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BAYESIAN NONPARAMETRIC ESTIMATION OF THE MEDIAN;
PART I: COMPUTATION OF THE ESTIMATES!

By HaNI Doss

Florida State University

Let X;, i=1,...,n be iid. ~ Fy, where Fyp(x) = F(x — ) for some F
that has median equal to 0. F is assumed unknown or only partially known,
and the problem is to estimate §. Priors are put on the pair (F, §). The priors
on F concentrate all their mass on c.d.f.s with median equal to 0. These priors
include “Dirichlet-type” priors. The marginal posterior distribution of 6
given X,,..., X,, is computed. The mean of the posterior is taken as the
estimate of 6.

1. Introduction and summary. Let X,..., X, be i.id. ~ F, where Fy(x)
= F(x — 0), the median of F is 0, and F is suspected to be approximately equal
to a known distribution «, with a density ap symmetric about 0. Suppose that
the problem is to estimate 6. Use of the mle §* based on the model X,.., X,
iid. ~ ag(x — 0) leads to an estimator that is efficient if F is equal to ao, but
that can perform particularly poorly if F differs slightly from «, in thé heaviness
of tails, skewness, etc. Indeed, §* can consistently estimate a wrong value (for
example, if a, is the normal distribution and the mean of F is not 0). On the
other hand, the nonparametric estimate of the median, i.e., the sample median
makes no use at all of any information that is available concerning the shape
of F.

In the problem of robust estimation of a location parameter, one approach
that has been used by many authors is to take a specified neighborhood of a, and
find an estimator having certain optimality properties for that neighborhood,
e.g., minimax asymptotic mean squared error. An important question is whether
or not to let the neighborhoods contain only symmetric distributions. If the
neighborhoods contain only symmetric distributions, then the location is a
well-defined parameter. The assumption of symmetry may not be realistic, but
leads to mathematical convenience and to positive results; see for example Stone
(1975) and the references cited in Huber (1981).

In a Bayesian approach to estimating the median, one proceeds as follows.
Take the parameter space to be II = 2* x %, where #* is the set of all c.d.f.s
with median equal to 0, and put a prior = on the generic point (F, ) of II.
Compute the marginal posterior distribution of § given a sample X, ..., X, from
F(x — 6); with squared error as loss the Bayes estimate is the mean of the
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posterior.

In this paper we consider a prior 7 of the following form. The parameters F
and 6 are taken to be independent; the distribution of 6 is arbitrary and the
prior on F is obtained from Doksum’s (1974) neutral to the right priors. The
simplest of these priors on F are related to the Dirichlet priors, and we now
proceed to describe them.

Let M > 0, let @ = Ma, and let a_ and «, denote the restrictions of a to
(= 0,0) and (0, o), respectively. Choose F_ and F, independently from 2,
and 2, , respectively (9, denotes the Dirichlet prior with parameter measure ;
see Ferguson, 1973, 1974), and form F = JF_+ LF,. This F has median equal to
0, but with probability one is not symmetric, although it is symmetric “on the
average.” For example,

EF(t) = ay(t) forall ¢.

The distribution of F is denoted 2. It has many of the properties of the
ordinary Dirichlet prior: The support of 2* is appropriately large if the support
of a is large (see Doss, 1985). Also, the parameter M indicates the degree of
concentration of 2F about its “center” a,. For example, it is easy to see that if
M — oo, then 2} converges to the point mass at a, in the weak topology. The
measure 25 on #* can also be viewed as the conditional distribution of the
ordinary Dirichlet prior with parameter a given that the median of F is equal
to 0.

The posterior distribution of § given a sample is obtained. The Bayes estimate
of # turns out to be essentially a convex combination of the mle §% and of the
sample median, with the weights depending on the sample.

The formal setup is described in Section 2. The marginal posterior distribution
of 4, given a sample, is computed in Section 3. For the case where the prior on F
is 2%, Section 4 gives a description of the basic features of the posterior
distribution of . Section 5 extends the results to the problem of estimating
quantiles. The consistency properties of the posterior and the Bayes estimator of
the median are studied in detail in Doss (1985).

