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A BAYESIAN NONPARAMETRIC SEQUENTIAL TEST FOR THE
MEAN OF A POPULATION!

By MURRAY K. CLAYTON
University of Guelph

We may take observations sequentially from a population with unknown
mean 6. After this sampling stage, we are to decide whether 6 is greater or less
than a known constant ». The net worth upon stopping is either 6 or v,
respectively, minus sampling costs. The objective is to maximize the expected
net worth when the probability measure of the observations is a Dirichlet
process with parameter o. The stopping problem is shown to be truncated
when « has bounded support. The main theorem of the paper leads to bounds
on the exact stage of truncation and shows that sampling continues longest
on a generalized form of neutral boundary.

1. Introduction and summary. We are permitted to sample sequentially
from a population with unknown mean 6, paying a positive cost ¢ per observation.
We can choose to stop sampling at any time. Upon stopping we are to decide
whether 6 is greater or less then a known constant ». The net worth is 6 or »,
respectively, minus sampling costs. We wish to determine sequential strategies
which maximize the expected net worth.

Let X; be the ith observation taken and let X be a generic observation. We
assume that the sequence X, X;, Xs, ---, is nonterminating, even though we
might only take a finite number of observations. Given the unknown probability
measure P, we assume X, X;, Xs, - - - are independent and identically distributed
with probability measure P. Given P, the unknown mean 6 is the expectation of
X:0=[XdP.

As in many sequential problems, we are faced with a conflict between the
desire to gain information about the unknown 6 through sampling and the desire
to avoid excessive sampling costs. The issue then is to decide when to stop
sampling and make the terminal decision, and so we are faced with a typical
“stopping problem.” (See Chow et al., 1971, for related problems.)

To model the unknown P, we take the nonparametric Bayesian approach of
Ferguson (1973) and assume that P is a Dirichlet process with parameter a. We
make some comments regarding notation and refer the reader to Ferguson (1973)
for further details regarding the Dirichlet process.

We take a to be a bounded nonnull measure on the reals, R, and the Borel
sets. To ensure that the problem is well defined, assume that « has a finite first
moment. Following the notation of Ferguson (1973), let % denote the probability
measure on [0, 1]® and its associated o-field generated by the cylinder sets which
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determines the distribution of P, and let & denote expectation with respect to 2
The phrase “almost sure” is with respect to & Let M = a(R) and define F by
F(x) = a(—x, x]/M, x € R. F is the normalized distribution form of « and is the
mean of P, in the sense that F(x) = £P[y:y < x]. M may be interpreted as the
“prior weight.” (See Ferguson, 1973, page 223.) The prior mean, u, for an
observation is &6, and can be computed as the mean of F. We shall often denote
the parameter o by the equivalent quantity MF, referring to either as the Dirichlet
parameter. When necessary, we shall denote the dependence of &%, &, M, F, and
u on « by a subscript: &#,, &,, etc.

The Dirichlet parameter a summarizes the prior “information” about P.
Conditional on observations X, Xs, - - -, X}, the measure P is a Dirichlet process
with parameter o + Y% 6 x,» Where 0, gives mass one to x (Ferguson, 1973, Theorem
1). The conditional expectation of a function g of X given X;, ..., X, can be
computed from « + Y% 3, by integrating against the normalized form of

a + zlf 5Xk: ga(g(X) |Xl, Tty Xn)
=MWM +n)™? fg(x) dF(x) + (M + n)™" 37 g(X)).

We shall sometimes denote this conditional expectation by &,g(X) where v =
a + Y% 6x.. In particular, we have £, X = p.

Let N be a stopping rule; that is, N is a map from the set of all sequences of
observations (X;, X5, ---) into {0, 1, 2, - - -, co}. The event {N = n} is interpreted
to mean that sampling stops at the nth stage, and is measurable with respect to
the o-field generated by Xi, - .-, X,,. If X, X,, ---, X, have been observed and
N(X,, - -+, X,) = n, then conditional on Xj, - - ., X, the expected net worth is

r(n) =[&X| X1, -+, X,) V v] — nc.

