t0)ICE
g(Y) [ (yl O)I , ]

d3, m( p)
&(v)
S.ince ij =E ‘i’(yll j»t0) 0 <j < m—1, wherey, ; is given by (9.9), using (9.10)
gives

(918)  |E[¥(yi,t0)ICHE] — Gf[< Hoopurlto), O0<jsm-—1.

E[¥(y],t0)ICEA -
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We also have
(9.19) E[¥(y7,t0)ICEA, ] < Hy(t,).

Since E¥(x,,t,) =0, and since x, and Yy, ; have the same first j — & + 1
components when j > k, we have

(9.20) |ij| = I{j—k+1(to)’ J=k,
and by the definitions of Gf and H(t) we have
(9.20") IGH < Hy(t,), O0<j<k-1.

Conditioned on C,ﬁ;ﬁ, x, and y; have the same first m — k + 1 components, and
so (9.13) gives

(9.21) E[¥(7.t)ICE2]|<p L Hilto).

i=m—k+1

Using (2.5), (9.4)-(9.6), and (9.18)—(9.21), along with assumptions (a), (c), and (d),
we get (4.8) by straightforward computation (again, details may be found in
Martin and Yohai, 1984a). O

ProoF oF THEOREM 4.3. By (4.6), (b), (c), and the dominated convergence
theorem, we have

(9.22) IF(p,,T, (1)) = 71i_13%c*§1 F%')t")
Note that
En(y7 ,.to) = E[n(x, 1, to)121,, = 0](1 - g2(v))
+E[5(y1 . t0)121 , # 0] g2(+),
where g*(y) = P(z] ; # 0). Also
0 = Em(x, ;,to) = E[m(x,, . t0)121,, = 0] ((1 - £3(v))

+E[1§-(x1’lj’t0)|z¥,lj # O]gl*(y)

(9.22")

Then we have
K 8 j* ( Y )

IE[“j(xl,II’tO)lz{,IJ = 0] l < m
J

Since g7(v) < hg(y), using (9.22’) we have
1
|En(yy 1,,to)| < K,‘hg(}’)[m + 1]

for sufficiently small vy, and so (2.1) and (9.22) give (4.9). O
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PROOF OF THEOREM 5.1. (i) For the GM estimates, straightforward compu-
tations show that

d . B
(9.23) C= E{Ed—)\l/(xl&)} = - )
For the RA estimates
9.24 C B
( . ) =T 1-— ¢2

and the result (i) follows from (6.23) and (6.24).
(ii) The result is proved in Bustos (1982) for the GM estimates, and in Bustos,
Fraiman, and Yohai (1984) for RA estimates. O

PROOF OF THEOREM 5.2. Using (A1)—(A4) and E|v,|*** < oo, it is easy to
show that there exist solutions tS™ = TM(pY) and tRA TRA(uY) of

En(y - ty, (1 - £2)""5) = 0
and
x .
Y 7 En(yr - 6, v~ t97;) =0,
j=1
respectively, such that tSM — ¢ and ¢J** — ¢ as y — 0. Then assumption (a) of

Theorem 4.2 is satisfied. It is easy to check that the other assumptions of
Theorem 4.2 are also satisfied, and so T and T A satisfy (4.8).

Lety, ;= (3, » %, j»---) be given by
(x7 + viv,x_)), ifo<j<k-1,
Yoo (i kx5 + Vi X ), if 2k
Then
= EJ(Yl,j, ¢‘)'

For GM estimates y/(y,, ¢) = n(, — ¢, Jo(1 — $*)'/?), and so we get

0, J=0,
Gk = E"(“l + 0 = 0y, (269 + 09)(1 — ‘1’2)1/2)’ J<k-1,
! En(ul - ¢DO’(x0 + OO)(:l - ¢2)1/2)’ .] = k,
0, J> k.
Therefore by (4.8) and (9.23) we have
oM -9 )1/2 k4 qk
Fyo (0 T, 8) = 20— [(k ~ 1€ + 4],

which gives (5.8), with (5.6) as a special case.
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Now for TRA, (y,, ¢) is given by (3.13), and so

o0
ij =X th—lGjlfh’
h=1
with
GF,= En(yy, ;= Y, j» Y1-n,; — Y _n ;)-

Using the assumptions on 7 gives

0, h>j,

0, J>k,
Gk = En(u, — ¢vg, uy_j + 0;1_3), h=j=k,
Sk E"?(ul—¢00’u1—h+vl—h—¢'v—h)’ h>j=k,
En(u, + v, — o0y, uy_p, + 01_p), h=j<Ek,
En(u, + 0, — vy, Uy_p+0,_p—d0_3), h<j<k.

Therefore by (4.8) and (9.24) we have

e h—1vk kil h-13k
GM = kE—h-1)¢""'Gi_, 1+ " 'GE_1 k-
IF(#O»T ,‘P) LB hgl( )‘f’ k-1,h = E-1,k—1
k-1
+ Y ¢"'GE p+ 6" TIGE |-
h=1

This gives (5.9), with (5.7) as a special case. O

ProoF OoF THEOREM 5.3. (i) Straightforward computations show that for
TGM we have C = B/(1 — 8%)'/2, and for TR** we have C = B/(1 — 6?). Then
(5.10) and (5.11) follow.