Dalal (19794, b) and Diaconis and Freedman (1985a, b) considered a “syl_nme-
trized Dirichlet distribution” as the prior on F. This prior, denoted 2
constructed as follows. Let F,~ 92, + 88 before. Then F(t) = {F (t) + 2(1 —
F,(—t")) has the prior 9,. Thls F is symmetric. Note that 1f F, and F, are
chosen independently from Qa + then F(t) = JF|(t)+ (1 — Fy(—¢"))is dlstrlb-
uted according to 2. Diaconis and Freedman computed the posterior distribu-
tion of 6 given a sample X),..., X, when the values }(X; + X)) are distinct, and
obtained the Bayes estimate of 0 under squared error as loss. They showed that
for certain choices of «, the Bayes estimate can be inconsistent. See Diaconis and
Freedman (1982) for a discussion of the robustness properties of these Bayes
rules. The problem of Bayesian nonparametric estimation of quantiles has also
been considered by Ferguson (1973). Doss (1984) gives results concerning a class
of priors that give probablhty one to the symmetric c.d.f.s. This class contains the

“symmetrized Dirichlet” priors used by Dalal and Diaconis and Freedman.
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2. Preliminaries.

2.1. The basic setup. Let p be a probability measure on £*, where 2*
denotes the set of all c.d.f.s F on # with median equal to 0 [i.e.,, F(07) < <
F(0)], and let F be distributed according to p. (Throughout this work, probabil-
ity measures on £ are identified with their cumulative distribution functions,
and the same symbol is used to denote both the measure and its distribution
function whenever convenient.) Let » be a probability measure on %, let 6 be
distributed according to v, and assume that # is independent of F. Let the
distribution of the random variables X,,..., X, be as follows: Given (F,#),
X,,..., X, are iid.~ Fy, where F; is the distribution function defined by
Fy(x)= F(x - 6).

Formally, the setup is as follows. Let % * denote the o field on #* generated
by the topology of weak convergence, and let u be a probability measure on
(P*, F*). Let v be a probability measure on (%, %), where % denotes the Borel
sets of #. Consider the product space II = £* X # with the product measure on
the product o field. This space induces random variables X,,..., X, and a
probability measure P on £”" X Il with the product ¢ field as follows:

(2.1) P{X <x;-;X,<x,;FeC;0€ A}

-/ izﬁlp(x,- — 8)u(dF)»(db),

where x,,...,x, € %, C € F*, A € #. Note that (2.1) is sufficient to define P.

It is desired to obtain the marginal posterior distribution of # given a sample
X,,..., X,. From a decision theoretic viewpoint, the Bayes estimate under
squared error as loss is E(6]X,..., X,) (other loss functions can also be used). As
the conditional expectation of 8 given X ,..., X, can be envisaged as an ordinary
expectation relative to a “regular conditional distribution” of # given X,..., X,,
it is desired to obtain such a conditional distribution. This is done in Section 3.

If p is a measure on 2*, then the distribution function F is a random
function. It will be very helpful to view p as a stochastic process {F(¢); t € #}.
Briefly, any separable stochastic process {F(¢); t € #) that satisfies

(i) F isnondecreasing, a.s.,
(i) Lm F(¢)=0, as., lim F(¢) =1, as,
t— —o0 t— o0

2.2
(2.2) (iii) lim F(t) = F(s) foreachs € %, as.,
t—s*

(iv) F(07) <} < F(0), as,

induces a measure p on (£*, ¥ *). Conversely, any measure g on (£*, % *)
induces a separable stochastic process {F(¢); t € #)} satisfying (i)-(iv) of (2.2).
Details are provided in Doksum (1974, pp. 189, 190); actually, Doksum considers
the space 2 of all c.d.f.s on £, but his results apply to 2* as well. The measures
p on #* to be considered are derived from Doksum’s neutral to the right
measures. The most important of these are the priors 2%, which are treated
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separately. The general case is discussed in Section 3 after the proof of
Theorem 1.

