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K-TREATMENT COMPARISONS WITH RESTRICTED
RANDOMIZATION RULES IN CLINICAL TRIALS

By L. J. WEr', R. T. SMYTHE AND R. L. SMITH
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Imperial College, London

In the course of conducting a clinical trial to compare K (> 2) treat-
ments, it is often desirable to balance the trial with respect to the assignments
of patients to treatments. On the other hand, some form of randomization of
treatment assignments is essential for reducing experimental bias. In this
article, the large-sample approximation to the null distribution of K-sample
randomization tests generated from a broad class of restricted randomization
rules is derived. The implication of this result for conditional inference is also
discussed.

1. Introduction. In most comparative clinical trials patients become avail-
able one at a time for treatment and must be assigned to a treatment group upon
arrival. One of the most fundamental statistical issues in the evaluation of new
treatments is how to allocate patients to treatment groups during the course of
the trial. Avoidance of experimental bias may best be achieved by adopting some
random mechanism for patient assignments. The most straightforward kind of
randomization scheme, simple (or complete) randomization, assigns each patient
with probability K~' to one of K possible treatments, assignments being made
independently of one another. Simple randomization has the advantage that each
treatment assignment is completely unpredictable, and it provides a basis for
statistical inference. However, in small-to-moderate sized experiments, simple
randomization may result in severe imbalance among the numbers of patients in
the treatment groups. Pocock (1979, p. 188) recommends the simple randomiza-
tion scheme only in large trials with over 200 patients. Even then, if one analyzes
early results while the trial is in progress, the scheme may not be satisfactory.

An alternative to complete randomization is the use of a restricted randomiza-
tion rule to ensure comparability of treatment numbers during the course of the
trial. In this article we focus on a class of adaptive treatment assignment rules.
The term “adaptive” here indicates that the treatment assignment of the
(n + 1)st patient may depend upon the assignments of the first n patients, but
not upon the observed responses (cf. Simon, 1977). Now, suppose that at the end
of the trial we are interested in testing the hypothesis H, that there is no
difference among K (> 2) treatment groups. Suppose further that it is inap-
propriate to postulate that patients in the trial have been obtained by random
sampling from a certain population. Then, experimental randomization of treat-
ments to patients is the basis for inference (see Lehmann, 1975, Chapter 1). The
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significance tests used for testing H, must be only those tests generated by the
experimental randomization design actually employed. For small trials, the
randomization tests may be performed by computer simulation (cf. Simon, 1979,
page 508). For large trials, however, this procedure becomes unwieldy.

In the comparison of two treatments, a large-sample approximation to the null
randomization distribution of test statistics for testing H,, has been obtained by
Smythe and Wei (1983) for a particular class of adaptive designs. In this paper we
study the asymptotic null distribution of test statistics for K-treatment compari-
sons under the randomization model, when treatment assignments are made by
restricted randomization schemes described, with examples, in Section 2. The
main limit theorem, which provides the asymptotic null randomization distribu-
tion of the K-sample test statistics, is presented in Section 3. In Section 4 we
pursue a suggestion of Cox (1982) concerning conditional randomization tests and
present a conjecture regarding convergence of conditional distributions. For
continuity of presentation, the proof of the main theorem is deferred to the
Appendix.

2. Restricted randomization rules. Efron (1971) proposed the ‘“biased
coin” design in the two-treatment case as a compromise between a perfectly
balanced assignment scheme and a completely randomized one. This was gener-
alized by Wei (1978a) to an “adaptive biased coin” design. Adaptive procedures
for K > 2 treatments have been proposed by Wei (1978b), Efron (1980), Atkinson
(1982), and Smith (1984a). Asymptotically, Wei’s procedure balances the experi-
ment completely, i.e., in the limit, each of the K treatments receives a portion
1/K of patients. Atkinson’s procedure is based on the concepts of D and D,
optimality and allows different limiting proportions of patients assigned to
treatment groups. Smith’s procedure, which we will consider in this article,
generalized Wei’s scheme to achieve prespecified limiting proportions ¢,,..., ¢k,
where {;,> 0,1 <j<K,and £/L ., = 1.

