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A UNIFORM BOUND FOR THE TAIL PROBABILITY OF
KOLMOGOROV-SMIRNOV STATISTICS!

By INCHI Hu

Stanford University

Using an argument developed in Siegmund (1982), we give a bound for
the tail probability of Kolmogorov-Smirnov statistics in the following form

P(inf,(F.(x) ~ F(x)) > {) < 2v2e™2%",

1. Introduction. Let X;, X,, -+ be independent, identically distributed
random variables with a continuous but unknown distribution function F. Denote
the empirical distribution function for sample X;, X, -+, X, by Fix) =
(A/n){#of X;<x,i=1, -+, n}. In testing goodness of fit, that is, to test F = F,
for some specific choice of Fy, the commonly used test statistics are

D} = vn sup,(F.(x) — F(x)), Dj; = vn inf,(F(x) — F(x))
D, = vn sup,| F(x) — F(x)|.

The purpose of this paper is to give a bound for the tail probability of D in
the following form.

THEOREM 1. p{D; > Vn{} < 2v2e727%,

A bound of the form p{D; > Vn{} < Ce™?*’, where C is some unspecified
constant, has been proven by Dvoretzky, Kiefer, and Wolfowitz (1956). There
are several papers conjecturing that C can be taken as 1, cf. Birnbaum and
McCarty (1958) and Csérgd and Horvath (1981). Each of them is substantiated
by considerable numerical computation, although no proof is available. Devroye
and Wise (1979) proved C < {2 + 32/(6x)*? + 8/3'/2 + 2124 exp(17s)} < 306,
but this bound is too large to be useful in any application. The best result known
to the author (before this paper was written) is ¢ < 29, due to G. Shorack (private
communication), so the result of this paper is a substantial improvement of all
the results known so far and partial support of the conjecture.

2. Proof of the main result. First we introduce some notation and basic
facts about exponential families. Assume the distribution function F of X; can
be imbedded in an exponential family, i.e. for all § in some neighborhood of 0
exp[y (0)] = [ exp(6x) F(dx) is finite, so exp[fx — ¥ (0)] F(dx) defines a family
of probability distributions indexed by 6. It is easy to show that the mean and
variance of these distributions are given by ¢’ (#) and y ” (¢) respectively. Hence
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u =1y’ (0) is a one to one function of 4. It will be convenient to regard this family
of distributions as indexed by u and write F,(dx) = exp[0x — ¢ (0)] F(dx). Let P,
denote the probability according to which X;, X, -+ are independent with
P,(X;€dx)=F,dx) (i=1,2, ---). The density of S, = X; + -+ + X, under
P, will be denoted by f, .. If A is an event belonging to the o-field generated by
X, + -+ Xn, the following notation will be used: P‘;"’ (A)=P,(A|Sn=m{). In
this paper we consider only events of the foorm A = {r <k}, (k=1,2, --+ m),
where 7 is a stopping time.
Siegmund (1982) derived the following fundamental identity

P (1 < k) = exp{—m[(8; — o)uo + ¥(60) — ¥ (62)]}

1)
fr<H] fnz,m—1(m”’0 - Sr)exp[_(ol - 02)S'r]/fpo,m(mﬂ0) del-
The notation u; = u(6;), i = 0, 1, 2 is used above, and 6,, 0, satisfy ¥ (6;) = ¢ (62).
Let us bring our attention back to D;,. It is well known that the distribution
of D is the same for all continuous distributions, so without loss of generality
we may take F to be the uniform distribution on (0, 1). The well known
representation of uniform order statistics in terms of sums of independent
exponential random variables shows that

P{D; > Vn{} = P{supocs<i(x — Fu(x)) > §}
= P{maxlsjs,,(VVj _]) = n{ -1 l Wn+l - (n + 1) = _1}
= Pf":){‘r < mj

where W;=Y;+ --- + Y;and Y3, Y, - - - are independent standard exponential,
m=n+1u=(-1/m),r=inf{i: W;—i=n¢{—1}.

For reasons which will be indicated later, we divide the set {r < m} into two
parts {r < n/2 + 1} U {n/2 + 1 <7 < m} and apply a time reversal argument to
the later part, i.e.

