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CONDITIONAL RANK TESTS FOR THE TWO-SAMPLE
PROBLEM UNDER RANDOM CENSORSHIP

By GEorRG NEUHAUS

University of Haomburg

For the two-sample problem with randomly censored data, there exists
a general asymptotic theory of rank statistics which are functionals of
stochastic integrals with respect to certain empirical martingales. In the
present paper a conditional counterpart of this theory is developed. The
conditional martingales are versions of the original ones reduced to the unit
interval having their jumps at fixed lattice points. The resulting conditional
tests are strictly distribution free under the null hypothesis of randomness
if the censoring distributions in both samples are equal and are asymptoti-
cally equivalent to their unconditional counterparts even if the censoring
distributions are different. Simulations for linear rank statistics and
Kolmogorov-Smirnov-type statistics show superiority of the conditional
versions over their unconditional counterparts with respect to size and
robustness under unequal censoring in both samples. At the same time the
power of the conditional and unconditional tests is very similar in most
cases.

1. Introduction. In the present paper we deal with the two-sample
problem of testing the null hypothesis of randomness, that is, the equality of
both sample distribution functions (d.f.’s) under random right censoring. This
problem has received considerable interest in the past. A lot of different test
procedures have been proposed and studied so far. Let us mention here only
the log-rank test of Peto and Peto (1972), the generalized Wilcoxon test of
Gehan (1965) and the tests of Harrington and Fleming (1982). These tests and
many others belong to the class of generalized linear rank tests of Aalen (1978)
and Gill (1980) which are functionals of certain empirical processes on [0, «)
being stochastic integrals with respect to basic martingales. By methods of
continuous-time martingale theory, their asymptotic behavior has been de-
rived by Gill (1980); see also Leurgans (1984) and the survey of Andersen,
Borgan, Gill and Keiding (1982). Another class of functionals leads to
Kolmogorov—Smirnov (KS) and Cramér—von Mises (CM) type tests which were
reviewed and proposed by Schumacher (1984), who discussed, among others,
the results of Koziol (1978), Koziol and Yuh (1982) and Gill (1980).

All the tests mentioned previously are usually applied using critical values
of the asymptotic null distribution of standardized versions of the various test
statistics. One major advantage of this approach is that these tests are
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asymptoticaily valid even if the censoring distributions are different in both
samples. On the other hand, the validity is an asymptotic one, and it has been
reported in the literature that for finite sample numbers the nominal and
actual level may differ substantially; see Latta (1981), Janssen and Brenner
(1991) and Schumacher (1984).

In the case of equal censoring, one may construct strictly distribution-free
tests under the null hypothesis by a conditioning device (permutation tests). In
fact, the idea of permutation tests is an old one and has already been used in
the framework of survival analysis under censoring by Gehan (1965) and
Mantel (1967); see also Gill (1980), Section 3.3, and Andersen, Borgan, Gill
and Keiding (1982), subsection 3.5. Gehan standardized his linear rank statis-
tic by the exact permutation variance and proposed a normal approximation
for large samples. Yet, under unequal censoring distributions this test is
usually not distribution free, neither finite sample nor asymptotically. Neuhaus
(1988) and Janssen (1991) made a systematic study of conditional rank
statistics under random censoring in the framework of local asymptotic deci-
sion theory. Again, this theory is restricted to equal censoring and contiguous
alternatives.

The aim of the present paper is to define and study conditional tests being
strictly valid under equal censoring and being asymptotically valid under
unequal censoring. The idea is simple enough: Take the unconditional test
statistic T, say, standardized to make it asymptotically distribution free under
the null hypothesis (even under unequal censoring). Then, keeping the ob-
served censoring pattern fixed, perform a test based on the permutation
distribution of T'. It will turn out that the unconditional and the conditional
tests will be asymptotically equivalent under very general circumstances in-
cluding unequal censoring, while, by construction, the conditional tests are
distribution free under the null hypothesis with equal censoring. Simulation
results in Section 7 will show the pleasant behavior of the conditional tests
with respect to size under equal and unequal censoring. At the same time the
power behavior of the conditional and unconditional tests is very similar in
-most cases.

For the asymptotic treatment of the conditional tests, we will in a first step
reduce the unconditional processes of Gill (1980) to the unit interval. Then,
under the null hypothesis with equal censoring and conditionally under the
observed censoring pattern, we develop an asymptotic theory paralleling the
unconditional one of Gill (1980). In fact, since the reduced processes turn out
to be discrete parameter martingales, the conditional theory becomes even
simpler than the unconditional one. Andersen, Borgan, Gill and Keiding (1982)
have already used the unreduced version of these martingales.