Smith’s procedure works in the following way. Suppose that after i assign-
ments (i > 1) there are N;; patients in treatment group j, where 1 <j < K and
Z;L,Nﬁ =i Let p=(py, Py,.--» Px_,) be a (K —1) X1 vector whose jth
component is the probability that treatment j will be assigned to the (i + 1)st
patient. We regard p as a function from £ to @, where @ = {y = (y;,..., Yk_1)"
¥, = 0, XXy, < 1). This function depends on the assignments of the first i
patients through the vector i™'N;, where N, = (Ny;,..., Nx_, ,). Given y, let
p(y)=1-XK'p(y) and y,=1—- ZK7 'y, Then p,,..., px are assumed to
satisfy:

(A1) If y,2¢ then p(y)<¢, 1<j<K.
(This formulation differs from the one in Smith (1984a), but is essentially

equivalent to it.) Here are some examples of treatment assignment rules satisfy-
ing (A.1):

ExXaAMPLE 2.1. The adaptive biased coin design (Wei, 1978a): Let K = 2 and
let p, be a continuous nonincreasing function from [0, 1] into [0, 1]. Let &, be the
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unique value satisfying p,(§,) = §,; then p = p, satisfies (A.1). If p, is not
assumed continuous, but p,(x)is > 3, = 3,0r < ; accordingas x < }, x = 1,
or x > }, then p, satisfies (A.1) with §, = §, = ;. Efron’s (1971) biased coin
model is of this type: p,(x) = A for x < §, p,(3) = 3, and p,(x)=1— A for
x> §,where ; <A <1.

ExaMPLE 2.2. Simple randomization: Take ¢{;= K~' and pi(y) =K},
l1<j<K-1

EXaMPLE 2.3. Generalized urn design (Wei, 1978b): Let ¢,= K~' and
py)=Q-y)/(K-1),1<j<K-1

Asymmetric designs can easily be constructed by modifying this example: If,
say, K=3, §, =3, §,= 3§ and §;=, let py(y) = (1 —»)/2 and py(y) =
3 2%

EXAMPLE 2.4. Atkinson’s (1982) design: If we again take {, = K~',1 <j < K,
this design gives

K
¥ =(y'-1)/Z(%'-1), 1<j<K-1
=1
Smith (1984a) showed that (A1) holds in this case.

The following proposition is crucial for the proo” of the main theorem in the
next section. It shows that the desired proportions a. ¢ achieved in the limit, for a
continuous p satisfying (Al).

PrOPOSITION 2.5. Let p satisfy (A.l). If each p; is continuous, then
p,(i"'N)) = ¢, asif oo, forl <j<K.

Proor. By (A1), p(§) <§;, 1 <j< K. If any of these inequalities were
strict, we would have, summing both sides from j=1 to j= K, that 1 < 1;
hence p(§) = §;, 1 <j < K. Lemma 4 of Smith (1984a) gives that i"'N,, — ¢,
for 1 <j < K — 1; the result now follows from Slutsky’s theorem. O

3. Randomization tests based on restricted randomization. Suppose
patients have been assigned to treatments by a restricted randomization rule and
at the end of the trial {x,,...,x,} is a sequence of observed responses. Let the
corresponding scores of the x’s be denoted by a,,,..., a,,, where a,, may be,
e.g., a function of the rank of x; among all x’s. Furthermore, let T}; be 1 if the
ith patient is assigned to treatment j and 0, otherwise (j = 1,2,..., K). We are
interested in testing the hypothesis H, that there is no difference among the K
treatments. In this section the large-sample approximation to the null distribu-
tion of K-sample randomization test statistics will be derived under a randomiza-
tion model. ’
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If simple randomization of patients to treatments is employed (so that
(=K ~1 for each j) it is known that the following condition on the scores {a;,}
implies asymptotic joint normality (after standardization) of the vector
Coa(Tj; - K_l)>;(=_11:

n
(3.1) lim max a2/ ) a2, =0
n—o l<i<n i—1
(cf. Theorem 5 of the Appendix of Lehmann (1975)).
We will consider the class of designs satisfying (A.1) and the following
additional condition:

(A.2) pis twice continuously differentiable with bounded second derivatives.
The next theorem will show that condition (3.1) is also sufficient for the

asymptotic normality of the standardized Xa,,T;; resulting from designs satisfy-

ing both (A.1) and (A.2). First, a lemma and some notation are needed:

LEMMA 3.2. Letd,;= dpy(§)/dy, Thend,; = b,;v,1 < k, j < K — 1, where
8, is the Kronecker delta and v is a constant.

