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MAXIMUM LIKELIHOOD ESTIMATORS AND LIKELIHOOD
RATIO CRITERIA IN MULTIVARIATE COMPONENTS
OF VARIANCE!

By BLAIR M. ANDERSON,? T. W. ANDERSON, AND INGRAM OLKIN

Stanford University

Maximum likelihood estimators are obtained for multivariate compo-
nents of variance models under the condition that the effect covariance
matrix is positive semidefinite with a maximum rank. The rank of the
estimator is random. The estimation procedure leads to a likelihood ratio test
that the rank of the effect matrix is not greater than a given number against
the alternative that the rank is not greater than a larger specified number.
Linear structural relationship models and some factor analytic models can be
put into this framework.

1. Introduction. If the effects of factors or classes are random, the analysis
of variance model is called the components of variance model or model 11. When
the effects and errors are normally distributed, the multivariate one-way model
is described by the covariance matrices of the effects and of the errors and an
overall mean vector. In the balanced case with replications a sufficient set of
statistics consists of the between class vector sum of squares, the within class
vector sum of squares, and the overall sample mean. Linear combinations of the
vector sums of squares yield unbiased estimators of the two model covariance
matrices, but the estimator of the effect covariance matrix is not necessarily
positive semidefinite.

In this paper we find the maximum likelihood estimators under the condition
that the covariance matrices are positive semidefinite, in fact, under the condi-
tion that the effect covariance matrix is positive semidefinite with a maximum
rank. The rank of the estimator is random; it depends on the roots of a certain
determinantal equation. The estimators depend on the corresponding vectors
associated with a matrix equation. The estimation procedure leads to a likeli-
hood ratio test of the null hypothesis that the rank of the effect matrix is not
greater than a given number against the alternative hypothesis that the rank is
not greater than a larger specified number. The usual asymptotic theory does not
hold; except in special cases —2 times the logarithm of the likelihood ratio
criterion is not a x2-distribution.

Linear structural relationship models can be put into this framework.
The effect vectors can be considered as the random systematic parts. Linear
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combinations of the components of the systematic parts being constant is
equivalent to those linear combinations of the covariance matrix of the sys-
tematic parts being zero. We also obtain maximum likelihood estimators of the
linear structural relationships.

In Section 2 we consider the case of the error covariance matrix being
proportional to the identity; that is, the components of the errors are identically
and independently distributed. In this case we do not need replication. In
Section 3 we treat the case of the error matrix being proportional to the identity
with replications; although this case may not be directly applicable, it is relevant
as a transition from Section 2 to Section 4. Finally, in Section 4 we study the
case where the error covariance matrix is unrestricted and there are replications.

There is a history of results dealing with components of various models in
which particular aspects have been treated. In this paper we attempt to bring
together specific results in a coherent manner. Although some of the results are
new, we have given special attention to an exposition of the field.

In an unpublished paper Anderson (1946) gave the results for the case of an
unrestricted covariance matrix. In another unpublished paper Morris and Olkin
(1964) independently obtained these results. Most of these were announced by
Anderson (1984), where an extensive list of references is given. Theobald (1975)
obtained the estimators of Section 2 (in slightly more generality) by the same
method that we are using. More recently Schott and Saw (1984) have derived the
maximum likelihood estimators and likelihood ratio criteria in Section 4 by a
somewhat different method.

Klotz and Putter (1969) obtained maximum likelihood estimators in a differ-
ent form when no rank condition is imposed. Amemiya (1985) has also treated
this problem. Amemiya and Fuller (1984) have found modified maximum likeli-
hood estimators and likelihood ratio criteria when the rank is specified exactly.
Rao (1983) proposed estimation and testing procedures that are related to
maximum likelihood. ‘

2. MANOVA without replication. In the simplest case of MANOVA with
random factors there is one observation per cell. Let the p-component observable
random vector be

(2.1) X,=p+V, +1, a=1,...,n,

where p. is a constant (unknown) vector, V,...,V,,U,...,U, are independent
unobservable random vectors with means 0 and covariance matrices

(2.2) EVV, =80, EUU. = 0’1

A vector U, is interpreted as composed of errors that are uncorrelated and have
a common variance o2. (If §UU, = ¢%¥,, where ¥, is known, the model can be
transformed to replace ¥, by I; see Theobald (1975).) The vector V, represents
the effect of factors and characterizes the cell or class. The covariance matrix ©
of rank m, 0 < m < p, is not necessarily positive definite. The covariance matrix
of the observed X, is