2. Unconditional rank tests. In this section we give a short review of
unconditional tests which in Section 3 will be converted into conditional ones
and state their asymptotic properties under the null hypothesis.

We assume the two-sample general censorship model. Observations are
made on 7, individuals from population %, £ = 1,2, and all n==n, + n,
observations are independent. (@ := b or b =@ means that a equals b by
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definition.) The ith subject in sample %2 has nonnegative, independent latent
survival and censoring times X}, and U,;, respectively, whose distribution
functions (d.f.’s) are F;, and G,. For an easier presentation we will assume in
this section that all d.f.’s are continuous, and give comments on the treatment
of ties in Section 5. Let S, := (1 — F},) and the cumulative hazard function
Ay(x) = [¥(1 — F,)"' dF,. The observable random variables (r.v.’s) are X, =
min(X;, U,;) and A,; == 1{X?, < U,;}, where 1{E} is 1 if the event E occurs
and 0 otherwise. Let Y,(x) be the number of X,,’s with X,, > x and N,(x)
the number of uncensored X,,’s with X,, <x. Put Y=Y, +Y, and N =
N; + N,. Always 0/0 := 0.

Our hypothesis of interest is #,: F;, = F, (=: F) versus either the omnibus
alternative &7,: F, # F, or the one-sided alternative &/;: F|, > F,, F, # F,,.

2.1. Test statistics. Many of the statistics which are usually applied for
testing -#;, depend on the process W, given by

X
(2.1) W,(2) = [ w,dl,, x>0,
0

with w, a nonnegative stochastic weight function on [0,») and where the
process L, given by

0 (Y1 + Y2) Y1 Y2

n 172 x Yl
=(n1n2) (Nl(x)—fOYl+Y2dN), x>0,

will be called a log-rank process since L,(») is the well-known log-rank
statistic. The preceding integrals are pathwise Stieltjes integrals. If the weight
function w,, is left continuous and adapted to a natural filtration, then, under
#y, W, is a martingale and the powerful asymptotic methods of continuous-
time martingale theory apply; see, for example, Aalen (1978), Gill (1980) and
Andersen, Borgan, Gill and Keiding (1982).

An important class of weight functions is

(2.3) w, = SZ((YI + Yz)/n)K(Y1Y2/(n1n2))_)‘1{Y1Y2 > 0},

with p,k,A >0 and S, the left-continuous Kaplan-Meier estimate of the
survivor function in the pooled sample. For « = A = 0 this is the class intro-
duced by Harrington and Fleming (1982) containing the log-rank (p = 0) and
Prentice’s (1978) Wilcoxon (p = 1) cases. The case p=A=0 and «=1
corresponds to the Gehan—Wilcoxon test, while p > 0.5 and «k = A = 0.5 lead
to ‘“‘approximately distribution free” statistics in Fleming, Harrington and
O’Sullivan (1987). Finally, for p = 0, k = A = 1, W, is the standardized Nelson
estimator of A; — A, (stopped at £ := inf{x: Y;(x) - Yy(x) = 0}) and is called a
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hazard process. We estimate the variance of W, (x) by
n o« . Y)Y, d(N,+N,
2.4 V = 2 0.
(24) n(%) =3 fow"(Y1+Y2) v,+y, @ °%

12

V, is the estimator V, of Gill (1980), formula (3.3.12), specialized to the
present continuous situation.

Many functionals of (W,, V,) yield sensible test statistics for 5#;. For testing
versus the one-sided alternative .27}, the simplest functional is W, () / V!/2(c0),
where W (=) is known as a generalized linear rank statistic. For testing versus
the omnibus alternative 27,, we will use as an example the Kolmogorov-
Smirnov (KS) statistic

(2.5) KS? = sup{I(W,/(1 + V,))(2)l: K,(x) < 9},

for some 9 €(0,1) and K, ==V, /(1 +V,). For related test statistics, see
Section 4.

2.2. Unconditional tests. The common way of using the preceding test
statistics is to reject the null hypothesis if the observed value exceeds a critical
value computed from the asymptotic null distribution which can be derived
from the convergence properties of W, and V, in the Skorohod space D[0, d]
for suitable d < (0, «].

