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CONFIDENCE SETS FOR A MULTIVARIATE DISTRIBUTION!

By R. BERAN AND P. W. MILLAR

University of California, Berkeley

The confidence sets for a g-dimensional distribution studied in this
paper have several attractive features: affine invariance, correct asymptotic
level whatever the actual distribution may be, numerical feasibility, and a
local asymptotic minimax optimality property. When dimension ¢ equals
one, the confidence sets reduce to the usual Kolmogorov-Smirnov confidence
bands, except that critical values are determined by bootstrapping.

1. Introduction. Kolmogorov-Smirnov confidence bands for a one-dimen-
sional cdf have two attractive features: affine invariance and distribution-free
critical values over the class of all continuous cdf’s. Neither property is retained
by the analogous confidence sets for a multivariate distribution based on the
g-dimensional Kolmogorov—Smirnov statistic (¢ > 2). Studied in this paper is an
alternative multivariate version of the one-dimensional Kolmogorov—Smirnov
confidence band which preserves affine irivariance, has correct asymptotic level,
and makes equally good sense whether the actual distribution of the data is
discrete, possesses a Lebesgue density, or is singular with respect to Lebesgue
measure.

1.1. Half-spaces and confidence sets. Let | -| and (-,-) denote, respec-
tively, euclidean norm and inner product in R? Let S, = {s € R?: |s| = 1} be
the unit sphere in RY. For every (s, t) € S, X R, let A(s, ) be the half-space

(1.1) A(s,t) = {x € R7: (s,x) < t}.

Let 2 be the set of all probability measures defined on the Borel sets of R?. The
half-spaces ¥'= {A(s, t): (s,t) € S, X R} separate probabilities in the sense
that, if P,Q € # and P(A) = Q(A) for every A € ¥", then P, @ agree on all
Borel sets (Cramér and Wold, 1936). The class ¥ is a Vapnik—Cervonenkis class
of index ¢ + 1 (e.g., Dudley, 1978) and is invariant under affine transformation
of R,

Consider the distance between P, Q@ € & defined by

(12)  d(P,Q) =sup{|P(A(s,t)) — Q(A(s,t)): (s,t) €S, X R}.

Introduced into statistics by Wolfowitz (1954), the half-space distance d has
reemerged in recent discussions of projection pursuit (Diaconis and Freedman,
1984; Huber, 1985). Let P, be the empirical distribution of x,, x,,..., x,, iid.
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R9valued random vectors with unknown distribution P € #. The proposed
confidence set for P has the form {@ € £: d(P,Q) < c.

How is the critical value ¢ to be chosen so that the confidence set has level
1 — «? Bounds for P”[d(Pn, P) > c¢] obtained by Vapnik and Cervonenkis
(1971), Devroye (1982), Alexander (1984) appear far too conservative to yield
accurate values of ¢. Numerical evidence for this assertion is presented in Section
3; see also Huber (1985). Direct asymptotic approximations appear no more
useful, though for different reasons. Let L be the set of all bounded measurable
functions on S, X R, metrized by the supremum norm || - ||. The o-algebra in L,
is that generated by open balls. Let W= {W(s,t): (s,t) €S, X R} be a
Gaussian process with mean zero covariance function

E[W(s, t)W(s',t")] = P[A(s,t) n A(s’, t')] — P[A(s, t)] P[A(s’, t)],

and sample paths in L_. Then
(1.3) 2 [n'%d(B,, P)IP"] = £ (W)

(cf. Dudley, 1978). In general, the cdf of this limit law depends upon the
unknown distribution P and is not tractable.

