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The two papers by Diaconis and Freedman which are under discussion contain
a series of interesting and nicely presented results. The philosophical issues which
they raise are thought-provoking and merit attention. Their papers also give a
useful review touching on a number of topics of interest to frequentists and
Bayesians.

For simplicity, in the ensuing comments I shall refer to Diaconis and Freed-
man (1986a) as DFa and Diaconis and Freedman (1986b) as DFb. My comments
touch on three topics: the technical aspects of DFa, the philosophical implica-
tions of the results in DFb, and the extension of the “what if” method in DFb to
Bayesian robustness.

The model (1.1) of DFa and the accompanying priors seem innocuous, and it is
somewhat disconcerting that they can lead to inconsistency. Theorem 1 of DFa
says that the posterior for § will fail to converge even though % has a global
maximum at 0. Theorem 3 states that using a symmetrized prior might not help;
we can even get the posterior law of the data wrong. On the other hand, perhaps
the consoling message from DFa is that if log «’ is convex, then in the setting of
Theorem 1 the posterior for 8 will converge. Less helpful is the fact that the
posterior will converge if the (unknowable) density A is strongly unimodal.

The discretization results of Section 4 of DFa can be used to approximate the
solutions to decision problems in the undominated case. In Clayton (1985), I used
a form of discretization with a Dirichlet process prior to approximate the worth
of optimal rules for a sequential problem. I conjectured in that paper that
discretization could be used to construct nearly optimal rules. (The construction
of optimal rules is practically impossible unless the Dirichlet parameter has a
finite support.) It seems possible to use the results of Section 4 of DFa to prove
that conjecture.

How important is this issue of inconsistency to a Bayesian? I think Diaconis
and Freedman are right in DFb to consider separately the classical and subjective
Bayesians, even though many Bayesians have the characteristics of both groups.
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38 DISCUSSION

To a classical Bayesian, a consistent Bayes estimate means that the Bayesian
will eventually discover the “true” parameter value, and so the Bayesian and
frequentist will eventually agree. This seems consoling to those ill-at-ease with
the Bayes/non-Bayes controversy—we might use different methods, but we
eventually uncover the same truths.

Why should a subjectivist be concerned with inconsistency? Theorem 3 of DFb
says that if a Bayesian “A” is consistent, then from a Bayesian “B’s” point of
view A and B will eventually agree. There are situations, however, where this is
unsuitable. For example, suppose A and B are witness to some coin tossing.
Bayesian A is firmly committed to the belief that all coins are fair, and so uses a
prior 8, ,, for 8, the probability of heads. B is firmly committed to the belief that
coins are never fair, and uses a uniform prior on [0, 3] U [3,1]. Both A and B
will use Bayes theorem to coherently update their priors as they see data, but
they will never agree, nor should they.

Such failures of opinions to merge do arise, at least informally, in discussions
about issues such as the afterlife, a flat earth, the Bermuda triangle, the cause of
mass extinctions, and so on.

In the spirit of the “what if” method, the subjectivist should be interested in
the effect the prior has on inferences, and should therefore be interested in its
possible inconsistency. However, while the classical Bayesian would probably
never want to use an inconsistent prior, the subjective Bayesian might very well
choose to use such a prior.

I agree with Diaconis and Freedman that the “what if” method is a useful
technique in considering a prior; I suggest that it provides a method of assessing
the robustness of the analysis to the choice of prior. As Berger has suggested
(Berger, 1984), it is difficult to specify priors exactly and so we should be aware of
how changes in the prior will affect our inferences. If a small change in the prior
results in a small change in the posterior, then this indicates that an exact
specification of the prior is not critical. On the other hand, if a small change in
the prior results in a large change in the posterior, then the data have little to say
relative to the information in the prior. Presumably in this situation one would
want to be more careful about the choice of prior.

While Berger (1984) tends to look at gross changes in the prior, I would put
the emphasis on examining “small” or “local” changes in the prior. The effects of
small changes of this sort are measured by the derivative of the posterior with
respect to the prior, or in the notation of DFb, TL Often we will be less interested
in the entire posterior than the corresponding Bayes rule, and in that case we will
prefer to look at M We can go further: In some settings a small change in the
prior might result i 1n a big change in the Bayes rule M, but this might not be
important if the accompanying change in the Bayes risk, R, is small. This leads
us to look at the derivative of the Bayes nsk with respect to the prior, R T and
R give “local” measures of Berger’s “posterior robustness” and ° procedure
robustness, respectively (Berger, 1984).