Though our main interest lies in conditional counterparts of the preceding
unconditional tests, we need for the sake of comparison the asymptotic null
distribution of the unconditional tests. Therefore, let us state some simple
sufficient conditions ensuring convergence in distribution (—,) of W, and
convergence in probability (—p) of V,. These follow immediately from the
appendix of Fleming, Harrington and O’Sullivan (1987), which in turn special-
ize the results of Gill (1980). Let n tend to « such that

2.6 n,/n - n for some n € (0,1),
1

and w, —»p w uniformly on each interval [0,v] with 0 <v <7, 7:= sup{x:
F(x) < 1,G,(x) <1, k = 1,2}, where w is some continuous function on [0, 7).
Then, under 5%, one has W, -, BV on D[0,v] and V, =, V uniformly on
[0,v], where B is Brownian motion and V the asymptotic variance function
V(x) = [w*(1 - G)1 — G,)/GdF, with G =71 - G)) + (1 — X1 — G,).
Consequently, if V(v) > 0, then

(27) Wn(v)/\/r}/z(v) g '/I/(O7 1)’

where .#(0, 1) is the standard normal distribution and

(2.8) KS? -, sup IB(¢)l,
0<t<d

with 0 <9 < K(v) = V(v)/(1 + V(v)) and B® is the Brownian bridge. For
(2.8) we have used the equality in distribution of the processes B and
(1 + ©)B%¢t/(1 + t)): t = 0) combined with a little extra argument for replac-
ing the random set {x: K, (x) < 9} by the nonrandom set {x: K(x) < 9}. If,
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additidnally, the w,’s are uniformly bounded V n, then v may be replaced by
v = o,

These results, which apply to the weights in (2.3), show that the uncondi-
tional tests based on the asymptotic distributions in (2.7), respectively (2.8),
are asymptotically distribution free under 5%, even if the censoring distribu-
tions G, and G, are different.

3. Conditional rank tests and their asymptotic behavior under the
null hypothesis. In this section which contains the main results of the
paper, we will convert the unconditional tests of the preceding section into
conditional ones and derive their conditional asymptotics by considerations
paralleling the unconditional case. In fact, the situation will become even
simpler since the reduced processes given in this section can only jump at i /z,
l<i<n. Let X;, ,< -+ <X, , be the order statistics of the pooled
observations X, ;, put X, , =0, and let A, = (A, ,,...,A,. ,) be the censor-
ing status vector of the corresponding A’s Put Z, = 1 (0) if the r.v. X,
belongs to the first (second) sample and call Z, = (Z,,...,Z,) the sample
status vector.

Finally, put p; = (Y,/YXX,,,) and g, := 1 — p, for 0 <i < n. We reduce
all processes considered so far to the unit interval by transforming X, , to i/n
and let the reduced processes be constant in [(i — 1)/n,i/n). The reduced
processes with paths in D[0, 1] are labeled by an overbar, that is, L, W,, w,,
V, and so on. We get

— n 2 [nZ” i
(3.1) =5 Emly|aenz-p)
and
_ [nt]
(32) \/n(t) = E w ( ) i:nPi4q;s 0<t< 1,
nlnzl 1

where [x] denotes the integer part of x. Note that in (3.1) and trivially in (3.2)
terms with i/n > 7, = max{j/n: p;q; > 0} <1 vanish, so that these pro-
cesses stay constant for ¢ > 7,. The predictability of w, implies that w,(i/n)
depends solely on A, ,,...,A; ., and Z,,...,Z;_,. Note that p, and g,
depend likewise only on Z,,...,Z,_,. For example, the weight functions w,
from (2.3) reduce to

n n

69 m(=) = 5(2)(") T () 1 <5,
with
Su(i/n)= TI (1-4;,/(n-j+1)), S (1/n):=1

l<j<i—-1

If H, denotes the empirical d.f. of the X;, ,’s, thenL, =1, <H,, W, = W, oH,
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and so forth. We can rewrite the test statistics from (2.2) in reduced form as

(3.4) W,() /VY/2() = W, (1) /V2%(1)
and
(3.5) KS? = sup{l(wn/(l + \7"))(%)‘: K(%) < a}.

In this way the previous formal dependence on the X;. ,’s has been removed.
Hence these statistics depend solely on the sample status vector Z, =
(Z,,...,Z,) and the censoring status vector A, = (A;.,,...,A,.,). The idea of
conditioning relies on this fact and the following easy lemma.

LemMA 3.1. Under the hypothesis F#, with the additional assumption
G, = G, (equal censoring) which will be called the restricted null hypothesis
H#,, the vectors A, = (A, ,,...,A,. ) and Z, =(Z,,...,Z,) are independent
and the rv. (Z,,...,Z,) is distributed as a random sample without replace-
ment taken from a population consisting of n, members “1” and n, mem-
bers “0.”