PM(r<m)=PP(r=n/2+1)+PP(n/2+1<7<m)

<= P™(r = n/2 +1) + P{(T < n/2)

where vy = 1/m, T= inf{i: S; = n¢} and under the probability P, S; has the same
distribution asi — W;(i=1, - -+, n + 1). By (1) we have

Pf":){‘r =n/2 + 1}

@ = exp{—m[(02 — 0o)po + ¥ (60) — ¥ (62)]}

. J: S fugm—r(mpo — S;)exp[—(0; — 02)S;]1/fuym(muo) dP,,
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and
P™(T < n/2)
(3) = exp{—m[(A2 — Ao)vo + ¢ (o) — d(N2)]}
' f(T<,,,2, Buym-1(mwo — Sr)exp[—(\1 = A2)S7)/gw,m(muo) dP,,,
where
¥(0) = —0 —log(1 —0), ¢(N) =X —log(1 +}),
u(@) =¢’(0) =6/(1—0), v(\) =¢’(\) =M1+ 1),
fur(x) = & — Z;f (x + k)*lexp[—(x + k) (1 — 0)], x=—k —-w<f<1,
(1+ M)

&) = k= NTemlA + Ny —R), ysk -1<A<e,
0, <0 <6, <1satisfy ¢ (62) = ¢ (1), and —1 < A\, <0 < A, satisfy ¢(X2) = ¢ (A1).
We work with (2) first. Under P, the increment of the random walk S; has an

exponential right tail. The following Lemma is a direct consequence. The proof
is omitted.

LEMMA 1. Under P,, R, = S, — (n{ — 1) is independent of v and has an

Ky

exponential distribution with parameter (1 — 0,).

By Lemma 1

‘I(:<n/2+1) fuam—r(mpo = S;)exp[— (61 = 62)S.] P, /fuo,m (Mpto)

D)k f furm-t(=1§ = Rn)exp[—(61 — 62)R,] dP,,
- exp[— (6, — 62)(n — 1)1/fugm(muo)

= (1 = 61)exp[—(0; — 02)(n{ — 1)] W5 P, (7 = k)

m—k~n¢
: j; fnz,m—k(_nf - x)exP[_x(l - 02)] dx/fpo,m(mﬂo)

= exp[—(01 — 0:)n¢] TV P, (1 = R) fupmeier (=18 = 1) /fuom(pom).

Observe that f,, m—#+1(x) is maximized at x = ((m — k + 1)6; — 1)/(1 — 6;) and
the maximized value is
(1 _ 02)(m _ k)m—ke—(m—k)
(m — k)! ’




824 I. HU

and
mme™

from(mio) = G i = DY)

Substituting these results into the expression above, we have an upper bound of
the form
(1 — 02)exp[— (6, — 62)n]
(m = B)™*e=™ P (m — D[(m = 1
(m — k)m™e™

Using Stirling’s formula with upper and lower bound (see e.g. Feller, Vol. I, page
54), we find the expression above is bounded by

_ _ 1/2
(1 — 8,)exp[—(6; — oz)nne(’" 1) Y2 p (= k)(’" 1)
m m-—=£k

E [n/2+1] P k)

< (1 — 6z)exp[—(6, — 02)n§]e<m”_l 1) V2.

So P{{r < n/2 + 1} < v2 exp{-n[(6: — 62) ¢ — ¥ (62)]}.
The process for bounding (3) is more or less the same, although we lose the
independence of Sy — n{ and T.

f . &u,m—r(mvo — St)exp[—(A1 — A2)S7] dP, /gym(vom)

n{+1
< Q2 f . &upm-1(1 — y)exp[—(A1 — A2)y]

* Pul(T = k’ ST € dy)/guo,m(l’om)

né+1l
< exp[— (A1 — Ag)ng] Th/D f{ &um-1(1 — ¥)

. p,,l(T = k, ST € dy)/g,,o,m(vom).

From this:step on the argument is the same as above. Substituting in the
maximal value of g, »—r and using Stirling’s formula carefully, we arrive at

B™(T < n/2) < V2 exp{—n[(A — A2)§ — 6(N2)]}.

To complete the proof it is sufficient to show

LEMMA 2.
MAX(g,,0,):90)=p0 [(01 — 02) & — ¥ (62)] = 2¢°
or equivalently
maxo,rs0p=s0i[(A1 — A2) & — d(X2)] = 2¢%
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ProOF OoF LEMMA 2. Using the method of Lagrange’s multiplier, it is easy
to show that (0; — 62) { — ¢ (6;) is maximized at 6, and 6, satisfying

@ ]Il/ol +1/16:] = 1/5
¥ (01) = ¢(62).