1.2. Bootstrap confidence sets. A bootstrap construction (cf. Efron, 1979) for
the critical value c avoids some of the difficulties. Let ¢,(«, P) denote an upper
a-point of £[n'/%d(P,, P)|P"]. Define the confidence set

(1.4) C(a, P) ={Qe? n%d(P, Q) <t(a,B,)}

(For a more precise description of ¢, (a, f’n), see Beran, 1984.) A triangular array
version of weak convergence (1.3), derivable from a result in Le Cam (1983),
implies that hmn_,ooP”[C (a, P ) S P] =1 — «; that is, the asymptotic level of
confidence set C,(«a, P > )is 1 — a. Theorem 2 in Section 2 gives a stronger version
of this result.

Definition (1.2) leads to an exact algorithm for computing d( P, @) when both
P and Q are supported on a finite set of cardinality m; the number of mathemati-
cal operations required is of order 2‘7( ”’) When dimension ¢ is small, this
algorithm can be used to compute Monte Carlo approximations to ¢,(a, P ) and
to determine whether a given distribution @ lies in confidence set C,(a, P ). In
the latter application, @ is first replaced by a discrete approximation.

When dimension g is larger, confidence sets for P based upon a stochastic
approximation to d become attractive for computational reasons. Let

S1, 89,-++, 8, Dbe iid. random unit vectors, uniformly distributed on S, and
1ndependent ‘of the (x;1<i<n}. For P,Q € 2, define
(15)  d(P,@) = max sup (|P(A(s,0)) ~ QA(sp, D)}

nteR

Random selection of the {s,; 1 < k < k,} has some advantages over systematic
selection. The condition lim,_ k, = co ensures that lim,_ d, (P, @) =
d(P, Q) w.p. 1, the rate of convergence in probability of d, (P, Q) to d(P, Q)
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being exponential in k,. More precisely, let p denote the uniform distribution on
S, and let Y(s) = sup,|P[A(s, t)] — Q[A(s, ¢)]|. Then, for every positive e,

(1.6) pld,(P,Q)> (1 -¢&)d(P,Q)] =1~ [1—b(e)]™,
where b(e) = p[Y(s,) > (1 — &)d(P, @)].
Let s, = (s), $3,...,8; ) and let u,(a, P,s,) denote an upper a-point of the

conditional distribution of n'/%d (P, P) under P”, given s,. Consider the
modified bootstrap confidence set

(1.7) Ca,P)={Qe P:nd,(P,Q) <u,a, P,s,)}.

The distribution of C‘n(a, }A’n) depends upon the joint distribution of the observa-
tions {x;; 1 <i<n} and of the search sample s,. If lim,__k, = oo, the
asymptotic level of C~'n(a, Pn) is 1 — a (Theorem 3 in Section 2). The number of
mathematical operations required to compute d (P, @) depends linearly upon
the product k%,q.

1.3. Confidence sets and risk. In general, the problem of confidence set
construction has a natural decision theoretic formulation, which views it as a
set-valued estimation problem, subject to the level constraint (see Beran and
Millar, 1985). For confidence set C,(a, P"), the decision space treated in this
formulation is the collection of all balls C(z, r) = {@ € #: d(Q, z) < r} with
center z € # and radius r. If Z,, R, are estimates of center and radius based
upon the n observations, then the loss function for the confidence set C(Z,, R,,)
is taken to be

(1.8) l(Z,,R,; P)=n'* sup d(Q,P)
QeC(Z,, R,)

or a monotone function thereof. Evidently, this loss penalizes for excessive size or
miscentering of C(Z,, R,,). The risk of C(Z,, R,) is then

(1.9) oulZ,, R, P) = [L(Z,, R,; P)dP".

Among all confidence sets of the form just described whose asymptotic level is at
least 1 — «,.the confidence set C,(«, P,), defined in (1.4), is locally asymptoti-
cally minimax (Theorems 1 and 2 in Section 2). Moreover, the risk (1.9) of

C,(a, P,) can itself be estimated from the data.

2. Asymptotic properties of confidence sets. This section formulates and
proves the three theorems described in the introduction. Notation introduced
there is retained.