An arbitrary random vector Z, € {0, 1}" is said to have permutation distri-
bution if the latter property holds true. Let T, (Z,,A,) be one of the test
statistics (3.4) or (3.5) and k(a) the (1 — a)-quantile of their asymptotic null
distribution. The conditional counterpart of the corresponding tests is ob-
tained by simply replacing k(a) by the (1 — a)-quantile k,(a,8,) of the
distribution of T,(Z¥, §,), where A, = 3, is the observed censoring status and
Z* is some r.v. having permutation distribution. According to Lemma 3.1, one
has A(Z,) = £(Z*) under #, (equal censoring). Thus the independence of
A, and Z, makes the conditional test finite sample distribution free un-
der #,.

However, the question arises whether the conditional version has any
connection with the unconditional one or whether we have created just
another test. The pleasing result is that the conditional and the unconditional
versions are asymptotically equivalent even under the general null hypothesis
#, with possibly unequal censoring, G, # G4, for which A, and Z, are
usually dependent and Z, need not have permutation distribution. In fact, we
will show k,(a,A,) »p k(a) under &#, and under some mild extra condi-
tions, entailing the asserted equivalence under #, and under contiguous
alternatives. ‘

The key for proving these results is the observation that for fixed A, = §,
the process W, is a martingale if Z, has permutation distribution. More
exactly, let 6, = (8. ,,...,8,. ,) be a fixed element of {0,1}" and Z, =
(Z,,...,Z,) be any random vector on some probability space (2, &, P), having
permutation distribution. Then, putting A, = §,, the reduced process W, is a
martingale on [0, 1] with respect to the filtration (Zn”: 0 <t < 1), where %
is the o-algebra generated by (Z,,...,Z,), 1 <i < n, and %, = {J, Q}. This
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follows immediately from the fact that, conditionally on %,_;, Z; has
binomial(1, p;) distribution with p, =(Z;+ --- +Z,)/(n — i + 1), and that
w,(i/n) depends solely on the fixed 8, and Z,,...,Z;_;, 1 <i <n. Appar-
ently, W, is the continuous-time version of the discrete-time martingale
W,(Gi/n), ), 1 <i <n.

Moreover, the conditional binomial nature of the Z;’s implies that for the
reduced variance estimator V,, see (3.2), one has

(3.6) V(t) = (W,,W,)(¢t) for0<t<1,

where ( -,-) is the “predictable quadratic variation” of the underlying
martingale; see, for example, Jacod and Shiryaev (1987), page 38. Equation
(8.6) will ensure that V, is a consistent estimator of the limiting covariance
function of W, under the permutation distribution for sequences §,, n > 1,
specified in the following discussion, which is essential for showing that the
unconditional and the conditional limiting null distribution of the statistics
(8.4), respectively (3.5), coincide.

Now a well-known martingale CLT says that pointwise convergence of
(W,,W,) with [0,1) to a continuous limit function V, say, combined with a
conditional Lindeberg condition, see (6.2), implies W, -, BoV in the
Skorohod space DI[0, 1); see Jacod and Shiryaev (1987), Theorem 8.3.33, or Gill
(1980), Theorem 2.4.1. From this CLT we get a criterion for convergence in
distribution of the conditional process W, in the space DI[0, 1), respectively
D[0, 1], which is in fact the main theoretical result of our paper. As a
consequence we get in Theorem 3.3 asymptotic equivalence of our conditional
and unconditional tests. All proofs will be given in Section 6.

THEOREM 3.2. Assume n,/n = n €(0,1) and let Z,, n > 1, have permu-
tation distribution. Convergence in probability and in distribution in what
follows refer to this assumption. Moreover, let 6, = (6,, ,,...,8,. ,) €{0,1}",
n>1, be a fixed sequence such that the functions HL(t) = [{8, . ds,
8o. , = 0, fulfill

(3.7) Hi(t) > HY(¢t) for0<t<1,

for some sub-d. f. H! on [0, 1]. Finally, let W,; be real numbers depending on
8, and Z,,...,Z;_,, 1 <i <n, such that the jump functions W,(t) = Wy,

w,, = 0, converge in quadratic mean in probability, that is,

(3.8) fot(wn - w)2(s) ds—>p0 for0<t<l,

where W is a nonrandom function on [0, 1] being square integrable on each
subinterval [0,¢t], 0 < ¢t < 1. Then

(3.9) W, -4 BoV inD[0,1)

and

(8.10) V,(t) »p V(¢) forte[0,1),
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with
(3.11) V(t)= [ w*dH".
[0,¢]
If, additionally, V(1) < © and
(3.12) hm lim sup P{V,(1) - V,(¢) > =0 Ve>0,

n-—o

then (3.9) and (3.10) hold true in the Skorohod space D|0, 1], respectively on
the interval [0, 1].

