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ROBUST BAYES DECISION PROCEDURES: GROSS ERROR IN
THE DATA DISTRIBUTION!

By YaA’acov RiTov

The Hebrew University of Jerusalem

We consider a standard Bayes decision situation except that with small
probability the data may be irrelevant to the parameter of interest (i.e. the
experiment is “biased”). The minimax solution under quite general assump-
tions is described and discussed.

1. Introduction. Consider the following situation. A manager of a company
gets some information about his competitor’s company (company B). The infor-
mation is indirectly related to what he is really concerned about. For example,
suppose he wants to know how many devices of a particular type will be assembled
by company B, while his information X is how many of a type of transistors
commonly used in these types of devices were ordered by company B from
company C. Suppose our manager has previous independent information and
subjective conjectures about the problem, all formulated in a Bayesian fashion.
If this is the case, he takes the quantity of interest, 6, to have a well-defined (for
him!) distribution. He believes that he knows how X is distributed for any given
value of 6. Finally he defines a loss function.

For the Bayesian, the solution of this problem is, theoretically speaking,
straightforward. However, suppose the statistician is willing to consider the
possibility that the information is irrelevant, i.e. the prior opinion about model
linking information to parameters of interest may be wrong. In the above
example, it may be that the transistors sold by company C were actually
purchased by other companies for other purposes. It is then appropriate to
assume that the distribution of X may be arbitrary and independent of 4.

Let us be more formal. Suppose we observe X and have to choose an action
“a” out of a set of possible actions A. There is a third variable ® which defines
both the distribution of X and the “loss” caused by using “a”. We take 0 to have
a well-defined distribution (defined either as a limit of frequencies or a subjective
distribution). The distribution of X is defined

(i) with probability 1 — ¢, by the known prior and a known Markov kernel.
(ii) with p}obability ¢, by an unknown arbitrary distribution H.

Typically ¢ will be a small number.
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EXAMPLES.

(1) We have a real “one observation” case, and we are afraid of a “gross”
error, e.g. a typographical error, in the data.

(i) Measurement of irrelevant parameters. The assumption that H (as de-
fined above) can be arbitrary excludes all cases where there are structural
constraints on H, e.g., when given 0 = 6§ the observations are i.i.d. Nevertheless,
we claim that the above formulation is a reasonable approximation to the
following situation. Suppose we want to estimate the mean 1.Q. of a particular
population. Here the 1.Q. is defined by a standard test, but as this test is time-
and money-consuming, we use another quick test. It is known that for most
populations the mean scores in the “quick” and “standard” tests are approxi-
mately the same. If we will take a large sample, the average “quick” score may
be a reasonable estimate of the mean of the population 1.Q. as measured by the
quick test. The main problem is that this population is quite special, e.g. students
in an art academy, and it may be that these two tests are unrelated for this
particular population. If the sample is large we may assume, therefore, that the
sample average (which is approximately the population mean) may have, with a
small probability an “almost” arbitrary distribution.

This situation exemplifies a quite general situation, when the main problem
is whether we are measuring the “true thing” or another parameter which is
usually, but not always, closely related to the “true-parameter of interest” (i.e.
the experiment may be biased).

(iii) i.i.d. observations with a common error. This example is, mathematically
speaking, similar to the previous one, although the mechanism is different. In
telemetry we may fear that our remote instrument sends us all n-observations
with a consistent error (e.g. in the main digit).

(iv) 1.i.d. observations with a contaminated model. Here the formulation of
our problem is clearly inadequate, as H has to be a product distribution on R".
When n is small, the solution appropriate to taking H arbitrary may be a
reasonable approximation which can be traced analytically; see Marazzi (1980).

REMARK. The case where © is a location parameter and <{X — 0} €
{(1 — ¢)F + eH; H arbitrary} for a known c.d.f. F, is mathematically equivalent
to the same problem but with a known model and an e-contaminated prior (Ritov,
1983).

