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CONSISTENT ESTIMATION IN PARTIALLY OBSERVED
RANDOM WALKS!

BY PETER GUTTORP AND ANDREW F. SIEGEL

University of Washington at Seattle

If a discrete-time random walk, consisting of the sum of independent
increments from an unknown underlying distribution, is observed at every
time instant then it is clear that the underlying distribution can be consis-
tently estimated. If, however, we are restricted to observing only a subset of
the times, and if this subset is too sparse, then a central limit effect takes
over and only two moments can be consistently estimated. We show that
divergence of the sum of the reciprocals of the observation time-intervals is a
necessary and sufficient condition to permit consistent estimation of the third
moment. Corresponding conditions permit consistent estimation of moments
of higher order. An explicit consistent estimator for the distribution itself is
presented when all moments can be consistently estimated and the distribu-
tion is determined by its moments.

1. Introduction. Let (S,).-0 be a random walk, ie., S, = X; + --- + X,
where the X; are independent and identically distributed according to a distri-
bution function F, and Sy = 0. Let the moments

11) m= J: x dF(x), and pu, = J: (x —m)fdF(x), k=23, ---

all be assumed to exist and be finite. We will consider the problem of consistent
estimation of the moments of F when only a partial sequence Sn, 6=0,1, ---)
is available where (V;);= is a strictly increasing sequence of nonnegative integers.

If the sequence N; grows too fast, one would expect a central limit effect to
take place, resulting in the ability to estimate only two moments consistently.
Our purpose here is to provide precise conditions on the speed of growth of the
N; while still permitting consistent estimation of moments of higher order and,
ultimately, of F itself within the class of distributions that are determined by
their moments.

Consistent estimation of the first two moments is reviewed in Section 2. A
necessary and sufficient condition for consistent estimation of the third moment
is given in Section 3; necessity is established using a counterexample which
shows that the gamma distribution cannot be distinguished from the limiting
normal distribution if the observation times are too sparse. Corresponding
conditions for moments of higher order are presented in Section 4. For the case
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ESTIMATION IN RANDOM WALKS 959

when the distribution is determined by its moments, and the observation times
permit consistent estimation of these moments, we provide an explicit consistent
estimate of the distribution F itself. The relationship to the stochastic geyser
problem (Bartfai, 1966; Komlas, Major and Tusnady, 1975) is explored. In Section
5 some extensions to continuous-time processes, random stopping times, and
Galton-Watson processes are considered.

2. Estimating the mean and variance. Let Y; = Sy, — Sy_, and
n; = N; — N,_, represent, respectively, the independent increments of the observed
sequence and the number of terms from F summed in each increment, where we
define Ny = 0. In this section we establish that one can always obtain strongly
consistent estimates of the first two moments, m and u;, in a natural way.

LEMMA 2.1. There is a consistent estimator for m.

PrROOF. By the strong law of large numbers,
(2.1) m = (1/N)Sy,—» m as. O

Without loss of generality, we may now assume that the mean m is known to
be zero (cf. Section 4).

LEMMA 2.2. There is a consistent estimator for ps.

PrROOF. Define
(2.2) g2 = (/1) TL, Yi/n,.

Since E(Y?/n;) = us, it follows that 4, is an unbiased estimate of u,. Furthermore,
E(Y}/n?) = 36* + (s — 36*)/n;. Thus, since the Y; are independent,

(2.3) Var(gy) = 20*/I + [(ps — 36*)/I°] TL1 1/n; = OU),

because n; = 1 for all i. Hence f, is weakly consistent. To show the strong
consistency, we use Theorem 2.7.5 of Révész (1968). We need only verify that a
sum of variances is finite, which follows from

(2.4) 21 Var(Y?/n)i™? = 2¢* T2, i7% + (pe — 36*) 321 1/(i%n;) <. 0O

Without loss of generality, we may now assume that the second moment u, is
known to be 1.