2.1. Local asymptotic minimax bound for confidence sets. Any probability
P € 2 can be regarded as an element of L__ by identifying P with the function
which maps (s, t) € S, X R into P(A(s, t)). With this identification, d(P, ) =
| P — Q|| for every P,Q € 2, where || - || is supremum norm on S, X R.
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Let /(n, a) denote the collection of all confidence sets C(Z,,, R ), Z, and R,

depending on x,, X,,...,x,, which satisfy the criterion of asymptotic level
1 — a:
(2.1) liminf P"[C(Z,, R,) ® P] > 1 —a forevery P € 2.

n—oC

Define a norm | - |; by |P — Q|s=sup{|P(ANB) - QANB)|: A,BeE ¥}
for P,Q € 2. Let %(n,c, P) be the set of all probabilities @ € # such that
|Q — P|s < ca,, where 0 <c¢ < oo and a, is a preselected sequence of real
numbers subject to the constraints a, > n~'/?, a, | 0.

Let 2, be the distribution of the Gaussian process W described in Section 1,
viewed as a random element of L_. Let p, be the risk of confidence set
C(Z,, R,) as defined in (1.9).

n’

THEOREM 1. Fix a € (0,1) and P € #. Then

(2.2)
lim liminf inf sup 0,2, R,:Q) zf (2| + r)2,(dz),
cox n—x C(Z, R)EA(n,0) QeF(n,c, P) L,

where the constant r is determined by
(2.3) 2[lzll <] =1~ a.

This theorem rests, in part, upon the abstract Hajek—Le Cam lower bound for
minimax risk of a decision procedure. Theorem 1 remains valid for various
restrictions of #: for instance, if 2 is replaced by the set of all probabilities
supported on the unit sphere in R or if & is replaced by the set of all
probabilities supported on a finite subset of R?. Section 3 discusses examples of
these two situations.

ProoF. Theorem 1 will be deduced from (4.5) of Beran and Millar (1985),
cited hereafter as BM. We also draw on results in Millar (1983)—these to be
referenced by notations of the form X.2 (Chapter X, Section 2). Let f be the
density of P with respect to some o finite measure ». Let H be the Hilbert space
of real functions A on RY such that [hfdv =0, [h*fdv < oo, support h C
support f. Let H, be the subset of H consisting of all & such that f(1 + n~'/*h)
is a probability density for all sufficiently large n. Then H, is dense in H. Define
, a map from H to L, by (th)(A) = [4hfdv, A € ¥". Let B be the closure of
rH in the supremum norm || - |, so B c L. Calculations as in V.2 show that
(7, H, B) is an abstract Wiener space; its canonical Gaussian measure on L is,
in fact, 2,,.

Let {2,, h € H} be the Gaussian shift experiment (V.3) associated with
(r,H, B). If P is the n-fold product measure of P, i:,(dx) = f(x)[1+
n “2h(x)lv(dx) then {P}, h € H,} converges to {2,, h€ H,} (see VL1).
Define ¢ of Section 4 of BM by ¢(P) = P, 12, € L. If £’ is the linear operator
on L_ given by ¢x = x then clearly £&(Pyr) = &(P)') + ¢/(tn”'/?h), so (4.2) of
BM holds. Since the set of measures over which the supremum in (2.2) above is
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taken contains the measures {P, 2, |h| < c}, the theorem follows from the
locally asymptotically minimax lower bound, Theorem 4.5, in BM. O

2.2. Confidence set C,(a, Pn ) is LAM. This subsection demonstrates, in par-
ticular, that the bootstrap confidence set C,(a, P,) defined in (1.4) has asymp-
totic level 1 — «, uniformly over | - |, compacts in 2. Moreover, C(a, P,) is
locally asymptotically minimax (LAM) in the sense that its maximum risk over
F (n, ¢, P) attains the lower bound for minimax risk given in Theorem 1.