The Bayesian decision procedure is based upon the knowledge of the prior
distribution II and the model {F,}. For the “orthodox Bayesian” they are com-
pletely known (see for example De Finetti, 1961). On the other hand, there exists
a robust Bayesian viewpoint. Much work was done about e-contaminated priors
and other types of uncertainties in the prior distribution. See for example Hodges
and Lehmann (1952), Blum and Rosenblatt (1967), Berger and Berliner (1983),
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Efron and Morris (1971), Marazzi (1980, 1982) and Ritov (1983). There are,
however, situations where the prior information is defined in quite a reliable way,
while it is felt that the relation between the data and the parameter is not given
exactly by the specified Markov kernel. One possible way to deal with this
problem is making the model more complex (i.e. introducing more parameters
and priors; see, for example, Box and Tiao, 1973). The analysis becomes then
more complex and in some sense more arbitrary. We feel that our assumption
that with a small probability the data is completely irrelevant, although it may
be arbitrary in some cases, it may describe other situations quite adequately.
(Sure, it may be inconvenient to admit that this is the case!) See Berger (1979)
for discussion of a similar situation when © can get a finite number of values.
The real test of a statistical attitude is the procedures it generates. We believe
that our results are simple and intuitive modifications of the basic Bayes
procedure. Our result can be compared to Box (1980). When the observation is
surprising given our (unexact) assumptions, one should examine the assumptions.
Unlike Box (1980) we take the prior to be reliable, so we should be careful in the
way we use the data, when it is in discrepancy (in a defined way) with the prior.

The paper continues with a formal definition of the problem and the intuitive
solution. In the third section the main results are given with some examples. The
outline of the proofs is given in the fourth section.

2. Notation and problem definition. We consider a decision problem
with three Polish spaces and Borel fields: ®, B(®) the parameter space, X, B(X)
the sample space, and, finally the decision space A, B(A). Alternatively we will
speak about the random variables ® and X* taking values in ® X X and having
a joint distribution defined by the “prior” II—a probability measure on 0, B(®)
and the Markov kernel {F,: § € @}. Let F be the marginal distribution of X*, and
assume F, < F for all 0. Finally, let II,(-) be the conditional distribution of ©
given X* = x. To complete the definition of the decision situation, we need a
measurable loss function L: ® X A — [0, ). We assume that A, B(A) has a
compactification A%, B(A¥) and L has an extension to ® X A* such that L(6, -)
is lower semicontinuous for all § € @.

A decision procedure & is a Markov kernel from X to A* For any x € X,
6(- | x) is a probability measure on A, while 6(U| -) is a measurable function of
x for any U € B(A").

Suppose now that the actual observation X is equal to X* only with probability
1 — ¢ (0 < e < 1), while with probability ¢ it is taken from a completely unknown
distribution H,i.e.

X~ (1 —¢)F +¢H, He @ = {all distribution on B(X)}.

II, {Fy; § € ®}, H and 6 together define the mean risk:

L.(s, H) = f f f L(6, a)é(da| x){(1 — e)Fy(dx) + eH(dx)}II(dF).
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We want to solve:
P;: Find 4. € D such that
supye ., L. (6., H) = infsepsupne .» L. (6, H)

where D is the set of all possible decision procedures.
We can use Fubini’s theorem to simplify the definition of L,(, H):

(2.1) L5, H) =(1—¢) f r[o(- | x), x]F(dx) + ¢ f rol6(- | x)]H (dx)

where:

o 10,51 = | [ 26, stda o

ro[o(- | x)] = ffL(H, a)é(da| x)I1(dh).

We can use these formulas to attack the problem from another direction. Take
the manager’s problem as it is defined in the beginning of the paper. It seems
reasonable not to base on the suspected observation a decision which is too risky.
Here the riskiness of a decision procedure is measured by the prior risk, or
formally, by ro[6(- | -)]. Hence, the following problem is natural:

P;: Find 6 € D(s) = {all decision procedures é such that sup,ro[6(- | x)] =< s}
such that [ r[é6(- | x), x]F(dx) is minimized.