3. Estimating the third moment. Having established in the previous
section that we may assume that the mean of F is zero and the variance is 1, we
will estimate the third moment u; by a weighted average of Y?/n;. The weights
w; should be chosen to be inversely proportional to the variance of each term,
which is

Var(Y?/ni) = 15n,~ + 15#4 + 9#% — 45 + (/.LG - 15[.14 - 10[1;% - 30)/n,
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However, since this contains unknown parameters, we will use only the leading
term, setting

(3.1) w; = 1/(15n,).

PROPOSITION 3.1. If Y2, 1/n; = , then a consistent estimator of us is given
by
(3.2) fs = Yl w]™ T wiYi/n..

PROOf‘. Weak consistency follows because
(3.3) Var(gs) = O([Th w]™) = O[T 1/n]™).

Strong consistency follows from Theorem 2.10.1 of Révész (1968) upon noting
that Y2, w; = .0

In order to establish that the growth condition Y2, 1/n; = o is necessary, we
will show that if this sum converges, then there exist two distributions with
different third moments that cannot be distinguished. We will exhibit two
distributions F with different third moments such that the likelihood ratio of
two infinite sequences, constructed in the manner of Section 1 from these
distributions, converges almost surely to a finite random variable. In other words,
the probability measures corresponding to the two sequences will be mutually
absolutely continuous, provided the sum of the reciprocals of the observation
times converges. Consequently, if P* and Q> are measures corresponding to
sequences based on distributions P and @, and T, is a consistent estimator
sequence for O, we have P*{lim T, = O(P)} = 1. Thus if O(P) # O(Q),
P>{lim T, = O(Q)} = 0 so by absolute continuity Q*{lim T, = O(Q)} = 0,
contradicting the consistency of T',.

THEOREM 3.1. A necessary and sufficient condition for consistent estimation
Of/.tg is 2;1 1/n, = o,

PrOOF. Sufficiency was established by Proposition 3.1. For necessity, let X;
be a random variable with a gamma distribution with mean 0, variance 1 and
skewness a~'?; and let X, be a random variable with the standard normal
distribution. Construct sequences Y, ; and Y, . from independent and identically
distributed observations of X; and X, in'the manner of Section 1. The likelihood
ratio of (Y;1)= to (Yi2)k, is

I (27rn,~) 1/2

2
i=1 o™y + nia?)elexpl —(y; + miaV?)aV? + e .
I‘(nia)

(34) A[ = 2ni

Taking logarithms, using Stirling’s formula and a McLaurin expansion of
log(1 + x) we obtain

A 3 2
(3.5) Li = log(A) = SL, [_ yi o, 0<% )]

+
nia?  3niql? ?
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Next, define

(3.6) M =YL, Y/n.
These are martingales, and satisfy
(38.7) E{M3}} = 3L, 1/n,.

Hence, if YiZ; 1/n; < o, then the M;; are L,-bounded martingales and there-
fore converge almost surely (Feller, 1966, Theorem VII.8.1). We next show that
Sy = Yk Y};/n? is bounded in probability. Straightforward algebra shows that

(3.8) E(Y$;/n}) = O(ni?),
and

Y\ _Jomy if j=1
(3.9) E( n%) - {0 if j=2.

Let C be arbitrary. Then P{|S;;| > C} < sup;Var(S;;/C?), which can be made
arbitrarily small. Similar computations show that the error term in (3.5) goes in
probability to zero under both measures. Thus the likelihood ratio is bounded in
probability. It follows that the process constructed from the gamma variables is
absolutely continuous with respect to that constructed from the normal variables,
and hence u; cannot be consistently estimated. 0

4. Estimating the distribution function. If the n; grow slowly enough,
we can estimate higher order moments u; consistently. We no longer assume that
m and p, are known. The proof of the following proposition also verifies that this
assumption entailed no loss of generality.

PROPOSITION 4.1. If 3; n?™* = oo, then we can compute consistent estimates
Ofm’ M2y c 0y Mk

ProOF. First notice that for k = 2,
(4.1) E[(Y; — nim)*] = nyps + ¢(nis oy -+ -, pae2),
where

¢(ni; H2, 0y ﬂk—2)

= E k n; ag ag )
2...2,...,(k—2)...(k_2) Q2, Az, + -+, Qps Ho"H3", s Mp—2

where there are ay “2”s, s “3”s, - - -, and ap—o “k — 2”s in the first multinomial
coefficient on the right-hand side, and the sum ranges over all (as, ---, axs)
with nonnegative integer components such that 2a; + 3a3 + --- + (k — 2)aps
= k. A related formula can be found in Kendall and Stuart (1977, Volume I,
page 70).

