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A NOTE ON THE CHARACTERIZATION OF OPTIMAL RETURN
FUNCTIONS AND OPTIMAL STRATEGIES FOR
GAMBLING PROBLEMS

BY R. VAN DAWEN
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We consider finite state gambling problems with the Dubins and Savage
payoff and with the lim inf payoff. For these models we show that the optimal
return function with respect to all stationary strategies can be characterized
similarly to the optimal return function. This enables us then to characterize
those stationary strategies which are optimal within the set of all stationary
strategies in the same way as it was done for optimal strategies by Dubins
and Savage.

1. Introduction and summary. Let (F, T, u) be a gambling problem as
defined by Dubins and Savage [3]. That is, F is a nonempty set and, for each f €
F, T'(f) is a nonempty set of probability measures (called gambles) defined on
subsets of the state space F. The utility function u is a bounded function from F

into the real numbers. :
In this paper we will always tacitly assume that F is a finite set and, to keep
the paper as short as possible, we will use, with minor changes, notation and

terminology as in [3] and [6]. Thus
u(s) = lim sup, f u(f,) do,

where the lim sup is taken over the directed set of stop rules, denotes the payoff
of the strategy o and V denotes the optimal return function, which is given by

V(f) = sup{u(o)| o at f}.

Further a strategy o is called optimal at f if u(s) = V(f), thrifty at f if V(s) =
V(f) and equalizing if V(s) = u(s).
Two main results in [3], Theorem 3.3.1 and Theorem 3.5.1, are:

1) Vs the smallest of those functions @ that are excessive for I" and for which
Q(o) = u(o) for every strategy o.
2) A strategy o is optimal if and only if ¢ is thrifty and equalizing.

A T-selector is a function v with domain F such that v (f) € I'(f) for all f. Such
a selector determines a stationary family of strategies v”. Since a stationary
strategy v “(f) is thrifty if and only if v (f) conserves V, i.e. y(f)V = V(f), for
all f, we can reformulate (2) for stationary strategies as follows:

2’) A stationary family of strategies v* is optimal if and only if v is conserving
and y*(f) is equalizing for all .
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Now our main result is that V, the optimal return function with respect to all
stationary strategies which is given by

V(f) = sup{u(s)| o is a stationary strategy at f},

allows for a similar characterization as V and that stationary strategies which
are optimal within the set of all stationary strategies can also be characterized
by similar expressions as conserving and equalizing.

DE}-‘INITION. A stationary family of st;abegies ~* is called V-conserving if
v(f)V = V(f) for all f and V-equalizing if V(v*) = u(y%).

THEOREM 1.

1) V is the smallest of those functions Q that are excessive for T' and for which
Q(v*) = u(y®) for every stationary family y*.

2) A stationary family v~ satisfies u(y*) = V if and only if v~ is V-conserving
and v*(f) is V-equalizing for all f.

This Theorem is not true for general state space F, since the function V is not
excessive for the examples considered in [4] and [5].

2. Proofs. Examining the proofs in [3] reveals that we only have to prove
that V is excessive for I, i.e. yV < V(f) for all ¥ € T'(f), f € F, since using only
stationary strategies in these proofs all the other arguments can be used unaltered.

LEMMA 1. For each positive ¢ there exists some stationary family a” such that
u@®)=V-—e

PROOF. By definition of V there exists for each positive ¢ and each f € F
some stationary strategy vf 7 such that u (yf) = V(f) — e. Define a new gambling
problem (F, T, &) with F=F G=uand I'(f) = Uy er{yp (f)} for all f. Denote
the optimal return function for the new problem by V, which obviously satisfies
V=V—e¢ By Theorem 3.9.1 in [3] there exists some stationary family a” in T
such that u(a®) = V. Since I'(f) C  I'(f) for all f, a® is also a stationary family
in the original model and u(a”) = VaV-—e

Lemma 1 paves the way to prove the excessivity of V.
THEOREM 2. V is excessive for T.

PROOF. Fix fo € F and vo € T'(fo). For each positive ¢, let o™ be the stationary
famlly of Lemma 1. Define a new gambling problem (F, T, 4) by setting F = F,
4 =uand I'(f) = {a(f)} for f # fo and T'(f) = {70} U {a(f)} for f = fo. Since the
optimal return function V for this new model is excessive for 1, vo € I'(f,) and
V=V — ¢, we have V(f,) = voV = vV —e. Furthermore, again by Theorem
3.9.1 in [3], there exists an optimal stationary family for (F, T, &), and since this
stationary family is also available in the original model, we have V="V
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Combining these results gives V(fo) = voV — & for all positive ¢ and all
Y0 €E T'(fo) and fo € F. Thus V is excessive for T'.

3. Extensions and concluding remarks. In [6] Sudderth introduced the
lim inf payoff

u(o) = lim inf, f u(f,) do
with the optimal return function
W(f) = supfu(o)| o at f}.

For this model a strategy is called optimal at f if u(c) = W(f), thrifty at f if W(s)
= W(f) and equalizing if W(s) = u(s). Furthermore, a stationary family v is
called conserving if v conserves W. With these definitions and replacing V by W
and u(g) by u(s) (1), (2) and (2’) of Section 1 remain true for lim inf payoff
problems (see [6], Lemma 1).

If one defines now W, W-conserving and W-equalizing according to the related
expressions for gambling problems with the Dubins and Savage payoff, then our
Theorem is also true for lim inf payoff gambling problems. For the proof one has
only to replace in Section 2 Theorem 3.9.1 in [3] by Theorem 3.1 in [6].

One may be tempted to think that all results which are true for classical
gambling problems remain true for lim inf payoff problems (at least for a finite
state space), but this is not the case. Dubins and Savage proved that if there is
an optimal strategy then there exists a stationary family of optimal strategies
([3], Theorem 3.9.3). This is not valid for lim inf payoff problems.

Example. F = {0, 1}; u(0) = 0, u(l) = 1; T'(0) = {6(1)}, (1) =
{(n —1)/n)6(1) + (1/n)5(0)| n € N}. Thus, W(0) = W(1) = 1 but W(0) = W(1)
= 0 and, as can easily be seen, there exists some strategy ¢ such that u(s) =

REMARK 1. If T'(f) is finite for all f then V= V and W = W, and if T is
leavable, i.e. the point mass 8(f) € I'(f) for all f, theneven V=V = W= W
(see [6], §4). Other conditions which guarantee V = V or W = W can be found
in [1].

2. Related results for dynamic programming problems are contained in [2].
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