ProOF. The argument is similar to that made in Section 3 of Smith (1984a);
our y and Smith’s p are related by y = —p. Recall (Proposition 2.5) that
py(§) = &,. For 8 sufficiently small, either positive or negative, and % # j,

(3-3) pk(gv"" Jj—1 gj + 8’ £j+1’°"7 gK—l) = gk =pk(£)'
Thus dp,(§)/dy; = d,; = 0 if k # j. Next, observe that for sufficiently small 5,

Ex2pr(€,+8,6,—8,6,5,..., 6k 1) =€k + 8dy, — ddy, + 0(8).

This implies that dg, = dg,, and similarly that all dg;, 1 <j < K — 1, have the
same value. But since ©7_, p/(y) = 1, it follows that XX dy;=0,1<k<K-1,
and hence that d;; = —dg, =y for1 <j < K — 1. (From (3.3) it is evident that
vy<0)O

Now define the sequence of modified scores {b;,} as follows:

n a, -2 ) )
34)  bp=a,+y ¥ |77 ILO+vi i=12..m,
I=i+1 j=i
where by convention I1i_; = 1if [ < i, and let s} = X7, b,. Define
- ain .
W, = .Zl , (T;-¢), 1<j<K-1
i= n

THEOREM 3.5. Suppose that the sequence (T;)X,, i = 1,..., n is generated
by a design satisfying conditions (A.1) and (A.2). If (3.1) holds, then the random
vector W, = (W, 5K, converges in distribution to a multivariate normal distri-
bution with mean 0 and covariance matrix ¥ = (0x,), where o;; = §(1 — §;) and
0n; = —Exy b # .
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PROOF. See the appendix. O

A natural statistic for testing H, is then T, = W/¥ 'W,, which has an
asymptotic x%_, distribution. (Note that ¥ is simply the covariance matrix of a
multinomial random vector with cell probabilities §,,..., {x_;.)

We conclude this section with several remarks concerning Theorem 3.5.

REMARK 1. Examples 2.2-2.4 of Section 2 satisfy condition (A.2). For Efron’s
biased coin model, where p is not even continuous (cf. Example 2.1), asymptotic
normality may fail to hold (cf. Smythe and Wei, 1983). However, restricted
randomization designs with the balancing action expressed by conditions differ-
ent from (A.1) are certainly possible. One seemingly natural alternative is given
by

(A1) y, > ¢, ifandonlyif p(y)<¢, 1<i<K-1.

Here is an example satisfying (A.1’) but not (A.1):

ExamMpPLE 36. Let K=3, ¢ =1, ¢, =1, &= L, and let p(y) = 11 — »)),
Dpo(y) = 2(1 — y2). Theorem 3.5 holds for this design. On the other hand, as noted
by Smith (1984a), Atkinson’s procedure (Example 2.4) satisfies (A.1) but not
(A.Y"). For designs satisfying (A.1’) but not (A.1), Lemma 3.2 need not hold, so
that Theorem 3.5 is not always applicable.

REMARK 2. A real question of interest in inference for these designs concerns
the potential loss of accuracy incurred if a significance test is performed assuming
simple randomization, when in fact a restricted randomization design has been
used. For the designs considered in Theorem 3.5, the accuracy of such an
approximation clearly depends on the ratio ¥ a2/ " b2, which will depend on
the value of y (defined in lemma 3.2). A small simulation study performed for an
urn design by Smythe and Wei (1983) when K = 2 suggests that if the variance
due to simple randomization is used in the analysis, the true significance level is
considerably smaller than the nominal level of the test.

REMARK 3. As pointed out in Smythe and Wei (1983), condition (3.1) on the
{a;,} is general enough to permit applications of practical interest. For example,
let ¢ be a real-valued function defined on (0, 1) with [J¢%*(x) dx < o0, and suppose
that either: (a) ¢ is monotonic or (b) ¢ is continuous and monotonic on (0, ¢) and
(1 — g 1) for some ¢ > 0. If a,, = ¢(i/n + 1), it is easy to show that (3.1) holds.
In particular, if F is a strictly increasing distribution function with a finite
second moment, then [}(F~'(x))®dx < o and a;, = F~'(i/n + 1) satisfies (3.1).