Actually here we have finished. Leaving measurability problems aside, solving
P, amounts of solving P, for some s. To see this, note that if supge 2L, (6, H) <
oo then sup,ro[6(- | x)] < s < = for some s, as H is arbitrary. Conversely, if P, can
be solved for all s, we denote each solution by é,, and to solve P; we will minimize
(1 —e) [ rlés(- | x), x]F(dx) + es. The advantage of P, is that it can be solved
pointwise, i.e. for each x € X one minimizes r[6(- | x), x] subject to ro[6(- | x)] =
s. Typically this minimization problem can be solved using Lagrange multipliers.

REMARK. With some abuse of notation, we will denote nonrandomized pro-
cedures by small latin letters, so a(-) is the procedure § such that 6(- | x) is a
point mass at a(x).

To avoid trivialities we assume that 0 < s, = inf {s: D(s) # ¢} < . Moreover,
D(so) contains no Bayes procedure (for ¢ = 0, i.e. for the “basic” model). Clearly,
when one tries to solve either P; or P,, one restricts himself to the “safe” action
set, i.e. to the set:

Ao = {a:a € A and EgL (0, a) < »}
(as one should use decisions with ro[6(- [ x)] < o for all x € X). Therefore,

without any loss of generality (with regard to the set of possible decision
procedures) we assume that A = Ay. We conclude this section with two more
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technical definitions:

For a 6 € D we denote the Bayes risk of § under the basic model by

Lo(3) = f rfo(- | x), x]F(dx).
For any s we define
R(s) = infsep)Lo(5).

3. Main results.

THEOREM 1. For all s = s, there is a decision procedure which solves Ps. [0

THEOREM 2. For any 0 < e < 1, P, has a solution. Moreover, L,(- , -) has a
saddle point, i.e., there are 6., H, such that

Lc(éc, Hc) = inbeDLc(ay Hc) = SupHE:%Lc(éc, H)
and H < F. O

So, let us define L(e) = L. (6., H.).

The existence of a least favorable distribution gives us some measure of how
conservative the min-max procedure 6, is. If H, is a “reasonable”distribution, it
is reasonable to be “protected” from it. Technically, this means that §, is a Bayes
procedure when the prior is II and the family of distribution is {(1 — ¢)F, + ¢H.;
f# € @}. Moreover, if h, = dH,/dF, then for all x, 6, is a minimum point of
(1 = &)r[o(- | x), x] + eh.(x)ro[6(- | x)]. We will be able to use these facts to
conclude that: (i) P, and P, are “equivalent” and (ii) P, (and therefore P;) can
be solved pointwise. That is, we can solve for each x: r[6(- | x), x] = min ! subject
to ro[6(- | x)] < s by using a Lagrange multiplier (which is equal to ¢h,.(x)/(1 —
¢)!). Let us be more exact.

THEOREM 3. 6 solves P; for e, 0 < e < 1 if and only if 6 solves Py for some s,
So=s< oo,

THEOREM 4. (i) It is possible to solve P, (s, < s) by solving the following
problem for every x € C, where C is a measurable set and F(C) = 1: Find \;(x), 0
< A\s(x) < 0 and 6,(- | x) a probability measure on A such that: 5,(- | x) minimizes
r[os(- | x), x] + A (x)ro[65(- | x)] over D; ro[d,(- | x)] < s and N (x){ro[d(- | x)] — s}
= 0. Extend 0,(- | -) to X — C so it will be equal there to any member of D(s). It is
possible to find \,(-) and é:(- | -) such that \;(-) is measurable and 6; € D.

(ii) Any A\;(-) which satisfies (i) satisfies also [ A\s(x)F(dx) < oo.