(2.3) C(X,) =6(X, - p)X,—p) =0’ +0.
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The effect vector V, is said to satisty linear structural relationships if there is
a g X p matrix B of rank ¢ such that BV, = 0 with probability 1. This implies
that BEV.V,/ = 0, that is,
(2.4) BO = 0.
The matrix B is not uniquely determined since it can be multiplied on the left by
an arbitrary nonsingular matrix of order g. The rank of B can be taken to satisfy
m + q = p. We shall obtain the maximum likelihood estimators of p, o2, ©, and
B under the assumption that the joint distribution of the random vectors is

normal.
Let the observations be x;,...,x,. The sample mean vector X = (1/n)L)_x,
and covariance matrix

1 n *
(2'5) C = Z (xa - }—{)(xrx - )—()/
n a=1
are a sufficient set of statistics. The logarithm of the likelihood function L is
np n :
log L = — — log27 — — log|a*I + @]
2 2 ,
(2.6) n n
sy tr(o?I + ) 'C - E(i—p,)'(GQI +0) (x—p).

For any positive semidefinite ® and positive o2, log L is maximized with respect
to p at i = X, so that the concentrated likelihood function is equivalent to

(2.7) log L* = —log|o®I + ©| — tr(c%I + ©) 'C.
The canonical form of C is
(2.8) C=WDW/,
where
(2.9) D,=diag(t1,...,tp),
(2.10) W= (w,,...,w,),
t, > .-+ >t are the ordered characteristic roots of C (distinct and positive
with probability 1), wy,...,w, are the corresponding characteristic vectors of C
normalized by w/w; = 1, and diag(¢,, ..., t,) represents a diagonal matrix with
t,...,t, as the diagonal elements. The matrix W is orthogonal. The canonical
form of 021 + O is
(2.11) 0’1 + ® = TD,I",
where
(2.12) D, = diag($,,...,95,),
(2‘13) P=(Yl"")Yp)y
8, > -+ =4, are the ordered characteristic roots of o’ + 0, Yi---, Y, are

corresponding characteristic vectors normalized by v/y; =34,;, the Kronecker
delta; so I is orthogonal. If @ is of rank m, §,,,, = --- =8,=0¢"> 0.
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In terms of the canonical forms the concentrated likelihood is equivalent to
log L* = —log|D;s| — tr TD; 'T"WD,W'
2.14 L
(2.14) = — Y log$;,— trDy(I"'W)D,(I'"'W)/,

i=1

which is to be maximized with respect to orthogonal I' and diagonal D; subject
tod, > -+ 28,>9,,,= -+ =8§,> 0. We use the following theorem of von
Neumann (1937).

THEOREM (von Neumann). For Q orthogonal and Ds and D, diagonal
(6,2 -+ 28,>0, 4,2 --- 2¢,>0)

(2.15) mén trD;'QD,Q’ = trD; 'D,,
and a minimizing value of Q is Q = 1.

REMARK. For any multiplicities of the §’s and ¢’s the set of minimizing Q’s
is found from tr D; 'QD,Q’ = trD; 'D,.

The maximum of (2.14) with respect to orthogonal I'"W (or orthogonal T') is

p P t,
- Y log$,— trD;'D,= — ), (log8i + ——)
i=1

“~ S,
(2.6) !
m ti 1 p
=-Y (log8i+—8— - (qloga2+—§ Y ot
i=1 i i=m+1
The maximum of (2.16) with respect to §; is at &- =t¢,i=1,...,m, and with
respect to 0% is at 62 =YP_ ., t,/q; then§, = --- =94, =62
Let
D, o
(217) Dt = [ Ot bt:I’ W = (Wl W2)’
where D, is m. X m and W, has m columns. Then a maximizing D; and Q = T'W
are
(2.18) b,- > ° Q=" 2
. s 0 62Iq ’ - 0 Q2 ’

where Q, is any orthogonal matrix of order q. Then

o I 0
l-‘="VQ'=(VV1 Wz)[ - ]

(2.19) 0 Q;

= (Wl w,Q; ) ’
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and the maximum likelihood estimator of ¢2I + © is
821, + & = D,

2 W W , Dt 0 Wll
(2' O) _( 1 2Q2) 0 62Iq Q2W2/
= W,D,W/ + 62W,Wj.
It follows that the maximum likelihood estimator of © is
0 = W,DW/ + 62W,Wy — 61,
(2.21) ,
= W,(D, — 6%1,,)W/,

which is positive semidefinite of rank m.