REMARK 4. Smith (1984b) has shown that the range of values of s2(= L b2,
provides an indication of the vulnerability of the design to experimental bias.
Theorem 3.5 makes possible a more rigorous statement of some results in Sections
5, 6, and 9 of that paper.
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4. Conditional inference. Cox (1982) introduced the idea of a conditional
randomization test, whereby the significance level is computed conditionally on
N,, — N,, (in the case K = 2) or some other indicator of the balance of the
design. The question therefore arises whether the results of Section 3 may be
used to construct conditional tests.

For the sake of simplicity, we consider only the case K = 2, ¢, = £, = 1, and
D, = N,,, — N,,, though the same discussion applies to K > 2 and to other
condltlonmg variables. Assume the {a;,} are rescaled so that ¥ ,b% =1 and
define an array {;,) from (3.4) with n~'/2 in place of a,,. For any real « and B,
the linear combination aW, + Bn~'/2D, converges to a normal distribution, by
Theorem 3.5. Specifically,

a;, 1
o+ 10, o224 )1, 1)
sn

i

If b, = ab,,/s, + 2Bb;, and 2 = L7b2, then Theorem 3.5 shows that aW,, +
Bn~'2D, has approximately, for large n, a N(0,152) law, with
1 2 Z bin bin ( a )
2Ebln ln 425311 .

The Cramér-Wold device (cf. Billingsley, 1968, page 48) then implies that
(W,, n~'/2D,) is asymptotically approximated by a bivariate normal with mean 0
and covariance matrix

i 2 Ebzn in
% Z bin?)in E bt2n

This suggests the

CoNJECTURE 4.1. The conditional distribution of W, given D, can be ap-
proximated asymptotically by a normal distribution with mean

_1/2D (Zl 1nbtn/2zl 1n) and Danance {1 - (Zlbln ln 2/(E b )}

The conjecture is not a corollary of Theorem 3.5, because asymptotic condi-
tional normality does not follow automatically from asymptotic joint normality.
Steck (1957) and Holst (1981), among others, have considered such questions for
sums of independent random vectors, but there is no obvious way to extend their
technique here. If D, were treated as a categorical variable with </ categories, the
conditional inference implied by the conjecture could be rigorously justified.

APPENDIX

’,

PROOF OF THEOREM 3.5. Let
K-1

(B.1) <Z(b,/s NT;: — p;(N,_ 1/(z—1)))> ,

Jj=1
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where b,, is defined in (3.4). We first show that under the condition

B2 max b2 b -0 asn — oo,
n/

l1<i<n

Y, converges in distribution to NK_I(O, 3.
The proof employs the Cramér-Wold device. Given a set of constants

a;,...,ag_,, consider the random variable
K-1
(B.3) Q.= L A%,
j=1
where Y, ; is the jth component of Y, and A = ¥X7la’¢; — (EX o £,)% The
variable Q can be rewritten as
n b N,_
Y Z,,, where Z, = ~1/2 E a( (z ;))
i=1 Sn -

Since E[T;N;_,]=p;N,;_,/(i — 1)), it follows that the array {Z,} is a
martingale difference array with respect to the o-fields %, generated, for each n,
by {Ty: j=1,..., K—1,k=1,...,i} (the o-fields do not depend on n). We
appeal to Theorem 2.3 of McLeish (1974) to prove asymptotic normality of @,,.
Conditions (a) and (b) of this theorem are trivially satisfied by (B.2) and the fact
that A~'2EK 1o (T, — p(N;_,/(i — 1)) is bounded. To check condition (c),
whlch is that Y7 Z -,1 as n— oo, we define UZ=7Y4_ 2%, V2=