(iii) &, solves P, for ¢ given by ¢/(1 — ¢) = [ A\ (x)F(dx) (with dHe/dF =
(1 — e)e™I\,). Alternatively, find ¢ by solving —R}.(s) < ¢/(1 — ¢) < —R’.(s) where
R.(-) are the right and left derivatives of R(-). 0
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REMARK. The use of a randomized procedure may be unavoidable. For
example, this will be the case when we have a normal prior, X — 0 ~ N(0, 1) and
the loss function is

_Jo j6-al =1
L(a’“)'{l 6 —a| > 1.

Then for large values of x, 6,(- | x) is a randomized procedure which puts mass
of ay = (s — 28(—1))/(1 — 2®(—1)) near x/2 and mass of 1 — «a, near 0 (the a
priori decision). For more details see Ritov (1983).

Suppose L(f, -) is a convex function for any § € @. In this case there is no
need for randomization. Theorem 4 defines then the form of the solution. Let
b(-) be the Bayes rule (i.e. the solution of P, for ¢ = 0). For a fixed ¢, the optimal
decision will be the Bayes rule, on ro[b(x)] < s for some s. Elsewhere the solution
will satisfy ro[a(x)] = s. When the action space is R we can be more specific and
claim that the intuitive rule

[M 1 b(x) <M 1
a(x) = 1b(x) M;<b(x) = M,
M, bx) > M,

is optimal for some interval [M;, M,] which includes the minimum point of
E,L(0, a) (the “no observation decision”). For a quadratic loss function we may
be more specific: 0

COROLLARY 4.1. Let ® = Ay = R* and let L(6, a) = g(0)(0 — a)"Q(6 — a),
where Q is a symmetric positive definite matrix of order k X k and g(-) is a positive
real function such that [ || 6 ]%g(9)I1(d6) < e, [ 6g(8)I1(d6) = 0 and [ g(6)I1(d6)
= 1. Let b(-) be the nonrandomized Bayes rule and

VM) = {x: x € X, bT(x)@Qb(x) < M?}.
Let 0 < e < 1 and define M(¢) by

(3.1 e/(1 —¢) = f [(BT(x)Qb(x))?/M () — 1]F(dx).
*@ V(M)

Then P, is solved for ¢ by

oty = Jo@) x € V(M())
I E @M E/BT@QpOT x & V(M)

and the least favorable distribution H, is given by
H,(dx) = (1 = ¢)/e[(b"(x)Qb(x))/*/M(e) — 1) {x & V(M(e))}F(dx). O

REMARK. The definition of M(e) is legitimate as the RHS of (3.1) is mono-
tone and continuous.

PRrROOF OF THE COROLLARY. The proof of the corollary follows by direct
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calculations if we note that
rla(x), x] = [a(x) — b(x)]"Q[a(x) — b(x)] + r[b(x), x]

rola(x)] = a7(x)Qa(x) + f 07Qog(0)I1(do). O

REMARK. Marazzi (1980) obtained this solution for a normal prior and
quadratic loss function.

EXAMPLE 1. Let A = {ay, a;}. Let ¢, 0 <& < 1 be fixed and f,(-) be the model
density relative to some common measure. Suppose [ L(f, ao)II(df) <
f L(8, a;)I1(d#). Then the “no observation” decision is ao. Let

7 ={x: f L(6, a0)fo(x)T1 () > f LG, aofo(xm(do)}

(i.e. the region in X where the Bayes rule b(x) should be equal to a;). Let h(-)
be the least favorable density. Clearly it concentrates on 2. Now, after observing
X = x we should decide qq if

(1-¢) f L(0, ao) fo(x)I1(d0) + ch(x) f L(6, ao)I1(db)

<(l-c¢) f L(8, a1) fo(x)I1(dO) + eh(x) f L(6, a,)I1(d0)

and a, if the inequality holds in the opposite direction. Define ¢, by

o _ J[L(8, a) — L(6, a1)]Fs(2:)I1(db)
1-e J [L(6, a1) — L(8, ao)]11(db)

Suppose 0 < ¢ < ¢. Then the solution according to Theorem 4 will be given by
s= [ L(8, a;)II(dB),