How well does this approach work? In the example in Section 4 of DFb the
interpretation of ||T || is pleasmg The posterior of p is most influenced when x is
far from p,, relatlve to o2 + o2. This suggests picking a prior for which ol is



CONSISTENCY OF BAYES ESTIMATES 39

large. It is tempting to try to find “robust” priors for which ||T|| is small.
However, lim 2_,°°||T|| = oo for p,, x, and o2 fixed, which leads to picking a
prior with small ol. If my calculations are correct, ||M || behaves similarly in this
regard.

A possible complaint about using T M", or R ., as measures of robustness is
that only the prior is being called into suspicion; the likelihood is assumed fixed.
One approach to this problem is to use a large class, C, of distributions for the
likelihood: Box and Tiao (1973) give an example where a class of exponential
power distributions is used instead of a normal likelihood. There is another
approach which leads to a very large class C.

If we follow de Finetti (1975), then our efforts should concentrate on modeling
observations, not parameters. Specifically, we should focus on P, the joint
measure for the observable data X, X,, X,,.... Suppose data X, X,,..., X,
are collected and a Bayes rule M,, is formed. I would argue that from the robust
Bayesian viewpoint it is appropriate to look at the derivative of M, with respect
to P. (Depending on how we define the neighborhoods of P, this could lead us
back to 7';,.) Generally, dM, /dP could be very difficult to compute. A compro-
mise, which is not likelihood dependent and corresponds to a very large C, uses
the Dirichlet process to describe the distribution P. The specific P chosen is
determined by the Dirichlet parameter a. In keeping with the “what if” ap-
proach, we can ask how the Bayes rule is affected by a small change in a. To be
more specific, let us suppose that X, = x,,..., X, = x, are observed and we
want to predict X,,, with squared-error loss. The resulting Bayes rule is
p=M/(M+ n)up+ Xx,/(M + n) where M = a(R), F(-) = a(-)/M, and pp =
fx dF. We may compute the Gateaux derivative, i(a, B), of pu, with respect to a
in the direction of the measure 8. To keep the example simple, suppose S(R) = M
G(-) = B()/M, and p; = [xdG. Then (Serfling, 1980)

pa, B) = gimi[fxd[(1~e)F+ eG| — up

M+n loo €
M
M+n

This suggests that, “locally,” the only critical aspect in the mispecification of a is
the mispecification of the mean of an observation. ji(a, 8) also has the appealing
feature of being small when n is large. When G = §,, ji(a, 8) differs from the
influence curve for the mean by a multiplicative constant.

This approach is not easily extended to a model where P results from a
mixture of Dirichlet processes, or if another “nonparametric” prior such as the
tail-free prior is chosen. I am therefore eager to see the results Diaconis and
Freedman obtain for the Gateaux derivative in the undominated case.

Incidentally, the interpretation of ||T;,|| that follows from Theorem 4(b) of DFb
is particularly appealing: A measure of sensitivity to the prior is obtained by
looking at the ratio of objectivist likelihood to D(p). Berger and others (see
Berger, 1984, page 95 for references) have discussed similar uses of D(p) and the
likelihood for assessing model adequacy.

(Bg — Brp)-
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Finally, a query: In DFb, Diaconis and Freedman use the past tense in
describing themselves as subjectivist and classical Bayesians, respectively. How
do they describe themselves now?
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The mathematical beauty and tractability of the Dirichlet prior render it
almost irresistibly seductive. But beware! Rocks and shipwreck await the poor
Bayesian navigator captivated by its siren song. Brown (1976) shone a little light
on these murky waters. Now Diaconis and Freedman deserve the gratitude of all
explorers for illuminating some of the more treacherous obstacles to a smooth
passage.

Beyond these specific warnings, what broader morals are to be drawn? In view
of the fact that, generically, the pair (@, p) is inconsistent, it is not really
surprising that the authors can find such a pair. What I find far more surprising
is the existence of priors p (e.g., tail-free) which are consistent at each . Perhaps
this is only possible because of the rather weak definition of consistency em-
ployed. Nevertheless, it is an important property, and one which demands further
characterization. .

Choosing a prior for an infinite-dimensional parameter space is always going to
be problematical, and any accessible prop (such as consideration of imaginary
results) should be grabbed. For example, any two different priors are, generically,
mutually singular, and so involve incompatible world views of what is even
possible. This can be expected to lead to diverging inferences from the data. The
mere possibility of consistency, in the problem considered, is therefore an unex-
pected bonus.



