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With the recent flurry of interest in Projection Pursuit (PP), it is both timely
and useful to have this paper by Professor Huber which attempts to unify these
developments and more classical multivariate dimensionality reduction tech-
niques.

We will limit our comments mostly to PP for finding clusters. The focus will
be on the significant gap between the general ideas and existing theory about PP
and what is important to and needed by practitioners.

The emphasis in PP on linear combinations and, in this paper, on affine
invariance is in conflict with the frequent need to identify subsets of the given
variables which contain the cluster structure. PP may help, but it is far from the
end of the line as far as reduction of dimensionality and interpretation are
concerned. Furthermore, the use of such invariant procedures can be misleading.
For instance, the Class III type (squared) distance function, [a’(x; — x;)]*/a’Sa,
which utilizes an overall covariance matrix S, whether determined robustly or
not, may be quite inappropriate for capturing cluster structure because S says
nothing about within-cluster variability. Similar comments would seem to apply
to Huber’s invariant version of the Friedman-Tukey index.
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Huber’s claim in the Introduction that PP can avoid the “curse of dimen-
sionality” is appropriately softened in the end: the sample size may need to be
quite large relative to the dimensionality to avoid the effects of spurious structure.
So, while PP may avoid the more blatant drawbacks of distance-based methods
in handling extraneous variables, it does not provide a panacea for the challenging
problem of handling a large number of variables simultaneously.

The computational problems associated with the use of general purpose
optimization algorithms should not be overlooked. Users will need to worry about
starting points, tuning constants, global vs. local optima, etc. There is clearly a
trade-off between the use of PP indices which require such algorithms and those
which can be solved as eigenvalue problems. In this latter class are many of the
classical multivariate statistics as treated by Roy (1957) via the union-intersec-
tion principle (Roy, 1953). Indeed, this principle encompasses the spirit of PP as
discussed in Section 6 of Huber’s paper.

There are some quite useful projection methods directed at detecting “inter-
esting” directions, too, that require no optimization algorithms at all; see, e.g.,
Andrews (1972) and Andrews et al. (1971, 1973). And there are others that
piggyback on the results of direct clustering methods by making eigenvector-
based projections of the clusters; see Gnanadesikan et al. (1982).

The choice of index is a critical issue as Friedman and Tukey cautioned in
their 1974 paper. Whatever the index, it is essential to have some knowledge
about its statistical behavior. Huber points out the lack of this knowledge in the
regression case, but the same comment seems to apply to other situations in
varying degrees as well. Proper scaling of the variables may be crucial to the
performance of some indices. For many problems, there may be no answer that
is both easy and effective. In the case of the Friedman-Tukey index, inappropriate
scaling may affect the weights assigned to noise variables to the point where they
have too large an impact on the distances between points along the projections.
Unlike indices that are based either on variance maximization (e.g. principal
components) or on maximal clustering (e.g. Kruskal, 1969), the Friedman-Tukey
index combines both aspects. From an interpretational viewpoint, one wonders
about the relative advantages of such a “combination.”

Some perspective on the state of PP is revealed by comparing the development
of it with the usual methods of cluster analysis. Direct clustering methods have
evolved over a long period along a variety of fronts as discipline-oriented re-
searchers fourid techniques and refinements of them for the real problems they
faced. The result has been a wide range of imperfect yet workable and rather
well-understood tools, but not much in the way of cohesive statistical theory.
The novel aspects and clever ideas of PP, as addressed in this paper, have been
put forth by a relatively small circle of statisticians. Some elegant results have
been obtained, not only in Huber’s paper but also in Diaconis and Freedman
(1984). What is lacking is a broad experience base and perspective as to what PP
methods will, and will not, do on a variety of real and simulated problems.

Hopefully, one after-effect of Huber’s paper will be extensive empirical work
to help pin down some of these issues that practitioners need to have resolved
before they can use PP with confidence.
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We would like to thank Professor Huber for this far-reaching yet penetrating
discussion of projection pursuit methods.

Our comments will touch upon three areas: inference, the relation of PPDE
to the Iterative Proportional Scaling algorithm, and the extension of PPR models
to other settings.

1. Inference. Professor Huber discusses only briefly (Section 21) the prob-
lem of inference for PP models. But if PP is to be used for data analysis, we feel
that this is an important question. We will concentrate on the PPR model,
although qualitatively our findings should apply to PPDE and perhaps to other
PP procedures as well. Suppose that we have fit a one-term PPR model of the
form y = g(a’x) to a set of data with p predictors and n observations. An
important question is: Is the direction a really “significant,” or just an artifact of
our search over all possible directions? We can answer this by comparing the
observed decrease in the corrected sum of squares D =Y (y; — 7)2 — X (y: — y:)?
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