1 — & [ [L(8, a0) — L(6, a1)]fo(x)I1(d0)
€ J [L(6, a1) — L(8, ap)]IL(dF) ~’

and the “conservative” decision is just the Bayes decision. The opposite extreme
case will be when ¢ > ¢. In that case one should ignore the observed X and use
the “no observation” decision—a,. In particular, if the denominator in (3.2) is
zero then ¢y = 1, i.e., if there is a priori “indifference” between a, and a; then we
should always use the Bayes rule. To be more specific, suppose © has a N(f,, 7%),
6, > 0 a priori distribution while X — © has a N(0, ¢?) distribution. As a loss
function we take L(6, ap) = —6 + p6? and L(0, a,) = 6 + pd? for a small value of
p. (The pf? term was added for the sake of the technical definition of the loss
function as a bounded from below function and can be ignored from any practical
point of view. This loss function may seem appropriate, e.g. if we have to choose
between two varieties of apples and 0 is the difference between their mean yields.)

(3.2)

h(x) = x € 24
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For this example we get that 2, = {x: x < —6,0%/7?} and after some calculations:

B —05t77! f 0B (—a(0 + 0o0%/72))P (70 — 6o)) db

]. - &
= k70 (k) — ®(-k)

where k = (1 + 02/72)Y2y/7, ®(-) the standard normal c.d.f. and ¢ (-) its density.
Typically when one does an experiment like that ¢® is much smaller than 72
while 6o/7 is relatively small—otherwise the experiment is not “needed”. There-
fore, k is relatively small and ¢ is not too small. On the other hand, if the
experimenter has relatively high a priori confidence that @ is positive (i.e. k is
large) then the data is useful only when he is quite sure that the experiment is
relevant to his “real problem”. (For k = 0.5, 1.0, 1.5, 1,96 we get ¢ = 0.28, 0.077,
0.019 and 0.0048 respectively.)

EXAMPLE 2. Suppose ® = A =X =R* 0 ~N(0, ¥), X — 0 ~ N(0, ¥.) and
L@, a) = |6 — a||®. Then by Corollary 4.1 we ought to use the Bayes rule:
b(x) = %o (X + Eo)‘lx when b(x) is in the ellipsoid ||b| = M(e) and
M(e)b(x)/] b(x) || outside it. .

Consider again the 1.Q. example (example ii in Section 1). Suppose that our
prior distribution for this particular population is N (6, 72) while the mean of
the sample is distributed according to X — © ~ N(O0, a?). Corollary 4.1 defines
M(e) by

€ 2 x x
=2 f = = 1) do|——
1—¢ *>M(r2+62) /72 <T2 + 0'2 M ) <V1’2 + 0'2>
_ 9 72 ¢MV1’2+02 ® MV7? + o2
Now, for ¢ = 0.085 and 0.038 we get that the Bayes estimator should be truncated
to 0y + 1.27 and 6, £ 1.57 respectively.
In practice this result may be used by a non-Bayesian. The experiment can be
done such that a small subsample will be tested by the standard test, and then
the result of the majority of the sample will be used to refine the result of the

subsample.

T

REMARK. This result complements Efron and Morris (1971) which looked
on the same basic situation but when the statistician tries to be protected from
“irrelevant prior”. O

Our procedure may seem to be too conservative. The Bayes regret is one
possible measure for how conservative a robust procedure is (Anscombe, 1960).
This is defined as the difference between the expected risk of a procedure and
the Bayes risk, assuming the ideal model (i.e. ¢ = 0) is true. One can take this
measure as the “premium” one pays in order to be insured against the least
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favorable deviation from the model he believes to be true. Technically we define
A(e) = infsep Lo(6) — infsepLlo(8), 1=e=0

where D, is the set of all decision procedures which solve P, for the particular
value of e. The following result shows that the minimax rule is not too conserv-
ative (at least for small values of ¢). For more details consult Ritov (1983).

THEOREM 5.
(1) lim,_0A(e) = 0 and lim._oL(¢) = L(0).