Since
- -1
A\ - D, 0
tr(621p + 9) 'C=tr W[ ot e ]W’) WD,wW’
' q
[1y-1
D, 0 D, o
= tr 1 ..
(2.22) 0 I, |L0 D,
(1, 0
= tr 1.
i 0 ?D,
=D,

the maximized value of the likelihood function is

m D nq/2 -1
(2.23) L(m)=[(2w)””/2ntin/2( Y ti/q) enp/z] )

i i=m+1

1=

The likelihood ratio criterion for testing the null hypothesis Hy,: m = m,
against the alternative m, < m < m,, where m, and m, are specified integers
between 0 and p, is

L(my) T (E0 g rti/a:
L(my)  [Ipor/%(ZE. it/ 0

)nq1/2

)”‘I(}/2

(2.24) )nq1/2

ﬁ pns2 (Zf-m,+1ti/Q1
= . i nqy/2°
t=my+1 (Ein-mo+1ti/q0) °

where g, = p — mgyand ¢, = p — m,.
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A special case is m, = p, that is, the alternative is that the rank of © is
greater than m,. The likelihood ratio criterion is

1/q9¢ \/2
L(m()) _ (Hf:mo‘*lti) T

L(p) B Z{)=m(,+ltl/QO

(2.25)

This is the !ng, power of the ratio of the geometric mean of the g, smallest
roots to the arithmetic mean of these roots.

3. MANOVA with independent errors and replications. We now con-
sider the balanced MANOVA with k replications in each cell:

(3.1) X,,=nt+V,+1U, j=1,...,k,d=1,...,n.

The unobservable random vectors V,...,V,,U,,...,U,, are independent with
means 0 and covariances

(32) &EVV/=©, U U, =%,  j=1,.,ka=1,..,n

ajCay T
We assume that the rank of ® is less than or equal to m. The covariance matrix
of X* = (X’,...,X%,) is

al

(3.3) EX*—e®p)(X*—e®p) =10 ¥ +e’'®0,

where e = (1,1,...,1), X*,...,X* are independently distributed, and ® de-
notes the Kronecker product. The inverse of (3.3) is

1 1
(3.4) (I— Eee') ¥ !+ ;ee’@(\lfwtk@)_l.

The determinant of (3.3) is |¥|*~!|¥ + kO|. Note that the covariance matrix of
X, =1/ X, is (1/k)Y + kO).

If X,,,...,X,; Xgp,...,X,;, are the observation vectors, the logarithm of the
likelihood function is

n(k—1)
2

pnk n
log L= — - log27 — log|¥| — 2 log|¥ + kO]

1 n , 1
—Eﬁgl(xﬁ—ec&p) (I—Zee’)@»\lf'
1 -1
(3.5) +zee’® (P +EO) |(x*—e®p)

pnk n(k—1) n
= — ‘—2— 10g27f - —‘2—‘ log|\I'| - 5 log|\I' + k@l

1
- E[trG\If" +trH(¥ + £0) ' + nk(x—p)' (¥ + k@)_l()_(—p,)],
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where
(3.6) H==% él %, - %)(x,—- X)),
n k
(3'7) G = Z Z (xaj - ia)(xaj - ia)/y

a=1j=1

= (1/k)Lk_x, ;»and X = (1/n)X;_X,. A sufficient set of statistics consists
of H, G, and X. The maximum of log L with respect to p is at | = X.

First we consider the case of ¥ = o%I. Let (1/n)H = WD,W’ and o2I +
k® = I'D,I"", where again W and T are orthogonal and D, and D; are diagonal.
Then the concentrated likelihood is equivalent to

p
—pn(k —1)logo?—n Y logé,
(3.8) =1

1
- trG — ntr Dy (T"W)D,(T'W)’.
The maximum of (3.8) with respect to orthogonal I'’'W is

— [pn(k - 1) + nglloge®—n Y logé;

i=1

(3.9) . f . f
- —trG - -~ t
02 i= 8 02 i=m+1

We want to maximize (3.9) with respect to 8, > --- > §,, and o2 subject to
6 > 62, j=1,..., m. Note that the concentrated likelihood function is a strictly
concave functlon of 1/62 and 1 /8, j=1,...,m, and hence the maximum is
unique. The derivatives of (3.9) with respect to 8,...,8,,and o2 are
(3.10) P =1