2.2. The prior 2. Let a be a finite nonnull measure on #%. For the construc-
tion below, a need not be symmetric, but is assumed to have “median equal to 0”
in that a(— 00,0) = (0, 0). Let a«_ and a, be the restrictions of a to (— 00, 0)
and (0, o0), respectively, in the following sense:

a_{A} =a{AN(—0,0)} + ja{AN{0}} and

a,{A} =a{AN(0,00)} + ;a{A N{0}}.
Choose F_ and F, independently from 2,_ and 2, ., respectively, and form
(2.4) F(t) = 1F_(£) + }F. ().

This construction defines a measure on #*, which we denote by 2. Writing
ag = a/(a{R}), it is easy to check that EF(t) = a(¢) for all ¢.

Assume that « is continuous at 0. Then, 2} may be viewed as the conditional
distribution of 2, given that F(0) = 1. It is necessary to give this statement
more meaning, since the event { F(0) = }} has 2 -probability 0. For n > 0, let 27
denote the conditional Dirichlet prior given that F(0) € (; — m, § + n). Then, as
n—0, 27> 2} in the weak topology. A formal proof of this will appear
elsewhere. If 0 € supp(a) the median of F' is unique [this is clear; for a rigorous
proof, see Proposition 2 of Chapter V of Doss (1983)]. This means that 2} may
be viewed as the conditional distribution of &, given that the median of F is
equal to 0.

(2.3)

3. The posterior distribution of 0. In this section the marginal posterior
distribution of # given a sample X,..., X,, is computed when the prior on F is
2} (Theorem 1). Theorem 2, stated without proof, gives the posterior distribu-
tion of 6 given X,,..., X, when the prior on F is obtained from the neutral to
the right priors. In what follows, X denotes the random vector (X}, ..., X,) and
x denotes the vector (x;,..., x,).

The usual method of computing the posterior distribution, i.e., “the posterior
is proportional to the likelihood times the prior,” is inapplicable here, since
there is no likelihood: There is no o-finite measure dominating the family
{Fy; (F, ) € I1}. Consequently, the posterior distribution of # will have to be
obtained in a different way.

What is desired is a regular conditional distribution of # given X. Recall that
a regular conditional distribution of # given X is a function » . (-) defined on
R" X # satisfying:

(i) For each x € 2", v, is a probability measure on %;
(ii) Foreach A € %, v (A) is a measurable function of x;

(3.1) (iii) For each A € 4, v, (A) is a version of P{f € A|X = x}, i.e., for
each linear Borel set A and n-dimensional Borel set B, [zr,(A)dP =
P(6 € A; X € B).
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One of the properties of regular conditional distributions is that the condi-
tional expectation may be obtained by taking an ordinary expectation relative to
the conditional probability distribution. [Chow and Teicher (1978), p. 211.]

Before stating Theorem 1, we give some notation.

NOTATION.
N1. m is equal to the number of distinct values of the sequence {x,..., x,},
Xqy < X@g < -+ <X, denote the ordered values of the sequence, and n;

denotes the multiplicity of x ;).

N2. v () or »(df|x) denote a regular conditional distribution of § given
X =x.

N3. I'(+) denotes the gamma function.

THEOREM 1. Let F ~ 2}, and assume that a, is absolutely continuous, with
density ay, continuous on #. Let 6 ~ v be independent of F, and given 6 and F
let X,,...,X, be i.i.d.~ F(x —0). Then there exists a regular conditional
distribution of 6 given X that is absolutely continuous with respect to v and is
given by

(3.2) »(dB)X) = c(X)(]j:‘a(,(X,» - 0))M(X,0)v(d0),

where [M(X,0)] ! = I'(Aa(0) + nF(8))T'(1a(0) + n(1 — E(0))), with F, the
empirical distribution function of X,,..., X,.. The * in the product indicates that
the product is to be taken over distinct values only, and ¢(X) is a normalizing
constant.