Theorem 3.2 is easily applied to our situation: Using Glivenko—Cantelli
theorems for the empirical d.f. of the X ,’s and the uncensored X;. ,’s, it will
be shown in Section 6 that, under /%, there is a unique sub-d.f. H* namely
H'=H'eH ! with H'=[;(1 - G)dF, G=1G,+(1 - )Gy, H:=1—
a- F)(l — G)and H™Y(¢) = inf{x: H(x) > ¢}, 0 < ¢ < 1, such that

(3.13) ML) = fotA[ns]:nds —p HY(t) under #,, 0<t<l,

Ay, , = 0. By switching in (3.13) to subsequences of realizations fulfilling (3.7),
Theorem 3.2 applies and yields the following theorem on convergence in
probability of the conditional quantiles. Let us remark that under our assump-
tions in (3.13) one has even almost-sure convergence. Since in more general
situations, for example, varying censoring d.f.s in each sample,
Glivenko-Cantelli theorems hold only in probability, we chose the preceding
weaker formulation.

THEOREM 3.3. Assume n,/n — n € (0, 1), (8.8), (3.12) and 0 < V(1) < .
Let T(Z,, A,) be one of the test statistics (3.4) or (3.5) and k(@) the (1 — a)-
quantile of their asymptotic null distribution #(0, 1), respectively
L(up{B°@): 0<t<¥d}, 0<d<KQ=VQ1),/Q+ V(Q). Moreover, let
k.(a,8,) be the (1 — a)-quantile of the distribution of T,(Z%, §,), where A, = 8,
is the observed censoring status and Z% is some random vector having
permutation distribution. Then (0 < a < 1)

(3.14) k. (a,A,) —»p k(a) under H#,.

If (8.12) does not hold or if V(1) = =, then (3.14) remains true for the KS
statistics (3.5) if 9 < K(1).

Since the asymptotic null d.f.’s are continuous and strictly increasing,
(3.14) implies the asymptotic equwalence of the conditional test with their
unconditional counterparts under H,.

Let us recall that asymptotic equivalence of the unconditional (unc) and the
conditional (con) tests, that is, E|$, ... — @, conl = 0 under %, implies their
asymptotic equivalence also under contiguous alternatives. Local shift and
scale alternatives as described, for example, in Neuhaus (1988) and Janssen
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(1991), are typical cases where contiguity holds true, even under unequal
censoring.
Theorem 3.3 applies to the class of weights w, from (3.3).

ExampLE 3.4. Under n,/n — n € (0,1) and the permutation distribution,
condition (3.8) is shown in Section 6 to be fulfilled for weights @, from (3.3)
with arbitrary p, k, A > 0 and limiting function

(3.15) w(s) =8°(s)(1—s) ", 0<s<l,

where S =S o H~!. The limiting variance function V(¢) becomes, for 0 <
t<1,

(3.18) V(¢) —fSZP(1 id)> g fszp I(1 — id)***14F,

where id = identity, F:=1- S . The second equality in (3.16) follows from
(1-id)=01-F)X1-G) with G:==G-H ! and dH' = (1 — G)dF. Since
S < 1, one has V(1) < « for all special choices of p, x and A mentioned after
(2.3) except for the case 1 — p = k = A = 1 leading to the hazard process. If
A < 0.5 and either £ — 2A > 0 or 2p > 1 and 2« — 4A + 1 > 0, then condition
(8.12) is fulfilled. If the probability of no censoring, H(1) = (1 — [GdF), is
strictly pos1t1ve then V(1) is strictly positive, too.

Note that in the case A = k = 0.5, p > 0.5, and F(1) = 1, one gets V(1) =
1/(2p), not depending on the censoring distributions. Related ““approximately
distribution free statistics’’ have been studied by Leurgans (1984) and Flem-
ing, Harrington and O’Sullivan (1987).

4. Related omnibus tests. In contrast to our KS statistics which are
based on Brownian bridge versions of the limiting processes, Gill (1980) as well
as Fleming, Harrington and O’Sullivan (1987) chose Brownian motion ver-
sions as their starting point. This leads to a parallel class of so-called Rényi-type
statistics with limiting distribution based on suprema of the Brownian motion
instead of the Brownian bridge. All these statistics have conditional counter-
parts with analogous properties.