. Ry o2 J=L...,m,

&
' pn(k—1)+ng trG+ nLll . .t

(3.11) _ 2) + =

o (o?)°

Let a=pn(k—1)+ngand A =trG+nk? . t,.Let m*=mif A/a <t
otherwise let m* be such that

n A
by + ;[(m -m* - l)tm"‘+1 g — 0 "tm] =< 71—
(3.12)

n
< lpw + E[(m— M*V s = b1 = — bl
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that is, if

P
[pn(k—1) + ng*]t,e,, <trG+n Y ¢
(3.13) o fmm 41
< [pn(k - 1) + ng*]¢,.,
where g* = p — m*. Then Si =t,i=1,...,m* and

v trG + nX?_ .1t

(3.14) ~ pn(k—1) + ng*’

Let

(3.15) D = diag(t,,..., t,.), Dy = diag(tesr,---» t,),

(3.16) W= (W Wp),

where W* has m* columns. The maximizing D; and Q = T'"W are
. D/ 0 I.. 0

(3.17) D=1 6*21,,*]’ = [ 0 ;]’

where Q% is any orthogonal matrix of order ¢*. Then

(3.18) [=wq =(wr wrqy),

and the maximum likelihood estimator of 621 + kO is

(3.19) G*20, + kO = WrDFW» + 6*2Wr Wy,

The maximum likelihood estimator of © is
1

®=7

(WrDFWr + 6**Wr W, — 6%21,)
(3.20)

1
k
which is positive semidefinite of rank m*. The maximized value of the likelihocd
function is

Wl*(Dt* - A*Zlm* )wl*l’

m*

. -1
(321) L(m*) — (277)1’”’“/21—[tin/2(6*2)[P”(k_l)‘*'nq*]/Qenpk/Z .

i=1
The likelihood ratio criterion for testing the null hypothesis H,: m = m,
against the alternative my < m < m, is

L(mg‘) m} (6{"2 n[p(k—1)+q}1/2

[l o

L(mp) immgrr ' (532)"r D a2

(3.22)
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where 6% and 6} are given by (3.14) for m = mj%, g = q¢ and m = m?},
q = g}, respectively, for m} < m# and is 1 if m¥ = m¥.

4. MANOVA with replications. We now consider the model (3.1) with
&U, U’ = ¥ unrestricted. Let the roots of

aj ey
1 1
(4.1) ;H - de =0
be d, > --- > d, > 0; the roots are distinct and positive with probability 1.
Define Z by
(4.2) - H = nZD,Z’, G=n(k- )27,

where D, = diag(d,, ..., d,). Then

1
(4.3) ;H - G=1D,2' - 77’ = Z(D, - 1,)Z’

n(k—1)

is an estimator of k0.
Let the roots of

(4.4) (¥ + k@) —8¥| =0

be 8, > --- >2§,>8,,,= -+ =8§,=1. Let diagonal D; and nonsingular T
be defined by

(4.5) ¥ + kO = I'D,;I, ¥ =TT".

Then the log likelihood function concentrated with respect to i =X is
— ynpklog2w plus

n(k—1)
2

n n
— nk log|T| — — log|Dy| — tr(TT) " '22" — Etr(rnsr')*‘zndz'

n
—nk log|T'| — 3 log|Dy|

i n(k—1)

n
(4.6) tr 712277 — — tr Dy 'T'ZD, 2T !

n(k—1)
2

i n ,
—nk log|T| — = log|Dy| — tr(F~'ZDY?)D; (T ~'ZDY?)

- -;f tr Dy (T ~'ZDY/?)(T'ZDy?)’,

which is to be maximized with respect to Dy and I'. We use the singular value
decomposition:
(4.7) r-'zny?=pPDQ,

where P and Q are orthogonal, and D, is diagonal with r, > r, > -+ > 1, > 0.
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Then
(4.8) r'=pDQD,'?Z7},
(4.9) IT| " =T =D, - |Z|7" - Dy ~'2

The concentrated log likelihood function to be maximized with respect to P, Q,
D,, and D; is a function of Z and D, plus

n(k—1)
2

n
n'k 1Ongrl - 5 log|D8| - tr PDrQD(; I(PDrQ),

n
- 5 trD; 'PDQ(PD Q)

n n(k—1)
_ nklog|D,| — — log[Dy| — ———— tr PD,QD;'Q'D,P’
2 2
(4.10) n
- 5 trD; 'PD,QQ'D,P"
n n(k—1)
= nklog|D,| — - log|Dy| — ———— trD’QD; 'Q’

n
~ 5 trD; 'PDP".