THEOREM 2. Fix « € (0,1) and P€ #. If lim, _, |P, — P|s = 0, then

(2.4) lim P*[C(a, P)2P]=1-a
and ‘
(2.5) t(a, B)) = r in P'probability,

where r is defined by (2.3).
Moreover, for every positive ¢

(2.6) lim sup  p(P,n" "t (a,P,); Q) = f(||z|| + r)2,(dz).

n—=% Qed(n,c, P)

ProoF. Suppose {P, € #; n > 1} satisfies the hypothesis of the theorem.
From Proposition 1 of Section 4,

(2.7) Z[n?|B, - P,|IP"] = 2(|W]).

Since the limit law has a continuous, strictly monotone cdf (Proposition 2 of
Section 4), it follows that

(2.8) lim ¢,(a, P,) =r.

n—oC

_ The Vapnik and Cervonenkis (1971) inequality implies, in particular, that
|P, — P|s — 0 in P!-probability. This convergence and (2.8) yield (2.5). In turn,
(2.5) and (2.7) imply (2.4) (cf. Beran, 1984). .

By (2.7) and the exponential bound of Alexander (1984), n'/’E.||P, — P, ||

converges to E||W]|. Since {P,} could be chosen to be an arbitrary sequence in
F(n, ¢, P), a straightforward argument yields (2.6), as follows:

lim sup p,,(fD,l, n %t (a, 13,1)§ Q)

X Qes(n, ¢, P)

= lim p, (P, n""%,(a, P,); P,)

(2.9) n—os
= lim {nl/QEI’,','“Pn - Pn” + EI’,’,’tn(a7 [A)n)}
n-—oc
= E|W| + r. O

2.4. Confidence set C (a, Pn) has asymptotic level 1 — a. This subsection
establishes that the computationally simpler confidence set C,(a, F,) defined in
(1.7) has asymptotic level 1 — « and that its critical value u («a, P,,s,) converges
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in probability to r. Both convergences are uniform over | - |; compacts in 2. Let
p denote the uniform distribution on S, and let P" X p*» designate the product
measure generated by P” and p*.

THeoreM 3. Fix a € (0,1) and P 2. If lim,|P, — Pls=0 and

lim, , k, = oo, then

(2.10) lim (P x p*)[C(a, P,) 2 P] =1—a
and

(2.11) u,(a, P,,s,) = r in(P"X p*)-probability,

where r is defined by (2.3).

PROOF. Suppose {P, € #; n > 1} and {k,; n > 1} satisfy the hypothesis of
the theorem. Let W(s, t) = n'/*(P,[ A(s, t)] — P,[ A(s, t)]}. Since W, = W as
random elements of L (Proposition 1 of Section 4), there exist versions of {W,},
W such that lim, _, ||W, — W|| = 0 for every realization (Wichura, 1970).

Fix the realization of {W,} and W. Let. Z (s) = sup|W,(s, t)| and Z(s) =
sup,|W(s, t)|. From above, limsup, _, {|Z,(s) — Z(s)|: s € S,} = 0. From this
and the evident convergence w.p. 1(1) of max{Z(s,): 1 < k < k,} to esssup,Z(s),
it follows that
(2.12) lim  max. Z (s,) =esssupZ(s) w.p.1(p).

n—oc 1<k<k, f
Let Z[max, _ . Sup|W,(s;, t)||s,, P,'] denote the conditional distribution of
the first argument, given s,. In view of (2.12),

&z t)ls,, P
[lgaxk sup |W, (54, JJ|EP ]

(2.13)
= ,S,”[esssup sup |W(s, t) |J w.p. 1(p)
n t
for the original versions of {W,} and W.
Let {t,; k > 1} be a fixed countable dense subset of R. With probability 1(p),
the random set {s,; & > 1} is a dense subset of S9. For every n,
esssup sup |W,(s, t)| = sup sup |W,(s,, t)|

n t k=1 ¢t

(2.14) = sup |W,(s, t,)| w.p.1(p)

k=1

[W,II-

The final equality holds because ||W,|| equals the supremum of W, (s, ¢) over any
countable dense subset of S, X R. Letting n tend to infinity in (2.14) proves