In the “omnibus” part of our simulations, we will concentrate on Brownian
bridge versions based on the hazard process and the Kaplan-Meier process. An
extensive comparative simulation study of unconditional tests and their condi-
tional counterparts is beyond the scope of this paper.

4.1. Statistics based on the Kaplan—-Meier process. So far, we have consid-
ered only statistics based on the log-rank process L, which was motivated by
the conditional martingale property of L,. Likewise, one may introduce condl-
tional KS tests based on the Kaplan- Me1er process X, = X, °H,,, where X,
given by

[nt] [nt]

(41) Xn(t) =c H(l - Ai:n(]' - Zi)pi_l) - E(l - Ai:nziqi_l) ’
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with ¢ = (nn,/n)'/2. X,, is proportional to the difference of the Kaplan—Meier
estimators of both samples; see, for example, Shorack and Wellner (1986), page
293. Similarly as in Section 2 one has convergence in distribution X, —,
S+ V) W% K under #, and, with S, from (3.3), one obtains in analogy
to (2.8) that, under %, for 0 < ¢ < K(7),

(4.2) KSK? = sup Xn/(gn(lﬂ_/n))(i)
i K, Gi/n)< n

-5 sup [BO(¢)l.
0<t<d

Now one may proceed as before and define unconditional and conditional tests
being again asymptotically equivalent under &#,. The proof relates X, to
S, - W, by suitable Taylor expansions, W, being here the hazard process.
Details may be found in Neuhaus (1991a).

4.2. Cramér-von Mises statistics. Analogous considerations as for the KS
statistics can be made for the CM statistics

(4.3) CMK} = [(X28;%(1 +V,) " )1(K, < 9) dK,
and
(4.4) oM? = [(W2(1+¥,) )1(K, < 0) dK,.

The conditional and unconditional limiting distribution of these test statistics
is that of [J(B°(¢))* dt.

5. Treatment of ties. In the sequel we describe briefly how the condi-
tioning device has to be changed if the underlying d.f.’s are not continuous so
that ties may occur. For details see Neuhaus (1991a, 1991b, 1992).

Put (X,,...,X,) =(Xyy,..., Xy, Xo1,. ., Xy,,) and let r denote the
number of different X,’s. In the continuous case r = n but in general r is
random. Define integers T, :=0<T, < -+ <T.,=n and T, =
{T,,T,,...,T} by

X11n= =XT1:n<XT1+1:n= =XT2 < e <)(T,_1+1:n

n

The observations X; with i € I, == {k: X, = X ,}, ¢ :== T}, form the jth tie
group. In the jth tie group the uncensored observations are ranked ahead of
the censored ones. For 1 < j < r let D; be the number of uncensored observa-
tions in the jth tie group, let A; (B;) be the number of uncensored (censored)
observatlons from sample 1 m the Jth tie group, and p;:=(A; + B;
“+A, +B) X (n—-T,_D7', q; =1~ p; By transforming Xy
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q =T}, to ¢/n and putting w,(q/n) = w,(X,. ,), the processes W,, respec-
tively V,, see (3.1), respectively (3.2), extend to

(5.1) W,(t) = ( » )1/2 Yo (ﬁ)(A.—D.p.)
" nqn, o1 \n 7o
and
_ n ! T. n—-T .-D.
(5.2) V) = - Elw,%(;’)p,-q,-Djn_—,_,’,j_lI_—l’,
forT)<n-t<T),,,l=0,...,r,T,,, = Infact, if ties occur, then a factor

(1-(AN - 1/(Y - 1)) with AN(x) == N(x) — N(x — ) has to be added un-
der the integral sign in the definition (2.4) of V, in order to get Gill’s estimator
V, explaining the last factor in (5.2). The corresponding standardized linear
rank statistic is W,(1)/V./%(1) and the KS statistic KS? from (2.5) can be
rewritten as

(5.3) KS? = sup(l(W,/(1 + U,)(T,/n)l: K,(T;/n) < 9.