From (4.1) it appears reasonable to use (changing the notation somewhat from
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the previous sections) the estimate
(4.2)  fr = = [Tl wil™ Ty i/m)(Y: — nim)* — d(ni; fiay - - -, fira)],

where the weights w; (= w; ) are chosen inversely proportional to the leading
term of the variance of (Y; — n;m)*/n;, so that w; = n?7*, as can be seen by using
(4.1) to find this higher moment. Since the estimate (4.2) is recursively defined,
we will verify its consistency by induction. First let & = 2, so that

. 1 .. 1 .
M2 = ; Vi1 ;; (Y; — nim)2

1 Yi— T 2 - m ~ i
== {-=1( rim) +o =M {=1(Yi—nim)+(m—m)22—n
I n; I I

=A+B+C.

The first term A has mean p, and variance uy/I, so by Chebyshev’s inequality
P{| A — pz| > ¢} < py/(Ie?). To deal with the second term, B, estimate

P{|(m — m)(1/I) Tiey (Yi — nm) | > ¢}

= P{im —m| > 1I/Z n)"? + P{ (/D) Ly (Yi — nim) | > (3 ni/1)V3
=C'/IL

Finally, for the third term, C, we estimate

P{(Z ni/I)(m — m)? > &} < 1/(el)
using Markov’s inequality. Thus, for some constant C”,
Pl s — p2| > ¢} = C"/I.
Now for general k, we make the induction hypothesis that
Plliaj—wl>el = C/Siani”?, j=2,.. k-1,
for some constants C;. Then we can break /i, — u; up into three parts:
m—um=A+B+C,

where
A= (e + Th wi/m){(Y; — nim)* — ¢(ni; pa, - - -, me2)})/Ss wi,
B = (TL1 wi/nd{d(ni; pa, -+, paa) — d(ni; gy -« -y fin2)})/Shr wi,
C = (Thr Tk Bwini™(m — m)(Y; — nim)*)/Shey w;.

Term A has zero mean and has variance O[(YL; w;)™!] by construction. Term B
is the sum of a bounded number of terms, a typical term being proportional to

~ - Ww; n;
T = 2 L. ai_2 — 0% . ... . aﬁ‘z I= — 4 .
« (ﬂz Hp—g D) 173 2) Yi=1 7 \a - ang
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By a Taylor expansion, we see that

X2 G k-2 —

/"'gz corrr s Mp—o T /"'2 cortt t Mpo 21—2 ar(l-"r l-"f)(a/aﬂ-r n—g ﬂ,,"lu, =ut

for some pu} = p, + 6(4, — p,), 0 < 6 < 1. Let f,(n) = (3/0u.) I1%=} u2, and denote
by u* the vector u with u, replaced by u*. Write

Ta = 21 a-r(ﬂr - ﬁr)f'r(”') zi —l:l_ﬁ ( Cee Qg ) Zz w;

+ 2 a(p, — g )fo(w*) — f(0)] 3 — ( H)/Ei w;

=T°+R,.

For a typical term in 79, we estimate

P{ a(p, — Ilf)fr(ﬂ) Zi %)1 <a2 X nl ak—2>/2i wi} > e}

[21 1 n}—k+az+~ "+“k—2]2
0 i nl —k1—1
[2;_1 n? —7][2{=1 nlg—k]Q [[2 1 ] ]
using the Cauchy-Schwarz inequality and properties of the a;. Similar estimates
yield the same order bound on R,. Finally, the typical term in C is handled much
as in arguing the case k = 2. It now follows that
P{| i — p| > ¢} = Co/3Ly ni™*

from which weak consistency follows. In order to obtain strongly consistent
estimates, we may use a subsequence of the g, ;. Choose I, such that Y%, n?™* >
£%2. Then, by Borel-Cantelli, since n?7 > n?*,

=C,

ﬁj’IE — Mj, a.s. ] = 2, seey k. 0O

REMARKS.