N is optimal if &,r(N) is maximized; such rules are shown to exist by DeGroot
(1970, Section 12.9). Let N* be such an optimal rule. In Clayton (1983), we show
N* < oo almost surely. Of greater interest is the setting in which the decision
problem is truncated, that is, when there exists an n’ such that N* < n’ almost
surely. The smallest such n’, denoted n*, is the “exact stage of truncation” (Ray,
1965, page 860). The existence of n’, or equivalently, of n* allows us to determine
N* using backward induction (DeGroot, 1970, page 277).

In this paper we show that n* exists when « has bounded support. The proof
of this is given in Section 3; Section 2 contains some preliminary results. An
example is given in Section 4.

It is an open question whether n* exists for arbitrary o with unbounded
support. In Clayton (1983, Proposition 6.2.8), we show that n* = 0 when c is
sufficiently large, namely, when ¢ = &,(X V v) — (u. V v). We also show that n*
<lwhenpu=vandc=% MM+ 1)7'&,[(X — v) V 0] (Clayton, 1983, Proposition
6.2.9). This latter result may be interpreted to say that n* < 1 for sufficiently
small M. We conjecture that, in fact, n* exists for all M > 0 and all F.

The stopping problem of this paper has been discussed in various forms by
Moriguti and Robbins (1962), Lindley and Barnett (1965), Ray (1965) and others.
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The first two assume that the X;’s are conditionally Bernoulli with parameter p.
A priori, p has a beta distribution with parameters ¢t and u. In the sequel, we
refer to this as the “Bernoulli-beta(¢, u)” model. It is a special case of that based
on a Dirichlet process and is obtained by setting « = td, + ué,. Lindley and
Barnett (1965) show n* = v(1 — »)/c — 1, and use backward induction to
determine optimal strategies for various », ¢, t, and u. Ray (1965, Section 4)
considers a more general model than the Bernoulli, in which the X/s have a
density in the one-dimensional exponential family. He shows for such models
that sampling continues longest on the “neutral boundary”: the set of points
(x1, - -+, x,) ER"such that E(X| X, =x,, - -+, X,, = x,) = v. In Theorem 3.1 we
derive a result similar to Ray’s for the model based on the Dirichlet process.

The appeal of the Dirichlet process model follows from a result of Proposition
3 of Ferguson (1973): with respect to the topology of convergence in distribution,
the support of P is the set of all distributions whose support is contained in the
support of «. We thus have an essentially nonparametric approach allowing us
to model those situations in which the responses can take on values in a specified
set, the support of a.

There are three other papers related to this problem which deserve attention.
Chernoff (1968) and Lechner (1962) both examine continuous-time versions of
the stopping problem, and Pratt (1966) describes the asymptotic behavior of the
continuation region for ¢ — 0 when the Bernoulli-beta(¢, «) model is used.

Lindley and Barnett (1965) and Pratt (1966) discuss the stopping problem in
terms of its risk. We prefer to follow Moriguti and Robbins (1962) and speak
instead of its worth (or utility). Of course, by using a simple transformation the
two problems can be seen to be equivalent. Moreover, both formulations are
equivalent to the setting of Chernoff (1968) who discusses the problem as one in
which we are to decide whether or not 6 is greater than zero, with absolute error
loss in the terminal decision.

2. Preliminary results. In this section we give some preliminary results
to be used in proving Theorem 3.1. To begin, let Vy(«a, ») denote the expected
worth when no observations are taken: Vy(a, v) = u, V ». Define

(2.1) Ala, v) = & Vola + 6x, v) — Vola, v).

A is the expected gain in taking one free observation and stopping, over stopping
immediately. The next lemma lists two intuitive and useful properties of A. A
formal proof is straightforward and is omitted.

LEMMA 2.1. For given o and v,

(i) A(a,v)=0.
(ii) If «’ is defined by o’(x) = a(x + a), and if v’ = v — a, then Ala’, v’) =
A(a, v), for any constant a.