(2.15) Z | esssup sup |W(s, t)|| =Z[|W]].
n t
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Combining (2.13) with (2.15) yields the convergences:
u,(a, P,,s,) = rwp.1(p)

n»~n

and #| max supIW spy )| |PR X phe | = L[ W]

1<k<k,

Theorem 3 follows. O

24. Extensions. The asymptotic theory of Theorems 1 to 3 can be extended
in several directions.

Estimation of risk. The risk p (P, n""%t(a, ﬁ,); P) of confidence set
C,(a, P,) has the bootstrap estimate p,(B,, n~'/%t,(a, P,); P,). Convergence in
probability of this estimate to the actual risk can be proved using the triangular
array reasoning of Theorem 2. A 51mpler risk estimate, which relies on the
asymptotic constancy (2.5) of ¢,(a, P ) and on formula (2.9), is the mean of the
bootstrap distribution for nl/? 2d(P,, P) plus t,(a, P,). This in turn can be
appr0x1mated by the mean of the bootstrap dlstrlbutlon for n'/?d (P,, P) plus
u,(a, P,,s,); see the proof of Theorem 3. In prln(:lple risk estimates pr0v1de a
means for dlrectly comparing confidence set C,(a, P ) with other confidence sets
of the same asymptotic level.

Other roots for confidence sets. Alternative confidence sets for P can be
obtained from the weighted metric

|B,[A(s, £)] — P[A(s, 8)]|
[P[A(s, 8)](1 — P[A(s, )]

of Anderson~Darling type. The supremum norm in (2.16) or in the definition of
d(P,, P) may be replaced by other norms, such as the L,(m) norm on S, X R, m
being a finite measure. The asymptotic theory for confidence sets C,(«, P,) and
C,,( «, }A’n) can be extended to the analogous confidence sets based on these
alternate roots. L (m) norms with ¢ finite m can also be treated, at the price of
reducing the class of possible distributions.

(2.16) sup (s,t) €S, XR

Confidenceé sets for the difference of two distributions. Let P, € be probabili-
ties in P. Suppose x, x,,..., X, are iid. (P)and y, ¥,..., y,, are iid. (@),
the two samples being independent. Let P,, and Qn be the empirical distributions
of the {x;: 1 < i < n,} and {y;: 1 <J < n,}, respectively, where n = n, + n, and

n,/n—> A\ as n- oo, 0< A < 1. Let ¢,(a, P,Q@) denote an upper a-point of
Ln' 2P, - Q,) — (P— Q)||P" X Q"Z] Define the confidence set

’ 1=P— : P - _i)n_AH
(2.17) Cla,B,Q,)={P-Q:[(P-@Q) - (P,-Qq,|

<n (e, B,Q,); P,Qc P}

The development of this paper, including correct asymptotic level, LAM
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optimality, and computationally feasible variants can be carried through for this
confidence set.

3. Numerical study. Further Iinsight into the applicability and performance
of confidence sets C,(aq, P ) and ¢ (o, P ) is gained from three numerical case
studies.

3.1. First case study: five dimensional data. Mardia, Kent, and Bibby (1979)
reported test scores for n = 88 college students, each of whom took two closed
book and three open book tests. Marginally, the scores for each test appear to be
normally distributed (perhaps the consequence of a grading curve). Is it reason-
able to approximate the joint distribution of the five test scores by a normal
distribution?

The Monte Carlo approximation to the conditional bootstrap distribution for
d,(P,, P), given s,, recorded in Table 1, was calculated from 200 bootstrap
qampleq with d, defined by %, = 200 randomly generated unit vectors in RS,
Two points are noteworthy (a) The bootstrap distribution of d,(P,, P) in this
example is necessarily supported on {;/88: 0 <j < 88}. The Monte Carlo
approximation in Table 1 is supported on {;/88: 8 <j < 22}, the cdf having
sizable jumps. Convergence of the conditional bootstrap distribution to its con-
tinuous limit (Theorem 3) may not be swift. (b) The standard inequal-
ities for P"[d(P,, P) > c] are extremely conservative here. Both the
Vapnik- Cervonenkls (1971) and Devroye (1982) inequalities yield the trivial
conclusion P"[d(P,, P) > 0.250] < 1, in contrast to Table 1. Alexander’s (1984,
Theorem 2.11) mequahty is not even applicable for ¢ < 8(88)~ /2 = 0.853.