ProOF. Since the event { X = x} does not, in general, have positive probabil-
ity, it is impossible to define, for x fixed, », on # by

Pl A; X =x}

(3.3) v (A) = P(X =2 for A € 4.

Consider instead, for x fixed, n > 0, the measure »! defined on % by

Pl A; X, € (x;—n/2,x;,+n/2),i=1,...,n}
P(X, e (x;—n/2,x;,+n/2),i=1,...,n} )

(34)  »p(A) =

From (2.1) it follows that for all A € %,

JatoT1 [F(x; — 6 +n/2) — F(x, — 0 — n/2)] 2X(dF )»(df)
J 2w TPy [F(x; = 6 + n/2) = F(x; — 0 — n/2)]| 2X(dF )v(df)

Defining f,’(0) by

(35) »(A)=

(36) fx"(0)=E1f11[F(x.-—o+n/2)—F(xi—o—n/2)],
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(3.5) may be rewritten as

Jat.(8)v(d6)
3.7 vI(A) = for A € %.
(37 (=72 @ an)
Suppose that we can find a function f,(-) defined on £ such that for each 6,
(3.8) lim n~"f(0) = £.(0).

Assuming that questions involving the uniformity of the convergence have been
settled, this gives

o ak0)v(dn)
(39) T}li%vx(A) = m for each A € %.

The task is two-fold. First we need to find a family of functions {f.(:); x € 2"}
satisfying (3.8), and second we need to show that the family of measures given by
the right-hand side of (3.9) forms a regular conditional distribution of § given X.

Consider now f,"(6) defined by (3.6), assume temporarily that 6 ¢ {x,,..., x,},
and assume that 7 is sufficiently small so that for all i, 6 & (x;, — /2, x; + n/2).
By (2.4) and the independence of F_(-) and F,(-), we have

(3.10) £200) = 52 £2_(6)£2..(0),

where f,7_(0) and {,",(0) are defined by

311) fr _(0)=E [l |F_(x;,—0+n/2)—F _(x,—06-n/2)

+) x;—0<0 (+) (+)
)

We now use the gamma process representation for the Dirichlet process. Let
%(u,1) denote the gamma distribution with shape parameter u and scale param-
eter 1, and let B be a finite nonnull measure on 2. If {y(¢); ¢ € [0, B(0)]} is a
stationary independent increments process with y(¢) ~ 9(¢,1), and if F(¢) =
Y(B(2))/¥(B()) for t € X, then F ~ Dy; see Ferguson (1973). It is well known
that if {y(¢); ¢ € [0, B(o0)]} is a gamma process then
v(2)

v(B(0))

the random variable y(B(c)) are independent.
Consider f,"_(8). By (3.12) and (2.3) we have
E ]—g Oly(a(x(i) -0+ n/2)) - y(a(x(,-) -0 - 71/2))] n;
X<
E[y(3a(w0))]"

By the independent increments property of the gamma process, for sufficiently

the process { ; te [0, B(oo)]} and

(3.12)

(313)  f2(0) =
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small 7, (3.13) may be rewritten as
w0 <ol(m; + Ay(n))/T(Ai(m))
I(la(oo) + nF,(0))/T(ia(0)) ’

I1
(3.14) f2.(0) =

where A,(7) is given by

(3.15) Ay(n) = a(xg, =0+ n/2) - a(xiy — 6 = 0/2).
By the continuity of aj,

(3.16) A(n) = n(a’(x(i) -0)+ 0(1))

uniformly for 6 bounded. This, together with the recursion formula I'(x + 1) =
xI'(x) gives

x(,-,—o<on[a'(x(i) —0)(n;— )+ 0(1)]
I(1a(0) + nFy(0))/T(ia(w))
uniformly for § bounded. Combining this with a similar expression for £,”. ()
gives
(318)  £(6) = n2 *(I1*(n, — DY[T(3a(0))]*£(8) + o(n™)
uniformly for § bounded, where

Il
(3.17) f1(0) =

(3.19) f(8) = M(x,80)IT*a’(x, — ).
Combining this with (3.7) gives

L) + o())s(d8)
(3.20) v)(A) = (= (1.08) + o(1))»(d0) for A € &,

with the “little oh” terms uniform for # bounded.