(ii) Suppose there exists a Bayes procedure (3 such that sup,exro[B(- | x)] <
o, Then: A(e) = o(e) as e — 0, and there is a Bayes procedure 3’ such
that supge »L.(8’, H) = L(¢) + 0(¢) as e — 0.0

4. Appendix. We give here only an outline of the proofs. For details the
reader may refer to Ritov (1983).

LEMMA 1. Let {6,} be a sequence of decision procedures. Then it has a
subsequence {6n;} and there is a decision procedure 6* such that

Lo(6*) < lim inf;_,..Lo(6n;)

sup,exro[6*(- | x)] < lim inf;_osup.exro[éni(- |x)]. 0O

The proof of the lemma follows essentially the argument in Farrell (1967).
In the following & (- | -) will be any procedure such that §(- | x) = &(- | x’) and
ro[8(- | x)] = so for all x, x’ € X.

PrOOF OF THEOREM 1. For any s = s, we can find a sequence {5;} C D(s)
and L (5;) = R(s). By Lemma 1 there is a procedure 6 € D(s) with R(s) < Ly(5)
= R(s).0

PRrOOF OF THEOREM 2. Let X*, B(X*) be X, B(X) in case X is compact and
its one point compactification otherwise. Let #* be the set of all substochastic
measures on X*, B(X*) with the weak topology. Fix any ¢ € [0, 1) and define
K.:D x #* [0, ] by K, (5, H) = lim supg_.xL.(5, G).

Now, K, s the closure of L, as a concave function and, therefore it inherits
from L.(-, -) its convex-concave-like characteristics (Rockafellar, 1971, page
115). 2* is compact and hence by Sion’s theorem (Sion, 1958) K, has a saddle
value.

The compactness of #* and the upper-semicontinuity of K, (5, -) imply that
nature has a least favorable distribution (for K,) H, which is clearly a probability
measure. On the other hand, the statistician has by Lemma 1 a minimax
procedure §.. Hence (5., H,) is a saddle point for K,. Note that for any
6 € D, supye K. (6, H) = supye.-:L.(6, H). Hence &, is a solution of P,
for this e. (8,, H,) is also a saddle point for L.(-, -), ie. inf;epL.(5, H.) =
L.(5., H,) = supye .»L. (5., H). Suppose that this is not the case and L.(é,, H,) <
supye »L. (6., H) = K,(5,, H,). Then there exists a closed set C and a positive
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number 7 such that H,(C) > 0 and
suprecro[d:(- | x)] = supsexrold.(- [x)] —n =35 —n.
Let C, be open sets N;-; C, = C and define

_IE x€C,—C
=15 x&C,—C

Then Ly(6,) — Ly(é.) and lim sup, K, (6,, H,) < K, (6., H,) — nH,(C) and we have
a contradiction.

Suppose now that there is a decision procedure 6 such that n = L.(5,., b,) —
L.(8, H,) > 0. We will prove that this implies the existence of a decision procedure
é such that K,(5, H,) < L,(5., H,), which is a contradiction. Let u = (1 — ¢)F +
eH,, f = dF/du and h = dH,/du. Define

V=1{x: (1 —=e)r[o(-|x), x]f(x) + erold(- | x)]h(x)

< (1 = e)rfo.(- | x), x]f(x) + ero[o.(- | x)]h(x) — n}
s* = inf{s: u[V N {x: ro[6(- | x)] < s}] > 0}
S’ =VnNix:ro(-|x)] <s*+ n/2}.

Let S be a compact subset of S’ with u(S) > 0 and C an open set containing S
such that

J;_S (@ = e)r[6(- | 2), x]f(x) + eso} du(x) < nu(S)/2.

Define now
N 1’6(-|x) x€E€ S
o6=108(-lx) XecC-S
lb,(-lx) x & C.
Let

l‘s* + n/4 + n/4 xES
he(x) = 8o xe€C-S
lsupxex*rolﬁ(- |x)] x¢ C.

h+(.) and h_(-) are bounded upper-semicontinuous functions and satisfy:

f h_(x)H.(dx) = f ro[6(- | x)]H.(dx) and ro[6(-|-)] < h+(-).