Suppose A(a, v) < c. If we are limited to taking at most one observation, we
should not sample at all. This notion is extended by the following theorem.
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THEOREM 2.1. There is an optimal stopping rule N* which is truncated if
there exists an n’ such that

(2.2) n = n’ implies A(a + Y7 05, v) < ¢ almost surely.

If n{ is the smallest such n’, then n* < ng.

PrOOF. The theorem follows from Ray (1965, Theorem 3.2), a straightfor-
ward modification of DeGroot (1970, Theorem 12.13.1), and the fact that
lim, &, Vo(a + X7 6x,,v) = & (X V »v). This limit is a consequence of the strong
law of large numbers. [0

It is quite possible to have n* < n{. For example, let « = Y2 M (8, + 6,) and
v = Y. Using the equivalent Bernoulli-beta(M/2, M/2) model, Ray shows n* to
be approximately n4/3. (Equation (5.27) of Ray (1965) should read a® ~ a°/3, not
a' ~a®/9.)

If we are to use Theorem 2.1 to show that the stopping problem is truncated,
then it is necessary to impose the restriction that « have bounded support, as
the following example shows.

ExAMPLE 2.1. Let o be the standard normal distribution function (so
M = 1), let v = 0, and let ¢ be given. For n even, suppose x,, - - -, x, are as fol-
lows: x; = —8nc if i is odd and x; = 8nc if i is even. Then A(a + YT 4,, 0) =
4n’c/[(n+ 1)(n+2)]>cifn=2.0

Restricting « to have bounded support is sufficient to ensure that the stopping
problem is truncated. One proof of this is given in Clayton (1983, Theorem 6.3.2).
In the next section we give a theorem which results in another proof and which
may also be used to derive a bound for n*.

We end this section by defining some notation. Let F be as in Section 1.
Following DeGroot (1970, Sections 11.8-9) define the transform T by

(2.3) Tr(s) = &(X V s) — s.

We list some properties of Tr:

LEMMA 2.2. Under the model of Section 1,
(1) Tr(s) is continuous and nonincreasing in s.
(i) Tr(s) =p—siff Zr(X<s)=0and Tr(s) =0 iffPr(X >s) = 0.
(iii) Ts,(s)=(y—s) VO.
(iv) IfG=nF1+ (1 —9)F;,0=<n=<1, then Tg=nTr + (1 — 0)Tx,

The first two properties listed above are stated for a more general setting than
ours in DeGroot (1970, Sections 11.8-9). The last two are easily proved.

We can use (2.3) to reexpress A(a, v) in a form which we use in the next
section:

(2.4) Ala, ) =M+ 1) 'Te[(M + D)(v — pu) + ]l +v— (n V ).
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3. Bounds on A and n*. The principle result of this section is a theorem
which is analogous to Theorem 4.1 of Ray (1965) and which coincides with his
result for the Bernoulli-beta(t, ) model. Before we state the theorem, we define
some notation. If n = 1, let

(3.1) k(n, v) = [M(u = v) + n(b — »)]/(b — a)

and define k*(n, v) as follows: k* = 0 if K < 0, k* = n if k > n, and k* = E
otherwise. When appropriate we shall delete the arguments of k£ and k* from the
notation. -

THEOREM 3.1. Suppose there exist a and b such that #,(a < X <b) = 1. For
all x; suchthata<x;<b,i=1, .--, n,

Ala + YT sy v) < Ala + k*(n, v)d, + (n — k*(n, v))ds, v).