Let the measure A, be defined by

Jat(8)r(d0)
3.21 A(A) = forA € #.

(321 (A= Tz 1(@)w(an)
We will show that the family {A,; x € £"} is a regular conditional distribution
of 6 given X.

For x € #", let ), denote the set of all open cubes of #" containing x. For
any C € 5, such that P(X € C} > 0, let »* denote the probability measure on
(R, B) defined by

P A; X e C})
P{X € C}
According to a theorem of Pfanzagl (1979):

(3.22) »O(A) =

(i) For [P] a.e. x, there exists a probability measure », such
that the net of measures {v€; C € #,} converges weakly to »,.

(3.23)

(ii) The family », above is a regular conditional probability
distribution of # given X.
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[Note that in the definition of a regular conditional probability distribution (3.1),
the measure v, needs to be defined only for [ P] a.e. x.]

Let N € #" be a set of probability 0, as guaranteed by (i), with the property
that for all x &€ N, there exists a probability measure », such that the net
(v©; C € 5} converges weakly to »,. Let x & N be fixed. By (3.23)(i), we have in
particular

(3.24) v} > v weakly.
An easy argument shows that this implies that

(3.25) f°° £.(80)r(df) < co.
— o0
Let a, b € # be continuity points of v, let e > 0, and let K be such that

J2£{8)v(d8)

(326) T 1 8)0(d8) =

A (a,b) +e.

Then, by (3.24)

A8 + o(1)w(dh)
wa, b) = im 7 @) + o(1)»(a0)

_ o JAL0) + 0(1)s(dh)
=20 T ((0) + o(1)(d8)

Combining (3.27), the fact that the “little oh” terms are uniform for # bounded,
(3.26), and the fact that ¢ was arbitrary gives

(3.28) v(a,b) <A(a,b) foralla,be 2

which are continuity points of »,. An easy argument now shows that equality
actually holds in (3.28), and this is enough to show that », = A . The assumption
that § was not equal to any of the x;s was made without loss of generality since
P € {X,,..., X,}) = 0, and since the family », needs to be defined only for [ P]
a.e x. O

(3.27)

Random c.d.f.s of the neutral to the right type. Let F(-), i = 1,2, be two
independent neutral to the right random distribution functions on [0, o). We can
use these to construct a random element F(-) on 2* as before:

(3.29) F(t)=1F(t)+1(1 — Fy(—t)) for —oo <t < 0.

This F is called a random c.d.f. “of the neutral to the right type.” The processes
F(-) can be written F(t)=1—e %" ¢t >0, i = 1,2, where Y,(-) are nonde-
creasing independent increments processes. We assume that Y,(-) are continuous
in probability [recall that a stochastic process { X(¢)} is continuous in probability
if s>t implies X(s)— X(¢) in probability]. This assumption implies the
continuity of the c.d.f. defined by EF(¢). For simplicity we assume that Y,(-) and
Y,(-) have the same distribution. Thus, EF(t) is symmetric. Before stating
Theorem 2, we give some more notation and state an assumption.
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NOTATION.

N4. y,(A) = —log Ee *® for t >0, A > 0.

N5. n(0) = X7 I{x; < 0} and ny(8) = m — ny(8). (I is the indicator func-
tion.) n,(8) and n,(6) should not be confused with the n ;s defined in N1.

AssUMPTION A. For each A > 0, the function ¢, (A) is continuously differen-
tiable on [0, o). Let §,(A) denote (9/3t)y (N).