Hence

K.(8, H.) = L.(5, H.) = ¢ lim supy_y, f ro[8(- | x)][H(dx) — H.(dx)]

< ¢ lim supH_,H[[f hy(x)H(dx) — f h_ (x)Ht(dx)]

< e{f hy(x)H, (dx) — f h_(x)Hc(dx)]

= nu(S)/2.
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This result together with L.(§, H,) < L.(5,, H.) — u(S)n/2 give us the desired
contradiction.

Finally, we have to prove that H, < F. Suppose that there is a measurable set
U such that F(U) = 0 < H,(U). As the statistician may use § on U without
increasing his loss, this means that 6, € D(sy). Now H,(U) = 1 means that there
is a Bayes procedure in D(sy); hence H,(U) < 1. Therefore nature may use H,
concentrated on U* as well. O

ProoF oF THEOREM 3. The fact that any solution of P; should be a solution
of P, for some s is quite clear and was mentioned before. Suppose now that 6* is
a solution of P, for some s*. If s* = s, then 6* is the solution of P; for ¢ = 1.
Suppose s* > so. Now, by the first part there is a function s(¢) (not necessarily
unique) such that :

L(e) = infiepsupne » L.(8, H) = (1 — ¢)R(s(e)) + es(e)
=1 —¢e)R(s)+es; 1>e>0

for any other s. This implies that R(-) has a supporting line at s(¢) with a slope
of —¢/(1 — ¢). Using an argument similar to that of Hodges and Lehmann (1952),
we can prove that R(.) is concave, and, hence, there is ¢* such that —e*/(1 — ¢*)
is the slope of a supporting line R(-) at s*. But —e*/(1 — ¢*) is also the slope of
a supporting line of R(-) at s(e*), or R(s(¢*)) = R(s*) — ¢*[s(e*) — s*]/(1 — &*).
Hence

L(e*) = (1 — ¢*)R(s(e*)) + e*s(e*) = (1 — e*)R(s*) + e*s*

1.e., 6* is a solution of P, for ¢*. 0

PROOF OF THEOREM 4. Fix any s > s,. We will prove that (a) such a solution
exists, (b) (1) + (i) = (ii1), and (c) (i) = (ii).

(a) Theorem 3 implies that the solution of P, for this s is a solution of P, for
some e(s). Theorem 2 implies that there is such a solution which is Bayes for a
H* « F. Take \* to be a version of (1 — ¢)™' ¢ dH}/dF. H¥, as a saddle point
strategy of nature is supported on {x: ro[6¥ (- | x)] = s}. Hence A} (s)[ro[6F (- | x)]
— s] = 0 and 6*(- | x) minimizes r[6(. |x), x] + A¥(x)ro[6(- | x)] for almost all
X(F).

(b) Define H,(dx) = (1 — £)/e A\ (x)F(dx). Then by construction
infﬁel)Lc(ay Hs) = Lr(as) Ha) = supHE:f)Lz(as) H)-

(c) Suppose (i) is true while [ A\,(x)F(dx) = . Then there is a sequence of
measurable sets {B,}, B, € B(X),n=1, 2, - .. such that

f A\(x)F(dx) < o while lim, .. fB A (x)F(dx) = oo,
B,

n n

Let A} 6} and HY be defined as in part (a) of the proof. Define now for
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n=12, ...

_J\(x) x€B, _ Jo(x) x€B,
Men () = {A.:?(x) x&B, On= J|a:<x> x & B,.

Part (b) implies that é,, is a solution of P; for a sequence {¢,}. &,/(1 — ¢,) =
J Aon(x)F(dx) — o0, or ¢, — 1. But for any function s(e) defined as in the proof
of Theorem 3, lim,_,;s(¢) = so, contradicting the assumption that s > s,. 0
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