(1) Whenever n; < ci” for some v < 1/(k — 2) one can verify that (z) are
strongly consistent estimates, without needing to take subsequences.

(2) Term A in the proof always converges strongly to 0, by Révész’s Theorem
2.10.1. One can construct sequences (n;) such that term C does not converge a.s.
Thus one cannot, in general, avoid taking'subsequences of the (/) to get strongly
consistent estimates.

From Remark 1 above, we see that if n, = o(i*) for all « > 0, then we can
consistently estimate all moments. If the distribution is determined by its
moments, it should follow that we can consistently estimate the distribution
itself. Below we present an explicit estimate of the distribution function and
show its consistency. The idea is to construct a distribution having, as much as
possible, the same moments as we have estimated. To implement this idea, we
need some conditions on when a sequence of numbers are the moments of some
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distribution function. This is the Hamburger moment problem and is discussed
in Shohat and Tamarkin (1943). Let (u:)5 be a sequence of numbers, and let

An = An(l-") = det(#i+j)3j=09 n= ]-: 29 0.

Then y; [ t* dF(t) for some cumulative distribution function F if and only if
A, = 0 for all positive integer values of n. If for some value of N we have Ay_; >
0 but Ay = 0, then it follows that Ayy; = Ays2 = - - - =0, and F has a distribution
with exactly N points of support. An algorithm for the computational solution of
a given moment problem was given by Mammana (1954). A solution at the nth

stage (when Ay, - - -, A,_; > 0) has support {x,, - - -, x,} given by the roots of
1 x x2 ... x°
Ho M1 M2 ce Hn
. . . . =0
Mn—-1 HMn HMp+1  °°° M2p-1

with probabilities p;, - - -, p, given by the solution to
Zpi'xf:ﬂk’ k=01"'9n—1'

For a sequence of empirical moments from a finite set of data, this algorithm
will produce the empirical distribution function.

Based on I observations Y, --., Y; with moment estimates g;;,i=1, ---, I,
we now compute an estimate F; of the distribution function. Let k = [I/2] and
set fio,; = 1. Compute A;(gy) for j=1, ---, k — 1. Let E; be the smallest value of
J for which A;(g;) < 0, or else set E; = k if no such j exists. Solve the moment
problem for a distribution F; with £ points of support {x,, - - -, xi,} and probabil-
ities {pi, -- -, pi,}, so that the first 2k — 1 moments of F; are the estimates
A1, * -y Mok-1,7. We will now prove a technical fact about weak convergence to
a distribution with finite support.

LEMMA 4.1. Let Z be a discrete random variable with j points of support. Let
Z, be a sequence of random variables whose first 2j moments converge to those of
Z, that is

E(ZY) - E(ZY k=0,1, .-, 2.
Then Z, converges weakly to Z.
PRrROOF. Let x* be any fixed point distinct from the support points x,, -- -, x;

of Z. Using the arguments in the proof of the Tchebycheff inequalities (Shohat
and Tamarkin, 1943, page 43), there exists a polynomial g(x) = 2, a;x’ of degree

2j such that
(x) = 1 if x<ax*
8% 0 if x;>x*

g8(x*) = 1,
g'(x) =0 for 1=1, ---, ],
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and
g(x) = 1(x = x*) for all «x,

where 1 is used to denote the indicator function. Figure 4.1 illustrates the
polynomial g in the case x* = 4, with support points 2, 3, 5 and 7, together with
the auxiliary lower bound polynomial h to be defined soon. Note that the
cumulative distribution G of Z satisfies

G(x*) = P(Z < x*) = E[1(Z = x*)] = E[g(Z)],
and the distribution function G, of Z, satisfies
G.(x*) = E[1(Z, < x*)] < E[g(Z,)].

Because the above right-hand expression depends only on the first 2j moments
of Z,,, as n tends to infinity we have

E[g(Z)] = Y%, a:E(Z}) — Y%, a;E(Z') = E[g(Z)] = G(x*),
and therefore
lim sup,_,«Gn(x*) < G(x*).