THEOREM 2. When F(-) is a random c.d.f. of the neutral to the right type,
there exists a regular conditional distribution of 6 given X = x, which will be

denoted by v,. Under A, for [ P] a.e. x, v, is absolutely continuous with respect
to v, with density equal to

ol {5 ]
| )

n; i-1
( 2 r+1(’:'z ‘i/0-xm( IE n,+r }
=1

r=0
i— 1 i
x(,,,_m,_c,( Z nm—l+1) - ‘Px(m[”,_,( Z nm—l+1)
=1 =1
where c¢(x) is a normalizing constant.

(3.30)

||:'°

m—i+1 i-1
( Z ( 1)r+1( m— !+1)¢x(mﬁ,+n0( Z n,_i+1 + r)
1=

Theorem 2 is not proved here. The result is extracted easily from the lemma in
Doss (1984). A detailed proof appears in Doss (1983).

4. Some remarks about the posterior distribution of 8. Theorem 1 gives
the posterior distribution of 6 given X,,..., X, when the prior on (F,0) is
2 X v. It is useful to make a comparison with the “parametric” model where it
is assumed that X,,..., X, are i.i.d. with density ay(x — ), and the prior » is
put on §. This model corresponds to the prior §, X » on (F,0). Here, the
posterior is proportional to the likelihood times the prior on 6:

(4.1) v(dﬂle,...,Xn)=c(X)il:Inla{)(Xi—0)V(d0).

(4.1) and (3.2) differ in two respects, the * in the product and the factor M( X, 6).
The effect of the * in the product is analyzed in Doss (1985). What follows is an
analysis of the factor M(X, 6).

M(X, ) is a pseudodensity (it does not integrate to 1) that has a mode at the
median of the observations, is constant between observations, and decreases as 6
moves away from the median in either direction. Also, M(X, §) depends on «a
only through a(o0). Thus, M(X, ) “shrinks” the posterior towards the sample
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M(X,€)

N
bl"

1 } 1 |
1 U 1 L

Y *2) *(3) @
Fi16. 1. Ilustration of M(X,0) when n = 4 and afco) = 2.

8

median. This effect is more pronounced when a(o) is small. Figure 1 gives an
illustration of M( X, 6). In Figure 1, a(c0) = 2, and there are four observations.

Let «, be fixed, let X,,..., X, be fixed, and let a(cc) —> oo. Then
[a(0)]"M( X, 0) converges to 1 uniformly for 8 € #. Thus as a(oc) = o0, the
factor M( X, 0) disappears, as one would expect intuitively. The * in the product,
however, does not disappear, even though 2* converges to the point mass at «,
in the weak topology. The posterior »(d#|X ) converges setwise to the probability
measure

n
(4.2) (X)) T*ap( X, — 6)v(d0).
i=1
The best (under squared error as loss) location equivariant estimator based on
n iid. observations X, X,,..., X, with common density ay(x — @) is the

Pitman estimate
JZ2 I jap( X, — 0) db
[ I a( X, — 6)do

The formula for the mean of the posterior (3.2) with » replaced by Lebesgue
measure is

(4.3) 0°(Xx) =

[> 0TT*ay( X, — 0)M(X,0) db
[° T*ay(X, — 0)M(X,60)d6

This estimator is location equivariant. Both (4.3) and (4.4) are not scale equi-
variant.

A simple way to obtain a scale invariant estimate is to replace [17_,a4(X; — )
by T17_,ay((X; — 6)/[S(F,)]) where S(F) is a suitable scale functional, for
example, S(F) is equal to a constant times the MAD (MAD is the median
absolute deviation from the median.). This is the way M estimates are made scale
equivariant.

(4.4)
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Johns (1979) has investigated the robustness of Pitman estimates made scale
equivariant in this way. He used functions aj, that are not necessarily densities
(they need not be integrable) and called the corresponding estimates P estimates.
He performed simulations to show that various choices of «f yield estimators
that have high efficiencies over a wide variety of symmetric densities.