E(Z? ol 1) It follows from (B.2) that the condltlonal Llndeberg condltlon
holds For all € > 0,

n

> E(Z3i1(|zni| > 5)|'§z_i—1) - 0,

i=1
where I(-) is the indicator function. Also, it is easily seen that sup, P(V,2, > A) — 0
as A — oo, so it follows from Theorem 2.23 of Hall and Heyde (1980, page 44)
that max,|U? — V% =, 0 as n — oo. So if we can prove that V2, -, 1, it will
follow that U2 = ¥ Z2 -, L

i=1

But E(Z%|%,_)) = (bzn/ASQ)Di, where

D, = E( Kilaz(th - Pz(Ni—1/(i - 1)))] |‘¢i—1)

=1

= L at[pdNe/(i = 1)) = PN (i = D)
K-1K-1
- lzl Z alampl(Nt 1/(l - 1))pm(Nt 1/(l ))

m#l

and using Proposition 2.5, D, converges in probability to A as i = co. Thus
V.2, — .1, and we conclude from McLeish’s theorem that ¥7_,Z, — ,N(0,1).
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Since a,,..., ax_, are arbitrary constants, it follows that Y, converges in distri-
bution to N, _,(0, ).

Next, using condition (A.2), expand p,(y;,..--, ¥x_;) about the point
(gly' ey gK—l):

K-1
P Yisees Yko1) = P15 s k1) + ; di(y - &)

(B.4) K- 1K=18%p,(ny,.. ., Mk1)
. .
L L

J=1 m=1

- 'fj)(ym - §m),

where (0,..., ng_,) lies on the line segment joining y to §. We will show that

B5 ¥ bn [KZI KZI( §)(Nl' 1 —é,)] -, 0 asnfoo.

i=1 Jj=1 Il=1

For this it suffices to prove that

i b 1,i—1
(B.6) Y Is”’l( P—

i=1
But from Lemma 4 of Smith (1984a), E(N, ; /(i — 1) — &,)* < K*i—-1)"1,s0
that the expectation of (B.6) is bounded by

K2 n | K2[ n b, |2 2z, , 1/2
tn < in Z (l -1 —4/3) ,
S, LZI i—1 S, (zzl ( 1)2/3 (i=l )

using the Cauchy-Schwarz inequality. In view of (B.2), it follows easily that this
converges to 0 as n — co. Thus (B.5) is established. By Lemma 3.2, d,; = v§,;
where §;; is the Kronecker delta, 1 < j, / < K — 1. By (B.4), (B.5), and condition
(A.2), Y, is asymptotically equivalent to

<Zi[ g -vi-D (T —s,»)]>x_1,

i=1 r=1 j=1

—§) -0 asn— oo.

n

(with the convention that 0/0 = 0), which can be rewritten using (3.4) as

< 5 o, > _—

i=1 Sp j=1

To complete the proof of Theorem 3.5 we will show that (3.1) implies (B.2). To
do this we first show that max;b,, < C, < max,a;,, and then that L,a? <
C,x b2,

From (3.4) we have

’ -2
(B7) byl < lag,l + Iyl max ag,l) ¥ [(l—l)“ﬂ_(uw'-‘)
<i<n Jj=i

I=i+1
< m.ax Iainl{l + IYlGin}7
1<i<n
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where G, = L7, . [(I - D7NTTE23 + yj_1)|] It is easily seen that for |y| < i,
MiZ2a + y]“) < C((1 - 2)/i) "for 1—2 > i, with C constant. From this it
follows that G,, < M < o for all { and n, proving that |b;,| < C max,|a,,| For
the second part, observe that

(B.8) a,=b,—v Z bjn/(j - 1) = b, — vy

J=i+1

Hence
17212
Zain Z(bm ch <|S,— Y(Zcizn) :| ’
i i

by Schwarz’s inequality.
Now

e
13

XX Ybb/{(-1D(-1)}

i j>il>i
=L X/(-)'+2L Y L b/ (= D= 1))
- an/u— 1) + 2% X bjuby/(1- 1)

Jl>j

1/2
sz +2E )inCin < Sp + 258 (chn) ,
i

IA

where we have used Schwarz s inequality in the last inequality. If ¢ = X" ,c?,
we get s2 + 2s,¢c — c > 0, whence we must have s, > (V2 — 1)c. It now follows
from (B. 8) that Y,a?, < (@1 + |y[1 + v21)s2 completing the proof of Theorem 3.5.
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