(ii) The result is proved in Bustos, Fraiman, and Yohai (1984) for RA esti-
mates. For GM estimates, it can be proved similarly. O

PROOF OF THEOREM 5.4. (Al1)—(A4) and E|v,|*'**2 < o imply as in Theo-
rem 5.2 the existence of solutions TM(u?) and T ®4(u?) which converge to the
true parameter § as y — 0. Then assumption (a) of Theorem 4.2 holds. We will
show that assumption (c) is satisfied. We will assume Ak, = h, = 0, but the proof
in the other cases is similar.

For GM estimates we have

o0 o0
¥(3,,6) = n( Loy ,(1-0)" L+ i)aiy_,).

i=0 1=0
Straightforward computations show that

ke m|o|™! om
H,(0) < 2KM LI o |1 - 62)'7?,
1-16] 1-16]  (1-19)
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where K is a bound on the partial derivatives of n, and M = E|x,| + E|v,|.
Therefore assumption (c) is satisfied for 7°M. For the RA estimates

] 00 ]
‘P(yl’a) = Z 01_177 Z 0ty1—u E alyl—j—t ’
J=1 i=0 i=0

and straightforward computations show that
2KM|6|™ 2KMm|6|™"' 2KM\|0|™
< s+ + -
(1 -16) 1-16) (1 -18)
Thus assumption (c) of Theorem 4.2 is satisfied for TRA, It is easy to check the
remaining assumptions of Theorem 4.2 for both 7™ and T®A. Therefore (4.8)

holds for these estimates.
Now we need to evaluate (4.8) for 7™ and T RA. For GM estimates

G} = Enfu, + 0,y (1~ 09) (s, 4 197, ).

Since (1 — 6%)!/%s, is N(0, 1) and independent of u,, and C = B/(1 — 0%)'/2, (4.8)
gives (5.13). For RA estimates we have

H,(0)

i-h
Uyt 0 ”1—h)

J
Gl =Y 0" 'En(u, + 6%,
h=1

+ Y 0" Eq(u, + 0%, u,_y).
h=j+1
By (Al), En(u, + 6%,_;,u,_,) = 0. Since C = B/(1 — 6?), interchanging the
order of summations gives (5.14). O

PrROOF OF THEOREM 7.1. (i) It is easy to check that when y, =x; is an
AR(1) process, the V, in (4.4) are zero for [ > 0. For y satisfying Theorem 4.2 we
have

ICH(y,) = ICH(x,, ¢) = C'y(x,, ¢)
with C = Cj given in (4.2), and so from (4.4) we have
Vo(¥) = C;’Ed*(x,, 9).

Our proof consists of showing that C; = Cy«, and that EJ*%(x,, ¢) < EJ?(x,, ¢),
which implies V(*) < V(¢). We first show that

(9.25) E¢*2(x1, ¢) < E‘V(xl, ).
In order to prove (9.25) it is enough to show that
E[d(x;, ) — $*(x1, 6)]$*(x1, ) = 0.
Let
u, =uy(9) = (4, up, u_y,...) = (u,(9), ug($), u_,(4),...).
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Then in view of the definition of {* and {, it suffices to show that
E‘;*(xl’ ¢)7’i(u1’ Ui—i» ¢) = E‘;+(u1’ ¢)ni(u1’u1—i’ ¢')’
i=1,2,....

(9.26)

But
EJ*(u,, ¢)n(uy, 1,5, 9) = Eni(uy, uy_y, 9)E[$7 (uy, ¢)|uy, ]
= Eni(u, uy_,s 9),
and since (C3) implies
Eny(u,, u1-u¢)"7j(“1:u1—j, ¢') =0, i # ],
we have
EJ*(xy, o)ni(uy, g, ¢) = Eni(uy, 1, ¢),

from which (9.26) follows.
Now we will establish that C; = C«, that is,

ED{(xy,¢) = EDJ*(x,, ¢),
where D = d/d¢. We have

Di(x,6) = = L x1-ofi ((6),9) + ¥ (wi(9), ¢),

where
J;—(al’ a2""’¢) = (a/aaz)li-'—(al’ a2""’¢)
and
Ui(ay, as,...,0) = (8/3¢)¥* (ay, ag,-.., $).
By (C2) we have
Exl—i{l;:—(ul’ ‘;b) = O’ l > 1’
and
Ey;(u,,¢) =0.
Therefore,
ED’L(Xl"t‘) = _Exo"pf(uv‘i’) = - Z ¢i“Eu1_i\7/1+(u1, 3).
i=1
Since (C1) gives
Eul—z‘;r(ul’ Upseees ¢) = Eul—iE[‘;r(ula Ugyenes ¢)|u1’ ul—i]
= Eu,_;(3/du)n(uy, u,_;, ),
we have
ED{I;(XD ¢) = — Z ¢i—1Eui—1(a/aul)ni(u1’ U, ).
i=1

Now similar reasoning gives exactly the same expression for £ DJJ"‘(XI, ¢), and
the proof of (i) is complete.
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(ii) By Theorem 4.2 we have

1 «
IFAO,I(""u’ T’ ¢') = - E E Gzl’
i=0

where
C= ED’L(XI’ ),
Gl=Ey*(u, +v,up,u_y,...,9),
and for i > 1,
Gl = Ey*(upe.yly_Ug_,— G0,y + 01 U yyene,y §).
(C2) implies G} = 0 and (C3) implies G} = 0 for i > 2. Therefore
1

CE"h(ul — ¢vy, Uy + vy, ).

1
By T, 8) = = GG = -

It is easy to check that for T *

g =% ‘ '
‘ E"h(ul"‘i’%auo"'”o,‘i’), t=0andi>2

and so one also has
1

CEnl(ul — ¢vy, Uy + Uy, D). O

IFyo (1., T*, ¢) =
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