The method described above for making the estimators scale equivariant is
ad hoc. Notice that centering the prior 2 around the distribution a, really
involves a specification of the scale parameter. One way around this is to proceed
as follows. Let a° denote the measure defined by a°(A) = a( A /o) for linear Borel
sets A, and for a given prior A on o let 2} X A be the prior on 2* defined by

(22 X \)(E) = [“23(E)\(do)

for measurable sets E C #*. Then, proceed as before to compute the posterior

distribution of # given a sample X,, X,,..., X,,. This posterior turns out to be
equal to
) o "1 X, -0
(45)  »(d8|X) = c(X)(f IT* —a;,( )}\(do))M(X, 8)v(d6).
0 i=10 o

The calculations and formal justification necessary to obtain (4.5) are very similar
to those used in the proof of Theorem 1. Consider (4.5) with » and A replaced by
the improper priors »(df) = df and A(de) = do/a3. The mean of the posterior
(for continuous data) is then

00 ol 71 X.
/q[jn—%‘ doM(X,0)do
0 o

— o0 0 =10

(4'6) o ol 71 X,.—H
f.[jn—q )wmxww
-0¥0 0 =10 o

If the factor M( X, 6) is removed from (4.6) the result is the so-called location and
scale equivariant Pitman estimator of location.

Johns (1979) found that the location and scale equivariant P estimates
performed significantly better than the location equivariant P estimates made
scale equivariant by the ad hoc method of division by a scale factor.

Preliminary calculations have shown that both the location equivariant and
the location and scale equivariant estimators lie between the corresponding
Pitman estimators and the sample median. For large a(o0), the estimators lie
closer to the Pitman estimators. It would be interesting to see if the estimators
obtained here retain such efficiencies, and especially, to see how much the factor
M(X, 0) protects against asymmetric contamination.

5. Estimation of quantiles. The theory above can be extended to the
problem of quantile estimation. Let a be a finite nonnull measure on %, and
assume that a, has pth quantile equal to 0. For simplicity, we assume also that
a, is continuous at 0. Let a_ and «, denote the restrictions of a to (— o0, 0) and
(0, 00), respectively, and choose F_ and F, independently from 2,  and 2,
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respectively. For p € (0,1), form

(5.1) F(t)=pF_(t)+(1 —p)F.(t), -0 < t< 00.

With probability one, F' has pth quantile equal to 0 [in fact, F(07) = p = F(0)],
and EF(¢) = a,(t) for all ¢. Denote the distribution of F by 2, ,. We can use
the same setup as before in order to estimate the pth quantile.

THEOREM 3. Assume the same setup as in Theorem 1, except that F ~ 2, ,.
Then there exists a regular conditional distribution of 0 given X that is ab-
solutely continuous with respect to v and is given by

(5.2) W(d8X) = c(X)[lj’l"a{)(Xi— 0)]K(X,0)v(d0),

where
pnan)(l _ p)n(l—an»
I(pa(eo) + nF,(8))T((1 — p)a(eo) + n(1 = F(6)))
The proof of Theorem 3 consists of minor modifications in that of Theorem 1.
Details are omitted.
The factor K(X, 0) is closely related to binomial probabilities. It has all the
properties of the factor M( X, §) mentioned in the second and third paragraphs of

Section 4, except that its mode is at the pth quantile of the empirical c.d.f. F,,, in
a way that the proposition below makes precise.

K(X,0)=

PROPOSITION. Let j* = [(n — 1)pl + 1, where [ 1 denotes the integer part.
Then K(X,0) has a mode in the interval [ X ;«), X ;«,,,)) and decreases as
moves away from that interval in either direction.

Proor. For j€ {(2,...,n}, we consider K(X, X ;)/K(X, X ). After
simplification, we see that this is greater than or equal to 1 if and only if
J < (n—1p + 1, and the assertion follows. O

In practice, if one has a hypothesized distribution G with pth quantile equal
to §,, the distribution a, would then be taken to be ay(x) = G(x + £,).

The posterior distribution of # can be obtained without the assumption that
a, have pth quantile equal to 0. However, its form becomes more complicated
and more difficult to interpret.
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