Von Neumann’s theorem shows that the maximum of (4.10) with respect to P
and Q is

n n(k—1) I s
nk log|D,| — Elog|D8| - —2——trD, D' - —2—trD8 D;
n 2 r2 2
: = — Y {klogr?—logd,— (k—1)— — —
P AP 4
G SR PP Lk S
== 2 + = |- -
Since
(4.12) max[alogx — bx] =aloga —alogb — a
X
and occurs at x = a/b, the maximum of (4.11) with respect to ry,..., r, is
“n 2 - 1
(4.13) -3 Y {log8i+ klog( + 3 + k- klogk},
i=1 i i
and occurs at r? = k[(k — 1)/d; + 1/8]" ', i = 1,..., p. The maximum of (4.13)
with respect to 8,,..., 8, over the region §, > -+ 2§, >8,,,= -+ = 6, =1
occurs at
§,=d,, iftd;>1 forio 1
R ori=1,...,m,
(4.14) 6,=1, ifd;<1

1
5. =1, fori=m+1,...,p.
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Let p* be the number of d;> 1, m* = min(m, p), and ¢* = p — m*. Then
0,=d;, i=1,...,m* and Si =1,i=m*+1,..., p. The maximum of (4.13) is

n(p—m*)k npk n(k-1) ™ nk 2
(p—)logk— 12) + (2 )Zlogdi+7 Y logd;
(4.15) i=1 i=m*+1
nk 2
-— Y log(k—-1+d,).
2 i=m*+1

When we go back to (4.10) we see that a maximizing Q is @ = I (unique except
for multiplication of each diagonal element by —1) and a maximizing P is

4.16 P= L 0
(' ) - 0 P2)

where P, is an arbitrary orthogonal matrix of order ¢* = p — m*. Let
(4.17) Dd = diag(dl,..., dm*), bd = diag(dm*+1,..., dp)’

(4.18) Z=(Zr Z%),
where Z} has m* columns. Then '

. Dy o0 Dy 0
(4.19) D =[ } D =[ ) ]

4 0o I. d 0 D

In these terms
(4.20) D2 =k[(k-1)D;' + D] 7
From (4.8) we obtain
(4.21) I = zp/2Q'D P,

from which we obtain
¥ = ZDY*D2D?Z’

N .2 0 Z¥
(4.22) =Z(Z1 Z3)\ o (k- 1DI.+D3|\Zy

1 .
—Z3Zy + 2DyLy,

= ZITY + -

¥ + 16 = D,
- ZDY?D'P'D,;PD 'DY?Z’
1 kD 0 )( Z )

4.23 == ..
(4.23) k 0 (k-1I.+Dy[\Z}

(Zf Z3%)

= ZtD3Zy + —

)
7313 + ;Z;‘D}‘Z;".
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Subtraction of (4.22) from (4.23) and division by k& yields
A~ 1 ,
(4.24) 0= ZZ;“( 5 =1, )ZF,

which is positive semidefinite with rank m*.
The maximized log likelihood function is

npk nk
log L(m*) = — - log 27 — nk log|Z| — -5 log|D,|

n *k n k n k -1 m*

+ M g - P2 ( ) Y logd,

2 2 i=1
nk P nk 2” ‘
(4.25) +— Y logd,—— Y log(k—-1+4d,)
2 i=m*+1 2 i=m*+1
n k nq*k npk m*
= - % log2m + ——logk — —— — nklog|Z| - o El log d,

nk 2P '

-— Y log(k—-1+4d,).
P

This expression agrees with the substitution of ¥ and ¥ + £6 into (3.5).

Any matrix B satisfying BO = 0 is a maximum likelihood estimator of B. In
particular, Y, which consists of the last g* rows of (Z’)”', has the required
property. Thus B is any nonsingular multiple of Y.

The likelihood ratio criterion for testing the null hypothesis H,: m < m,
against the alternative m, < m < m, is

L(mg) k" T d T e (R = 1+ d)"™

L(m;k) B knq.*k/Z m dn/2 P k—1+d. nk/2
(4.26) T178,d] P TI r 1 )

m§ kkd n/2

l

i=m1_[;ﬁ+1 (k—1+4d)"

if m¥ < m¥ and is 1 if m¥ = m?.
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