From Table 1, the confidence set

(3.1) C,(0.930,P,) = (Q € 2: d,(Q, B,) <0.193},

with n = 88, has approximate level 0.93. Let Nn denote the normal distribution
on R’® whose mean and covariance matrix are given by the sample mean and
sample covarlance matrix of the 88 test score vectors. For the d, of the previous
paragraph, d, (P, N ) = 0.129. The multivariate normal model for the test score

TABLE 1
Monte Car Io approximation to the bootstrap distribution of d,(P,, P), given s, for the
five-dimensional test score data. The number of random directions used is 200; the number
of bootstrap samples drawn is 200.

x 0.091 0.102 0.114 0.125 0.136 0.148 0.159 0.170
Bootstrap
cdf at x 0.010 0.025 0.080 0.185 0.345 0.525 0.685 0.805
x 0.182 0.193 0.205 0.216 0.227 0.239 0.250
Bootstrap
cdf at x 0.885 0.930 0.970 0.980 0.985 0.995 1.000
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vectors appears satisfactory, in the sense that the trustworthy set estimate
C ,(0.930, P ,) for P contains at least one normal distribution, namely N,. (The
reasoning here is not that of a classical goodness-of-fit test.)

Computations for this example, in FORTRAN 77, using Kolmogorov-Smir-
nov subroutines and pseudorandom numbers provided by IMSL, took approxi-
mately one hour on a VAX 11 /750.

3.2. Second case study: directional data. Steinmetz (1962) reported n = 20
cross-bed measurements of azimuth and dip from sandstone bodies in the Eocene
Cathedral Bluffs member of the Wasatch formation in Wyoming. These direc-
tional measurements can be represented as unit vectors in R? or as points on the
surface of a unit sphere. Is it reasonable to regard the data as a sample from a
Fisher distribution? A Schmidt-net plot (Mardia 1972, page 218) indicates that
the observations form a sausage-like cluster on the surface of the unit sphere, a
configuration suspiciously inconsistent with the axial symmetry of the Fisher
density.

Let 2, denote the set of all distributions which are supported on S;, the unit
sphere in R”. Suppose the 20 observations form a random sample from an
unknown distribution P € £,. The asymptotic theory of Section 2 remains valid
if 2 is replaced by 2,. Intersection of S; with all half-spaces of R” yields the
collection of spherical caps on S,. The Monte Carlo approximation to the
bootstrap distribution for d,(P,, P), given s,, recorded in Table 2, was calcu-
lated from 200 bootstrap samples, with d, defined by %, =200 randomly
generated unit vectors in R”. In contrast, the Vapmk Cervonenkls and Devroye
inequalities yield the trivial bound P”[d(  , P) > 0.45] < 1, while Alexander’s
inequality is not applicable at values in the support {;j/20: 3 <j < 9} of the
distribution in Table 2.

The confidence set

(3.2) C,(0985, P,) = (Q € 2,: d,(Q, P,) < 0.35},

with n = 20, has approximate level 0.985. If ﬁ' denotes the Fisher distribution
fitted to the sample by maximum hkehhood then d,(P,, F,) = 0.43. This
distance was approximated by first replacing F with the empmcal distribution
of a Monte Carlo sample of size 1000 drawn from F While F does not lie in
C ,(0.985, P ,), there might be some other Fisher dlstrlbutlon Whlch does. Settling

TABLE 2

Monte Carlo approximation to the bootstrap distribution of d,, >, P), given s,, for the
directional data. The number of random directions used is 200; the number of bootstrap samples
drawn is 200.

x 0.15 0.20 0.25 0.30 0.35 0.40 045

Bootstrap
cdf at x 0.100 0.335 0.685 0.890 0.985 0.995 1.000
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this question conclusively—by computing the minimum value of d( Pn, F)as F
ranges over all Fisher distributions—appears very time-consuming.