We make a series of remarks before proving the theorem.
Let B(k) = o + ké, + (n — k)ds. For k defined by (3.1), & (X) = v, and if
a<v<b, (2.4) and Lemma 2.2(iv) give

N M k
ABR Y =Mt D) PO s martng D) L)
n—k
(3.2) t MMt )
_ M T )+M(v—;,t)+n(v—a) b—v
TMrnMAn+1) P T M) M+n+1) b-a”

The second equahty in (3.2) holds by Lemma 2.2 (iii) and the definition of . Let
f(n) = AB(k(n, v)), v). If n is sufficiently large, k* = %, and in that case Theorem
3.1 and the definition of (k) imply A(a + X7 6 x» ¥) < f(n). But for sufficiently
large n, f(n) decreases to 0 in n, so there exists an n’ such that
n = n’ implies f(n) < ¢. Combining this with Theorem 2.1 proves that the
problem is truncated when the support of « is bounded. Moreover, if n, is the
smallest n’ such that n = n’ implies A(B(k*(n, v)), v) < ¢, then n* < n{ < ng
by Theorem 2.1 and the fact that A(8(k*(n, »)), ») is an upper bound for
Ala+ X7 by, v).

Note that ifke [0, n], then &4+ (X), = v, while if ke [0, n] then &4+ (X)
comes as close to v as possible under the restriction £* € [0, n]. In a general
sense, then, the measure 3(k*) lies on a “neutral boundary” and Theorem 3.1
says that A(8, v) is maximized for a measure 8 lying on such a neutral boundary.
A similar result was proved by Ray (1965, Theorem 4.1) for data with a density
in the one-parameter exponential family.

EXAMPLE 3.1. Let a = M(qdo + po1),p +¢=1,0<p<1,0<»v<L
Here k~= M(p —v) + n(1 — v) and Tr(v) = p(1 — »). For sufficiently large n,
k* = k, so we may apply (3.2) and Theorem 3.1 to deduce that, for large n
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andx; € {0,1},i=1, ---,n,

(3.3) Ala+ X7 6, v) s v(1 —v)/(M + n + 1).
If no is the smallest n such that »(1 — »)/(M + n + 1) < ¢, then
(3.4) n*<ny=v(l—v)e'—M-—1.

As previously noted, the model of this example is equivalent to the Bernoulli-
beta(Mp, Mq) model. The bound (3.4) coincides with the bound derived by Ray
(1965, Equation 5.16) and Lindley and Barnett (1965, Equation 10) for this latter
form of the model. 0

We now proceed with the proof of Theorem 3.1. The first step is to show that
it holds when n = 1. This will follow from Lemma 3.1.

LEMMA 3.1. Let a be given, let M = a(R), let F be the normalized form of o
and let u be the mean of F. Considered as a function of x, A(a + 6., 0) is
nonincreasing for x = —Mu and nondecreasing for x < —Muy.

ProOF. Letd(x) = A(a + 6., 0). From (2.4) and Lemma 2.2(iii and iv),

M
d(x) “MT)M12) Tr(—Mu —x)

2 1 x+Mu
+ —————— = VO|—|—— .
(M+1)(M+2)[<x+2M”> 0] <M+1 VO)
The proof now follows from the examination of a number of cases. We
distinguish two:

(3.5)

CASE1l. u=0,x <—Mu. Here x = —Myu/2, so (3.5) gives

M
M+ 1)(M + 2)

which is nondecreasing in x by Lemma 2.2(i).

d(x) = Tr(=Mp — x)

CASE 2. —Mpu < x < —Mu/2. Here (3.5) and (2.3) give

M .
d(x) = M+ DM +2) X V (=Mp —x)] -
which is nonincreasing in x.
Other cases follow similarly. 0

2(Mu + x)
M+ 1)(M + 2)

We now prove Theorem 3.1 for the case n =1 and » = 0.

