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AN ERROR BOUND FOR AN ASYMPTOTIC EXPANSION OF
THE DISTRIBUTION FUNCTION OF AN ESTIMATE IN A
MULTIVARIATE LINEAR MODEL

By YASUNORI FUJIKOSHI

Hiroshima University

In this paper we consider asymptotic approximations to the distribution
function F(x) of a linear combination of an estimate in a multivariate linear
model. A method is given for obtaining an asymptotic expansion F,_;(x) of
F(x) up to O(n™**') and a bound c, such that | F(x) — F,_;(x) | < ¢, uniformly
in x and ¢, = O(n™*).

1. Introduction. Asymptotic expansions such as Edgeworth type expan-
sions play an important part in the study of approximations to distributions. The
general theory of the expansions has been studied by many authors: see for
example Wallace, 1958; Chambers, 1967; Chibisov, 1972, 1973; Barndorff-Nielsen
and Cox, 1979. However, it may be noted that little work on the explicit error
bounds has been done for the approximations based on asymptotic expansions.
In this paper we shall obtain an error bound for an asymptotic expansion of the
distribution function of a linear combination of an estimate in a multivariate
linear model.

Let y;, ---, yn be a sample of size N = n + 1 from a p-variate normal
distribution N,(B’B, Z), where B is a known g X p matrix of rank ¢ < p, 8 is a
g X 1 vector of unknown parameters and X is an unknown positive definite
matrix. The model on the observations is called “growth curves” model and is a
special case of the general MANOVA model due to Potthoff and Roy (1964). The
Maximum Likelihood Estimate of 8 is given by 8 = (BS™B’)'BS~'y, where ¥
=(1/N) X ,y;and S = I X, (y; — §)(y; — ¥)’. We consider the distribution of

(1.1) £=+vNa’(8 — B)/\

where a is a ¢ X 1 fixed vector (#0) and A = {a’(BZ~'B’)'a}"% Here ¢ is
standardized so that the distribution function F(x) of ¢ converges in law to the
standard normal distribution function ®(x). We treat the case r =p — ¢ > 0,
since the distribution of £ in the case r = 0 is N(0, 1). The exact distribution of
8 has been studied by Gleser and Olkin (1972), who obtained three expressions
for the density of . However, it seems that the exact distribution of £ would be
very complicated if it could be obtained. The purpose of this paper is to find an
asymptotic expansion F,_;(x) of F(x) up to O(n™*') and an error bound c, such
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that
(1.2) |F(x) — Fooy(x)| < ¢

uniformly in x and ¢, = O(n™*). The result holds for any integer s = 1 such that
n—r—2s+1>0.

2. A method for error estimation. Consider a random variable { with a
special structure and let F(x) be the distribution function of £. Here £ may not
be the same one as in (1.1). We shall make some assumptions on £, but in Section
3 it is shown that the £ as in (1.1) satisfies all the assumptions required. Suppose
that ¢ is decomposed as

(2.1) E=2—-u

We may regard u as a remainder when we approxim::{te ¢ by 2. Let G(x) be the
distribution function of z. We make the following assumptions for some integer
s=1:

ASSUMPTION 1. 2z and u are independent.

ASSUMPTION 2. All the derivatives of G(x) of order s and less are continuous
and Sup| G® (x) | < o, where G (x) is the sth derivative of G(x).

ASSUMPTION 3. E[|u|®] = m, <.

THEOREM 2.1. Suppose that a random variable & is decomposed as in (2.1)
and there exists an integer s = 1 such that Assumptions 1-3 hold. Then

(2.2) | F(x) — Fo—y(x)| = (1/s")m,Sup,| G (t) |
where
(2.3) Foy(x) = Gx) + 3321 (1/iHm;GY (x)

and m;=E[u/],j=1,-+-,s— 1.

PrROOF. By Assumption 1, F(x) = E,{G(x + u)}. The result is immediate on
expanding G(x + u) about G(x).
In our application we can make further assumptions on z and u:

ASSUMPTION 4. 2z has the standard normal distribution, i.e., G(x) = ®(x).
AsSUMPTION 5. The conditional distribution of u given a random matrix V
is normal with mean zero and variance h(V). Further, for some integer s,
(2.4) hs = E[{h(V)}°] < co.