Let us describe the generalized conditioning only for KS statistics. For other
statistics analog considerations may be made. Apparently, KS? =
KS)@A,,B,,T,, D, )withA, =(A4,,..., A,) and similarly for B,, T, and D,,.
It may be shown by simple symmetry considerations that under #, and given
(T,,D,) =(t,,d,), the vector (A,,B,) has permutation distribution in the
following sense. If ¢; (d;) are the components of t,,(d,)and e; := ¢, — ¢; , — d;
Vj, to==0, then A, ..., A, B,,...,B, are the number of red balls if
dy,...,d,, eq...,e, balls are successively drawn at random from an urn with
n, red and n, black balls. Now, having observed (T,,D,) = (t,,d,), the
conditional test rejects the null hypothesis if the observed KS? exceeds the
(1 — a)-quantile, k,(a,t,,d,) say, of the distribution of KS?(A* ,B*,t,.d,),
where (A%, B}) is some r.v. having permutation distribution in the preceding
sense. By construction, the conditional test is distribution free under the
restricted null hypothesis -#,. As in the continuous case, given (T,,D,) =
(t,,d,) and assuming that (A,,B,) has permutation distribution, W, is a
martingale with predictable quadratic variation V, for a suitable filtration.
One may derive limiting results also in the present general case by reducing it
to the continuous one. For the sake of brevity, we omit explicit formulations;
see Neuhaus (1991b, 1992). Let us only remark that for discontinuous failure
distributions F the limiting distribution of the unconditional as well as of the
conditional KS statistic is of the form Z(sup{|lW°(¢)l, 0 <¢ < 9, t € A)),
where A C[0,1] may depend on F and the censoring d.f’s G, and G,.
Consequently, the unconditional tests using the critical values of the distribu-
tion Z(sup/W°#)|: 0 < ¢ < 9) is asymptotically not distribution free if F is
discontinuous, not even under the restricted null hypothesis 970, rather it is
conservative; see also the related discussion in Fleming, Harrington and
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O’Sullivan (1987). In contrast, the conditional tests are finite sample distribu-
tion free under &#,.

REMARK 5.1. As mentioned previously, V, is the predictable quadratic
variation of the conditional martingale W, under the permutation distribu-
tion. Following Gill (1980), (4.1.20), one may propose another estimator
V,, = V,, oH,, which is his estimator V;. The reduced version V,, of V;, is in
the contlnuous case

[nt]

L o2 2 )a.2 - p

nang ;-1

(54) Vi (t) =

If the failure-time distribution is continuous, V,, is the quadratic variation
[W,, W, ] of the conditional martingale W, under the permutation distribution.
This is not true in the general discontinuous case. Therefore, there is some
theoretical support for V, in favor of V,,. Beyond that, our simulations,
performed for continuous distributions, showed superiority of V, over V,, in
most situations; see the “omnibus” part of our simulations. If the conditional
Lindeberg condition and (8.10) hold true, it follows also from Jacod and
Shiryaev (1987), Theorem 8.3.33, that V,,(2) —p V(#).

6. Proofs. We use the previous notation. In particular, Z,, = (Z,,...,Z,)
is assumed to have permutatlon distribution as defined after Lemma 3.1. The
processes Z,(t) = (n1n2/n) M, — [ntlny/n), 0 <t <1, M, =2,

- +Z;, converge in distribution to the Brownian bridge B on D[O 1]; see
Theorem 24 1 of Billingsley (1968). Consequently, if n,/n — n € (0,1),

(6.1) sup |p;, —nl—-p0, 0<t<L1.

l<i<nt

PROOF OF THE CONDITIONAL LINDEBERG CONDITION. The conditional Linde-
berg condition mentioned before Theorem 3.2 is

[nt]
CL,(¢e,t) = X E(UA(U]| = )| #_,) —p 0,

i=1
Ve>0,0<t<1,

with U, = W (i/n) — W,((i — 1)/n). We show that (6.2) holds true for all
sequences §,, n > 1. Since, condltlonally on % _,, Z; has binomial(l, p;)
distribution, one has with

(6.2)

4= (n/(rn )2 = 3.0

< 2(77(1 - n))‘lmax{iﬁf(%)/n 1<ix< nt} =a,,
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the last inequality being true for large n, that

[nt]

CL,(s,t) = X di(l{diqz'2 = Sz}pi + l{dipi2 = Ez}qi)
(6.3) =t
[nt]
<la,2e? Y d,»p 0 for0<t<l,
i=1

where —p 0 follows since it is well known that quadratic mean convergence in
probability in (3.8) implies a,, —p 0; see, for example, Neuhaus (1988), (5.15).
Hence (6.2) is fulfilled for all sequences §,. O