PROPOSITION 3.1. Let a be given, let F be the normalized form of a, let u
be the mean of F, and let v = 0. If there exist a and b, a < 0 < b, such that
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Pa<X=<b)=1,then
A(a + 6, 0) = Aa + k*(1, 0)6, + (1 — k*(1, 0))és, 0)
where k* is defined following (3.1).
PROOF. Let k£ = k(1, 0) be as in (3.1). Suppose x € [a, b]. If £ < 0, then

b < —My, and so x < —Mu. It follows from Lemma 3.1 that

Ala + 6, 0) < Ao + &, 0) = Aa + k*3, + (1 — k*)bs, 0).
Similarly, if &£ > 1,

Ala + 6,, 0) = Al + 64, 0) = A + k*3, + (1 — k*)bs, 0).
Suppose now that 0 < & < 1. By Lemma 3.1,

Ao + 8,y 0) < Aa + 6_p,, 0)

(3.6) M (=Mu) V 0
~wmrom+2 FOY Iy

The equality in (3.6) follows from (2.5) and Lemma 2.2 (iii and iv). By (3.2),

Ala + kb, + (1 — k)8, 0)

(3.7 _ M To(0) — —Muta b
TM+1)M+2) T M+1D)(M+2 b-—a’

Since 0 < k < 1, k* = k, and, by (3.6) and (3.7),
A(Ol + k*&a + (1 - k*)éb, 0) - A(a + 6_Mﬂ, 0)

(3.8) _ 1 {_ (@ + Mu)b
T (M + 1D)(M + 2) b —

= [(=Mp) V 0]}.

It is easy to verify that the right side of (3.8) is nonnegative under the condition
0 < k < 1, in which case we have

Al + 65, 0) < Al + 6-pp, 0) = Aa + B*6, + (1 — E¥)dp, 0). O
We can restate Proposition 3.1 to say that, given «, there exists a k& € [0, 1]

such that A(a + 6., 0) < A(a + kb, + (1 — k)0, 0) for all x € [a, b]. We use this
restatement in the proof of the next lemma.

LEMMA 3.2. For « given, suppose there exist a and b such that #,(a < X < b)
=1. Let x,, - - -, X, lie in [a, b]. There exists a constant k = k(x,, - -+, x,) in [0, n]
such that :

Aler + 3 0y, 0) < Ala + kdo + (1 = k)dy, 0).

PrOOF. Apply Proposition 3.1 successively. Take « + )% 6., for « and x, for



1136 M. K. CLAYTON

x in the proposition; there exists a k; € [0, 1] such that
Ao + X7 8, 0) < Ao + X8 6y, + kiba + (1 — Ey1)ds, 0).

Now take o + Y% 6., + k16, + (1 — k1), for « and x, for x in Proposition 3.1;
there exists a k; € [0, 1] such that

A(Ol + Eg 5x,~ + klaa + (1 - kl)ab’ O)
< Ala + Y5 0, + (k1 + k2)ds + (2 — ky — k3)d, 0).

By continuing in this fashion, we see that there exist k,, ks, - - -, k, € [0, 1] such
that

Ala + 31 05, 0) = Aa + (X7 ki)da + (n — X1 ki)ds, 0).
The lemma follows upon taking k = ¥} &;. [0

Lemma 3.2 is used with the next lemma in proving Theorem 3.1.

LEMMA 3.3. For « given, let F denote the normalized form of a, and let u be
the mean of F. Suppose there exist a and b such that #,(a =< X < b) = 1, and
suppose a < 0 < b. Considered as a function of k, A(a + ké, + (n — k), 0) is
maximized for k € [0, n] at k = k*(n, 0).

PROOF. Let 8(k) = a + kb, + (n — k)b, and let A(k) = A(B(k), 0). Since
&y (X) = [Mp + ka + (n — k)b]/(M + n), (2.4) gives

(39) AR)= Mu+ka+(n—k)bvo>

M+n+1 M+n

where G = 8(k)/(M + n), the normalized form of 3(k). Let g(k) = —Mu — nb +
k(b — a), and note that g(k) is increasing in k. From (3.9), Lemma 2.2 and some
manipulation give

Te(—=Mp —ka—(n—k)b) — (

M

AR =y M+t LrER)
k
(3.10) +(M+n)(M+n+1)[(a—g(k))V0]
n—k g(R)AO
TS yEee et LAY R yansas

There are three cases to consider: (1) g(k) <a, (2) g(k) > b,and (3) a < g(k) <
b. In Case 1, g(k) < a, so g(k) < b also. By Lemma 2.2(ii), Tr(g(k)) =
u — g(k). Combining this with the definition of g(k) and (3.10) gives A(k) = 0.
But since A(k*) = 0 by Lemma 2.1, we have A(k*) = A(k) for g(k) < a. A similar
argument shows A(k*) = A(k) in Case 2: g(k) > b.