By similar arguments there also exists a polynomial h of degree 2j with h(x;) =
1(x; < x*), h(x*) = 0, h'(x;) = 0, and such that h(x) < 1(x < x*) for all x.
Proceeding as before, we find that

lim inf, . Gn(x*) = G(x¥).

It now follows that G, tends to G at all x* distinct from the support points
x1, - -+, x; of G, establishing weak convergence. [

- I
3 \ |
] ]
] I
| ]
211 ]
\ I
\ - ]
\ Ve \ |
- i \ -
1 3 / N\ !
\ roy !
\ / vl
\ / \ )
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_.2 4

c 1 2 3 4 S5 6 7 8

FiG. 4.1. The polynomials g (dashed curve) and h (solid curve) used to bound the cumulative
distributions at x* = 4 above and below, for a distribution with support points at 1, 2, 5 and 7.
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REMARK. Lemma 4.1 exhibits a sufficient condition for weak convergence to
a distribution with finite support. It is quite general in that it does not require
that the sequence be discrete and does not even require the existence of higher
order moments.

THEOREM 4.1. Suppose that n; = 0(i%) for all « > 0, and that F is determined
by its moments. If x is a continuity point of F then

Fi(x) > F(x) as.

PrOOF. Fix some j, and let ur(j, I) be the jth moment of F; and let I > 2j.
Assume first that F has infinite support. Since A; > 0 and A;(f;) is a continuous
function of gy 1, - - -, gsj-1,1, we will have A;(4;) > 0 a.s. for I large enough. Hence
F; will then have jth moment

Ilj,l - W= f tj dF(t) a.s.

It follows from Moran (1968, Theorem 6.16) that F; converges weakly to F,
almost surely.

Now suppose F has finite support of size kr. By Lemma 4.1 we need only show
that the first 2kr moments of F converge almost surely to the corresponding
moments of F. For N sufficiently large, by continuity of the determinant, we will
have Aj(fiy) >0as. for j=1, -, kr — 1, which implies that Ex = kr (a.s.). This
guarantees that the first 2kr — 1 moments of Fy will (a.s.) match the estimated
moments of F, and will thus converge almost surely to the moments of F. It now
remains only to show that the moment of order 2k also converges. Partition the
sequence Fy into two subsequences according to whether En > kp or ky = kg.
When ky > kg, by construction the moment of Fy of order 2kr will match
the estimated moment of F, and will therefore converge almost surely. When
Ex = kp the distribution Fy will have support at exactly kr points; we may solve
for the moment of order 2kr by expanding the determinant A, [u(Fy)] along its
last row and solving for ug:,(Fy). Taking the limit, we see that

§(aN, - -+, for—1,N)
App-1(BN)

— ‘E(ﬂl(F)’ ) /J'Qkp—l(F))
Ape—1(p(F))

where { is a polynomial in its arguments, representing the rest of the cofactor
expansion of the determinant. Convergence follows by continuity of £ and A and
because the denominator of the limit is strictly positive (which follows from F
being supported on kr points). Thus the first 2kr moments of Fy converge almost
surely to those of F, and Lemma 4.1 completes the proof. 0

ﬂsz(F N) =

= ux(F) as,

REMARKS. (1) It is interesting to note that the convergence is not uniform,
except for continuous F. A simple example is provided by taking F to be the
Bernoulli distribution with success probability Y2, and n; = 2. Some straightfor-
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ward algebra shows that if fi = Y% + ¢, and f; = % + &, are the observed
frequencies of ones and twos, respectively, we will estimate the support £ to be 2
whenever n is large and ¢;,, < 0 (by the law of the iterated logarithm this happens
infinitely often a.s.), and the coefficient of the constant term in the equation
determining the points of support will be nonzero under the same conditions.
Thus the support of F' will not contain zero for such sample paths, and the
convergence cannot be uniform. In fact, the resulting distribution ¥ could not
have produced the observed data.