3.3. Simulation study: categorical data. A sample z = (2,, 2y,..., 2,) from
the multinomial (n; p,, ps,..., p,) distribution can be thought to arise from n
independent multivariate Bernoulli trials as follows. At each trial, one of ¢
possible outcomes occurs, the probability of outcome j being p;. The random
variable z; is the number of times outcome j occurs in the n trials.

Suppose possible outcome j is represented as the vector e; in R? whose jth
component is 1 and whose other components are all 0. Then, the outcome of the
ith multivariate Bernoulli trial is a random vector x; whose distribution P is
supported on the subset I' = {e;: 1 <j < q} of R? and is given by P[{e;}] = p;,
1 <j <q. Moreover, z=7Y7,x; and the empirical distribution P, of the
{x; 1 <i<n) is supported on T, with P,[{e;}] = p;, = z,/n, which is the
relative frequency of outcome j.

In this situation, the half-space distance d(f’n, P) is equal to the variation
norm distance between P, and P. Consequently, d(P,, P) = 27'89_11D, , — Pyl
This algebraic simplification provides an opportunity to compare the actual level
of confidence set C,(a, 15” ), defined in (1.4), with its asymptotic level 1 — a. Table
3 reports the results of a Monte Carlo study for five-dimensional multinomial
random vectors with n = 20,40,80. For each vector of outcome probabilities
{p;; 1<j <5} considered, 1000 multinomial (n; p,, p,,..., p5) vectors
{(2),,: 1 < m <1000} were generated. For each such sample vector (z),,, the
estimated outcome probabilities {(p;,),,: 1 <j <5} were calculated and 200
vectors were drawn from the multinomial (72; (1,)ms(Dan)ms - -+ » (Dsn)m) distri-
bution, in order to build up a bootstrap distribution for the L,-distance
Zj’~=1|( Djn)m — P,| and so determine the associated confidence ball for the { p;:
1<j<5}.

As might be expected, the agreement in Table 3 between nominal and actual
levels of the confidence set C,(«, P,) is best when the probabilities { p;l<j<5}
are all equal. Even when one or more of the { p;} is very small, the convergence of
actual level to nominal level as sample size n increases is evident. Equally
noteworthy is the apparent tendency of the nominal level to exceed the actual

TABLE 3

Observed levels in 1000 Monte Carlo trials of the bootstrap confidence set C,(a, P,). The data is
multinomial and of dimension 5. The number of bootstrap samples used to construct each confidence
set is 200.

n=20 n =40 n = 80
Outcome Nominal levels Nominal levels Nominal levels
probabilities { p;} 0.90 0.95 0.99 0.90 0.95 0.99 0.90 0.95 0.99

0.2 0.2 02 02 02 0899 0935 098 0898 0.498 0987 0.897 0.947 0.983
0.1 0.1 02 03 03 0871 0937 098 0881 0932 0981 0.893 0954 0.987
005 01 015 03 04 0879 0925 0977 0903 0947 0983 0.872 0932 0979
001 004 01 02 065 0829 0901 0957 0870 0932 0980 0.881 0.929 0978
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level of the confidence regions (34 cases out of 36 in Table 3). It remains to be
seen if bootstrap critical values can be refined to reduce this effect.

4. Empirical process results. This section collects facts about the em-
pirical process W, and its limit distribution which are needed for the proofs in
Section 2.