In Case 3: a < g(k) < b, we consider one subcase, g(k) = 0. The subcase
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g(k) <0 is handled similarly. When 0 < g(k) < b, (3.10) reduces to
(3.11) (M + n)(M + n + 1)A(k) = MTr(g(k)) + h(k),

where h(k) = (b — a)(k — n)(k — r) is a parabola opening upwards, with roots n
and r = [Mu + (n + 1)b]/(b — a). Note that the restriction 0 < g(k) < b is
equivalent to (Mu + nb)/(b — a) < k < r, and so we must have k < n Ar
However, h(k) is decreasing in k for these values of k. In addition, since g(k) is
increasing in k, by Lemma 2.2(i) Tr(g(k)) is nonincreasing in k. From (3.11)
then, A(k) is nonincreasing in k for k < n A r. Therefore, in this subcase,
A(k) is maximized by taking k as small as possible, namely, by setting k =
max{0, (Mu + nb)/(b —a)} = k*.0

PROOF OF THEOREM 3.1. First assume that » = 0 and a < 0 < b. Let x,,
..+, X, € [a, b]. By Lemma 3.2, there exists a k(x1, - - -, x,) € [0, n] such that

Ala + X768, 0) < Ao + k(xy, -+, xn)00 + (n — k(xy, -+, x,))0s, 0).
However, for all x4, - - -, x, € [a, b], and k(xy, - - -, x,) € [0, n],
Ala + k(x1, + -+, %,)8, + (n — k(x1, « -+, X)), 0)
< Ala + k*(n, 0)8, + (n — k*(n, 0))ds, 0)

by Lemma 3.3. This proves Theorem 3.1 when » = 0.
If » # 0, an easy argument combining the immediately preceding discussion
and Lemma 2.1(ii) gives

Ala + X7 0y v) < Ala + E*(n, v)éa + (n — k*(n, v))0s, v)
forall x;€[a,b]. O

4. An example. In Example 3.1 we have applied the theory of this paper
to essentially all « supported by two points. In this section we apply the theory
to a more complex measure and, for such a measure, we suggest a means for
approximating optimal rules and their worths.

Let H be the distribution function for a uniform random variable on [0, 1]:
H(x) = x, x € [0, 1]. We are interested in the case « = H, in which case M =1
and F = H. We fix » = 0.5 and consider the costs ¢ = 0.03, 0.02, and 0.01.

From (3.1) £ = n/2 and so k* = k. Tu(s) = (1 — 5)%/2 for s € [0, 1], and so
Theorem 3.1 and (3.2) give

A(H + X1 6, 0.5) = (2n + 1)/[8(n + 1)(n + 2)].

For ¢ = 0.03, ny = 6; for ¢ = 0.02, ny = 10; and for ¢ = 0.01, n, = 23. So, for
example, when ¢ = 0.03, it follows from Theorems 2.1 and 3.1 that n* < 6. Since
we must use backward induction to actually determine n*, in the case ¢ = 0.03
we must evaluate a six-dimensional integral. For smaller ¢, the dimension of the
integral is even larger. The evaluation of such integrals on most computers is
difficult and costly and so we suggest a means for finding suitable approximations.
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Let H,, be the distribution function giving mass 1/m to the points (i —
0.5)/m;i=1,2, ..., m.For any a, let V(a, v) = &,r(N*), the worth of an optimal
rule N*. A result of Christensen (1983) may be modified to show that V(H,,, »)
converges in m to V(H, v). We may thus use V(H,,, v) to approximate V(H, »).
Moreover, this approximation can be found relatively easily: first find n, using
Theorem 3.1 and then use backward induction to find V(H,, v). Since H,, is
discrete, the backward induction involves the computation of sums rather than
integrals. The results of such calculations are given in Table 4.1 for ¢ = 0.03,
0.02,0.01 and m = 3, 4, 5, 6.