When G(x) = &(x), Assumption 2 is satisfied for any integer since

(2.5) 4 = Sup,| 2“(t)| < =.
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Then it is easy to see that

1 1
AH=18V0)| =—, 4=|2?Q)] =
Vor v2me
1 1
4= 199(0)] == 4= | 2913 — V6) =—2—>< 1.38 -+ -
Vvam v
4= 1890)| = —=, 4=|8O(Va)|=——=x5T8 -
vVor Vo

where « is the minimum root of o® — 1502 + 45a.— 15 = 0. From Assumption 5
we obtain that for j < s
~ , hinj 122 (/2L j even
;= Jl = J) = is2J J y J
(26) m; E{u } EvEu|v{u } {0’ ] odd.

Substituting this result into the formula (2.2) obtained by replacing s by 2s, we
have the following theorem.

THEOREM 2.2. Suppose that § is decomposed as in (2.1) and there exists an
integer s = 1 such that Assumptions 1, 4 and 5 hold. Then

(27) IF(x) - Fs—l(x)l =¢ = (1/288!)/2317'3
where
(2.8) Foi(x) = ®(x) + X521 (1/27j)h; P (x).

We compare this result with the one obtained by the general method based on
the characteristic function of £. Under the assumptions as in Theorem 2.2 the
characteristic function of ¢ can be expressed as

(2.9 o (t) = exp(—%t*)Ev[exp{—12h(V)}] = ¢,-1(t) + Ry(t)

where
bo-1(t) = exp(—Y2t?) T3z (—%t*) h/j!,

Ri(t) = {(=%t%)"/s!} X exp(—Y2t*)Ev[{h(V)}exp{—120t*h(V)}]

and 0 (0 < 6 < 1) is the constant that appeared in the remainder term of Taylor’s
expansion of e*. It is easy to see that the approximation F,_;(x) is obtained
by inverting ¢,—,(¢). If h; = Oon7)(j =1, ---, s), then it follows that
Sup | F(x) — F,_,(x)| = O(n™), but the general theory on asymptotic expansions
does not give explicit expressions for constants in the error bound. Theorem 2.2
gives an explicit error bound with the order of O(n™).

3. The distribution of £. We shall see that the random variable ¢ defined
by (1.1) satisfies Assumptions 1-5. Let & = VN(3 — B’B). Then

(3.1) JN(B - 8) = (BS™'B’)'BS~15
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and § is distributed as N(0, =). We define the variables z and u in (2.1) by
(3.2) z=(1/N)a’(BZ"'B’)"'Bz1s,
(3.3) u=—(1/Na’(BS™'B’)'BS™'{I — B’(BZ'B’)'Bz7}s.

Then z is distributed as N(0, 1) and z and u are independent. The independ-
ence of z and u follows from the fact that § and S are independent and
{I-B’(BZ7'B’)'BZ7'}2'2(BZ~"%)’ = 0. The following Lemma has essentially
been proved in Gleser and Olkin (1972).

LEMMA 3.1. Let v:r X 1and W: r X r be the independent random vector and
matrix distributed as N,(0, I,) and W,(I,, n), respectively, where W,(I,, n) denotes
the Wishart distribution of dimensionality r with n degrees of freedom and
covariance matrix I.. Then u is distributed like the random variable whose condi-
tional distribution given V = [v, W] is normal with mean zero and variance

(3.4) h(V) = v/ Wy,
Noting that v’ W™'v is distributed as the ratio x2/x2-,+ of two independent
x? variates (see, for example Anderson, 1958, page 106) we have

rir+2) -+ (r+2(j—1))
m-r=-1)(n-r—-38) - (n—-r—-2+1)

if n — r — 2j + 1 > 0. Therefore we have the following theorem.

(35) hj =

THEOREM 3.1. Let F(x) be the distribution function of the standardized
statistic ¢ defined by (1.1). Then it holds that if n — r — 2s + 1 > 0,

(3.6) [F(x) = Foy(x)] < ¢
where F,_,(x) and c, are given by (2.8) and (2.7) with the coefficients h; in (3.5),
respectively.

From the practical point of view the formula (3.6) for small s, especially
s =1, 2 is important. For the case s =1, 2,
1) Ifn—r—-1>0,

1 r
FG) = 2@ < o= = — .

@2 Ifn—-r—-3>0,
F(x) — 1 ®(x) +-1- . --;--cb("’)(x)}> '
2 n-r-1

<c=1'38.”- r(r + 2)
=" 8v2onr m—-r—-1)(n-r-3)°

It may be noted that “c, < ¢,” does not always hold. If (n — r — 3) = 0.57(r + 2),
the inequality holds and hence the second approximation is recommended.
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