Equation (4) involves a transcendental equation which is difficult to solve
explicitly, but here is an easy way out. Dvoretzky, Kiefer, and Wolfowitz (1956)
proved

P{D; > Vn¢} < Cre %",

Siegmund (1982) showed
P{D; > Vn{} ~ Ca($)exp(—n[(8: — 6;) — ¥(6:)])

where 6, and 0, satisfy (4) and C;(¢) is a constant depending only on {. These
two results imply

lim,_,.sup Ciexp(—2n¢?)/Ca($)exp(—n[(6; — 02)§ — ¥(6:)]) = 1.
Suppose (6, — 0,) ¢ — ¥ (02) < 2¢2 for some ¢, then
lim,,_ C1exp(—2n{2)/Cs({)exp(—n[(0; — 02)¢ — (6:)] = 0.

This is a contradiction. Consequently Lemma 2 is true, and the proof of Theorem
1 is completed.

3. Concluding remarks.

(i) Birnbaum and Tingey (1951) gave the exact distribution of D}, but their
formula is inconvenient for numerical calculation.

(ii) At first sight, the conjecture mentioned in Section 1 seems unlikely to be
true, when compared with the asymptotic result lim,_,.P(D; > ¢) = e %*, but
Smirnov’s (1944) result P{D; > ¢} = exp[—2{({ + (3nY?)™1)] + o(n~Y2), which
suggests that D; approaches the asymptotic distribution from below, served as
analytical support of the conjecture.

(iii) The usefulness of a bound of the form p{D; > Vn{} < ce™2**(*) can be
argued as follows: On the one hand we have an asymptotic result but without
accurate estimation of the error term; on the other hand we have an exact formula
but even for a moderately large sample size it is not easy to do the numerical
computatioh. A bound of the form (*) with a reasonable constant ¢ can serve as
an easily calculated and conservative confidence bound. The result of Theorem
1 represents substantial progress in this direction. Also, in some cases the
constant ¢ appears as a component of a more complicated procedure for deter-
mining confidence bounds. (See e.g. Burke et al., 1981; and Csorgd, Horvath,
1981, Lemma 2.1), so it is helpful to know the value of ¢ even approximately.

(iv) Carefully examining the proof of Theorem 1, it is clear that actually we
have proved a better result, i.e.

P{D; > vVn¢}
< V2(P,,(r = n/2) + B, (T < n/2))exp(—n[ (6, — 62) ¢ — ¥(6:)]).
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It is easy to see that »; = | uz| and from (4) we know | uz| ™' + pui' = ¢~%. This
implies either | uz| < 2¢ < u; or w3 < 2¢ < | pz|. For fixed { as n — o by strong
law of large number we have

lim, ..(P, (r < n/2) + B, (T <n/2)) =1.

Since the author is unaware of any nontrivial uniform upper bound on P, (7 <
n/2) + P, (T < n/2) the trivial upper bound P, (r = n/2) + P, (T < n/2) <2is
used in the proof. This is the place where we might lose a factor of %. The other
place we might lose precision is where we replace f,, m—r+1(—n{ — 1) by the
maximum of f,_n—k+1(*), and replace (1 — 7/m)™?1;<ns2) by its maximum 2.
The former introduces serious inaccuracy when —nr{ — 1 is away from the peak
of f.,m-k+1(*), although a simple calculation shows that when { is fixed and
n — o, by law of large numbers 7 = n{/u; under P, , so—n{ — 1 is approximately
at the peak. The use of the rather crude upper bound above reflects the author’s
unawareness of a sharper inequality.

(v) It is also possible to derive a bound of the form P(D; > Jni) s V2e”
by working on (2) only. This bound is strictly better than Theorem 1 when
¢ > U, but the result is poor when ¢ is small. This is the reason why we split the
set {r < m} into two parts and use a different argument on each part.

(vi) One might want to use p{D;, > V¢ < 2v2exp(—n[(0, — ;) ¢ — ¢ (6,)]).
This bound is slightly better than Theorem 1, but more numerical computation
is required.
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