(2) The stochastic geyser problem (see, e.g., Bartfai, 1966) can be applied to
this problem. Let r, = S, + 7,,, where S, is a random walk with distribution F,
determined by its moments, and 7, is some random noise, independent of the
future. Then Bartfai proved that if lim sup[y,/log(n)] = 0 a.s., then F can be
estimated consistently from the data although no explicit estimate of F was
provided. In our case we would choose

= ZNk(n)

where k(n) is the index of the most recent exact observation, so that Ny, =
max{j: N; < n}, and the sum is defined to be zero whenever the lower limit
exceeds the upper limit. The sequence (r,) then looks like n, replica-
tions of zero, n; replications of Sy, and so on. By the law of the iterated
logarithm, one can show that the rate given in Bartfai’s theorem translates into
ni, = o[log®(k)/log log log(k)] for large k. Komlos, Major and Tusnady (1975) show
that this rate cannot be improved in the setting of the stochastic geyser problem.
Our method gives a stronger result, in a much less general setting.

5. Some extenstions. There is a continuous-time analogue to this prob-
lem. Let (X.)=0 be a process with stationary and independent increments,
with X, = 0. Let Ty, Ty, --- be an increasing sequence of fixed times with
T, - », and let Y; = X7, — Xr_. Then Y; =4 F*%" where X, ~ F and
ti=T; — T;.1, and Ty = 0. The Y; are independent and F is infinitely divisible.
As before, lim Xr/T; = E(X,) a.s. To estimate u, = Var(X;), we need a weighted
average of the Y2/t Since Var(Y?/t) = 2u3 + (us — 3u3)/t; contains unknown
parameters, we use weights proportional to t;/(1 + t;). This behaves in the same
fashion as the optimal weights: observations based on long stretches of time are
given high weights, whereas those with only a short observation time are down-
weighted. The estimate is

fiz = (3 Y3/(1 + t)/(X /(1 + t)).
This estimate is unbiased and has variance

2u3 + (ue — 3u3) X t:/(1 + t,)?
Y/l +t) [Zt/(1 + &)

Since Y t;/(1 + t;) = o if and only if 3 t; = o, and

> /(1 + t)? - 1
Xt/ + )P Tt/Q+¢t)’
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we see that Var(g,) — 0 if and only if Y ¢; — o, which is equivalent to T}, — o.
Note that this estimate is consistent when t; = 1/i while the estimate based on
equal weights, used in Section 2, is not.

By Liapounov’s theorem,

(p2 X 872 Y Yi—a N(O, 1)

provided Y, f; — . A consistent estimate of us is in general only possible if
¥ 1/t; = . The construction in Section 3 is easily adapted to this case.

A perhaps more interesting generalization is to the case of random stopping
times. A simple example would be independent and identically distributed time
intervals n; independent of the random walk. By Kolmogorov’s three series
theorem Y 1/n; = o a.s., since Y Prin; < ¢} = « for any c¢ such that
Pr{n, < ¢} > 0. Conditional on the sequence (n;):»;, the argument of Section 3
shows that third moments are estimable in this case.

A more important class of random observation time intervals are times that
are determined by the history of the random walk. For example, if N,, = Y Z,,
where Z;+; = Sy, — Sn,_,, we have a Galton-Watson branching process. The
problem of estimating the offspring distribution of the Galton-Watson process
from observing only generation sizes was one of the starting points of this
investigation. Lockhart (1981) established that at most three moments of the
offspring distribution are estimable, by bounding the variational distance between
the measures corresponding to two Galton-Watson processes with the same first
three moments and the same lattice. As a lemma, Lockhart showed that a
supercritical explosive branching process almost surely grows at least as fast as
a partially observed random walk with n; = ©', where 1 < © < M and M is the
mean of the offspring distribution. Since ¥ 1/6' < », our results would indicate
that, indeed, it is impossible to estimate the third moment as well. Subsequently,
Lockhart (1982) established this result using different methods.

In continuous time, the analog of the Galton-Watson process (when viewed
as a partially observed random walk) is a continuous state space branching
process (Kallenberg, 1979). Here the underlying process is a subordinator, i.e.,
an increasing process with stationary, independent increments and paths that
are right-continuous with left limits. The possibility of estimating functionals of
such processes may well be worth pursuing.
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