While the convergence of V(H,,, 0.5) is not monotone, it seems reasonable to
use V(Hg, 0.5) to approximate V(H, 0.5). Also, on the basis of Table 4.1, we
might conjecture that, for « = H, n*is 1 if ¢ = 0.03 or 0.02 and 2 or 3 when ¢ =
0.01. We can evaluate this conjecture by referring to Table 4.2. That table lists
values of V,(H, 0.5), where V,(H, 0.5) is the optimal worth maximizing over all
stopping rules which never take more than n observations. (These values were
determined by using backward induction and multiple numerical integration.) A
straightforward modification of DeGroot (1970, Section 12.13) shows that V,(H,
0.5) converges in n to V(H, 0.5). From Table 4.2 it seems safe then to assume n*
= 1 when ¢ = 0.03; n* = 3 when ¢ = 0.02; and n* = 4 when ¢ = 0.01. The
conjectured values of n* mentioned above are therefore too low, except in the
case ¢ = 0.03. However, the conjectured n* values based on Table 4.1 are “nearly”
optimal: when ¢ = 0.02, V3(H, 0.5) exceeds V,(H, 0.5) by only 0.002; and when c
= 0.01, V,(H, 0.5) exceeds V;3(H, 0.5) by only 0.001. In addition, from Tables 4.1
and 4.2 it appears that V(Hg, 0.5) closely approximates V(H, 0.5).

The above discussion suggests that we can give good approximations to
V(H, 0.5) and n*, but it does not give much practical help in actually carrying
out a sequential design. We end this section with some suggestions in this
direction and leave their evaluation to future study.

TABLE 4.1
ne, n*, and V(H,, 0.5) for given c and m.
c=0.03 c=0.02 c=0.01
m
n n* VH,05) n, n* VH,05) n n* V(@H,0.5)
3 6 1 0.526 10 1 0.536 23 2 0.548
4 6 1 0.533 10 1 0.543 23 3 0.553
5 5 1 0.530 10 1 0.540 22 2 0.552
6 6 1 0.533 10 1 0.543 23 3 0.554
TABLE 4.2
Values of V,(H, 0.5) for given ¢ and n.
n c=0.03 c=0.02 c=0.01
1 0.5633 0.543 0.553
2 0.533 0.543 0.554
3 0.533 0.545 0.558
4 0.533 0.545 0.559
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For the model « = MH and v arbitrary, divide the range [0, 1] into m intervals
of equal length, centered at the points (i — 0.5)/m, i = 1, ---, m. For any
observation x, treat it as if it were equal to iy, where i, is such that x €
((io = 1)/m, io/m]. (For example, if m = 10, we round each observation to the
nearest tenth. We may do whatever we please with the outcome x = 0, since it
occurs with probability zero.) Proceed now using the optimal strategy derived for
the discrete measure MH,,. The idea underlying such an approach is that the
strategy can be feasibly determined since H,, is discrete. We conjecture that for
any ¢ > 0 there is an m such that the worth of the procedure described above
exceeds V(MH, v) — e.

Next, to generalize this approach, suppose that o = MF is an arbitrary measure.
We now take F,, to be a discrete measure with mass 1/m assigned to each of the
(i — 0.5)/m quantiles of F. If an observed x lies between the (i — 1)/m and i/m
quantiles, we take x to be equal to the (i — 0.5)/m quantile and follow the strategy
which would be optimal if the Dirichlet parameter were MF,,. We conjecture
that this will give nearly optimal procedures for sufficiently large m. Moreover,
for any m, F,, will have bounded support even if F does not. We thus have a
means for handling o« with unbounded support in a fashion which we conjecture
will be nearly optimal.
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