4.1. Convergence of the empirical process W,. Let x,,,X0,,...,%,, be iid.
random vectors in RY, each having distribution P, € 2. Let P, be the empirical
measure of the {x;,: 1<i<n) and let Wgs, t) = n/¥P[A(s, t)] —
P,[A(s, t)]}. Recall the norm | - |5 on L., defined after display (2.1).

PrOPOSITION 1.  Suppose lim,, _, . |P, — P|s = 0 for some distribution P € 2.
The empirical processes {W,; n > 1} converge weakly, as random elements of
L, to a Gaussian process W on S, X R having mean zero and covariance
function

E[W(s, t)W(s’, t’)] = P[A(s,t) N A(s’, t')]
(4.1) :

—P[A(s, t)]P[A(s", )]
for (s, t),(s’, ') in S, X R.

This triangular array weak convergence result may be deduced from Le Cam
(1983). Le Cam’s Lemma 4, together with his analysis of M(F, 2) at the bottom
of p. 317, implies the equicontinuity property: For every ¢ > 0 and 5 > 0 there
exists y > 0 such that

(4.2) limsup P"| sup |W,(s,t) — W,(s’,t')|>n]| <e,

n— e G(n,vy)

where

(4.3) G(n,v)={(s,t),(s’,t') €S, x R: P,[A(s, t) AA(s’, t")] <v}.

(An elementary argument involving the definition of Le Cam’s &, converts the
supremum in Le Cam’s lemma to ours.) The convergence lim,, , |P, — P|; =0
permits replacement of G(n, y) in (4.2) by

(44) G(0,y) = {(s,2),(s’,t’) € S, X R: P[A(s,t) AA(s',1")] < v}

This yields the classical criterion for tightness of the processes {W,: n > 1} in
L . The proposition follows immediately.

4.2. The maximum of a Gaussian process. The proofs of Theorems 2 and 3
required the fact that the random wvariable ||W| has a strictly increasing
continuous cdf. This fact follows at once from the more general Proposition 2,
which is useful in the analysis of other bootstrap procedures as well.
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ProPOSITION 2. Let (7, H, B) be an abstract Wiener space with P, the
canonical normal distribution on B. If | - |is the norm of B, then under P, the
random variable z — |z|, defined on B, has a density and a strictly increasing
cdf on [0, ).

Proor. The result will be deduced from a theorem of Tsirel’son (1975).

Let B* be the dual of B. By the Hahn-Banach theorem, |z| = sup m(z),
where the supremum is computed over m € B*, [m| = 1. Since B is separable,
this supremum can be computed over a countable set of m. Since each random
variable z — m(z) is Gaussian under P,, we therefore may analyze |z| as the
maximum of a countable collection of mean zero Gaussian random variables.

According to Tsirel’son (Theorem 1), |z| has a continuous distribution except
possibly at the point a, = inf{a: Pyf|z| < a} > 0}. Let us show first that the
distribution of |z| has no atom at a = 0. Since |z| = 0 iff z = 0, it suffices to
show that P, has no atom at 0 € B. Let {P,, h € H} be the Gaussian shift
family for (r, H, B), so that P,(A) = P(A — th). If P, had an atom at 0 € B,
then because of the mutual absolute continuity of the P,, P) would have an
atom at each point 7h € B; this is an uncountable collection of atoms, which is
impossible. Thus P, has no atom at 0 (and by the same argument, none at any
other point).

On the other hand, every ball in B centred at 0 must have positive P,
probability; this is immediate from a straightforward extension of Anderson’s
lemma (Anderson, 1955) to Gaussian measures on Banach space. By the previous
paragraph, the cdf of |z] must be continuous everywhere. Since every ball about
0 has positive P, probability, the mutual absolute continuity of the {P,} shows
that every ball (center arbitrary) has positive probability. This implies that the
cdf of |z| is strictly increasing. The existence of the density of |z| follows from
another part of Tsirel’son’s Theorem 1. This completes the proof. O

REMARK. Facts cited on page 854 of Tsirel'son’s paper assert that the
density of |z| is strictly positive at every point of (0, c0).
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