Proor THAT (3.7) AND (3.8) mMPLY (3.10). According to (3.2),
(6.4) V,(2) = [T, dif,
0
with f,(u) = (n?/(n 0 )P(nyGne; 2 p 1 by (6.1) uniformly for u € [0,¢].
Combined with (3.8), one gets for v, = w2 f, and v := w? that R, == [{lv, —

vldA —p 0, where A is Lebesgue measure. For ¢ > 0 choose a continuous,
bounded function g, with b, := [lg, — v|dA < e. Hence

2

/:vn dH! — /:vdf_Il

<R, + 2b8+lftgedﬁ}, - [(g.am*
0 0

where we have used dH%/dA < 1and dH'/dA < 1. The third term in the last
sum tends to 0 because of (3.7). Since &£ > 0 is arbitrary, (8.10) follows. O

According to the CLT cited before Theorem 3.2, the conditional Lindeberg
condition and pointwise convergence of (W,, W, ) to V imply weak convergence
W, -, BoV in D[0,1). But (W, W, )(#) = V() > V(#) V ¢, according to (3.6)
and (3.10).

EXTENSION OF (3.9) aND (3.10) To DI0, 1], RESPECTIVELY [0, 1]. Because of
(8.12) and V(¢) —» V(1) < » as ¢ 11, Theorem 4.2 of Billingsley (1968) yields
V(1) - V(1). Following the reasoning of Gill (1980), one gets by Lenglart’s
inequality applied to W2 and (W,,W,) = V, that

IP’{ sup [W,(s) — W,(¢)| > e} < (v/€2) + P{U,(1) = V() = v)

t<s<l1

Ye,y>0.
Now, the same argument as for \_/n yields (3.9) on D[0,1]. O

PrOOF OF (3.13). Let H, be the empirical d.f. of the X,’s and let H}, be the
empirical sub-d.f. of the uncensored X,’s. It follows from the Glivenko-Cantelli
theorem (respectively, a simple extension of it) that, under %, |H, — H|l.. —=p
0, respectively |[H. — H'|l, -, 0, where || - |l. means supremum norm. By
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switching to subsequences, we may assume that H, and H., n > 1, are fixed
sequences such that the preceding convergences hold true. Apparently, HE —
H: oH - Yl < 1/n. Since H: °H, X(¢) > H'o H!(¢) for ¢ from the dense set of
continuity points of H™1, (3.13) follows at once. O

Proor or (3.8) IN ExampPLE 3.4. According to (6.1), the only nontrivial
point is to show that S, () =TT, _; ;1 — 8;. ,/(n —j + 1)), i == [nt], tends
to S(¢),0 <t < 1. Put f (u) = n/(n — [nu] + 1). Then

j=1
< X (n=j+)(n-i)7"
1<j<i
(n—i+1)""=1/n
<(1-¢t)"'n"t>0,
using the inequality 0 < —In(1 — 1/(x + 1)) —1/(x + 1) < 1/x(x + 1) for
0 <x < ». As in (6.4),

[ fudBL > ['(1=id) " dH' = ~In §(t).
0 0

|-18,(0) - [, aft;

1
n—j+1 _n—j+1)

For the last equality, see, for example, Shorack and Wellner (1986), page 295.
Combining we get S,(¢) —» S(¢). O

Proor oF (3.12) IN ExampLE 3.4. If p >0, k — 21 > 0 and A < 0.5, then

w2(i/n)p;q;, 1 <i <n, n>1, are uniformly bounded by some nonrandom
constant, implying (8.12). If p > 0.5, k — 21 + 1 > 0 and A < 0.5, one gets by
using the equality (n—i+1)AS (z/n) =-§ Ai/n)8;_y. , that AGHES
V() < const(S,(nt]l/n) — S,(1)). Since S Antl/n) > S(t) for 0 < t < 1, con-
dition (8.12) is fulfilled if S(l) = 0. Otherwise, if S(l) =1-F(H Y1) > 0, we
use the fact that (unconditionally) IT,_; <n(1 A /(n=j+1)-pl-—
F(H™ (1)) under #,, which follows from a minor extension of Wang’s (1987)
results to the case with possibly G, # G,. By switching to subsequences we
may assume that liminfS ,(1).> §(1). Then (3.12) follows from

hmsup(S ([n])—gn(l))s§(t)—§(l)—>0 ast— 0. (]

n-—>o

7. Simulations. In a separate simulation study the performance of vari-
ous conditional and unconditional linear rank tests and omnibus tests has
been worked out. Here we want to give a small excerpt and some conclusions.

7.1. Linear rank tests. In order to make comparisons with known results,
we just repeated the simulation study of Janssen and Brenner (1991) with the
following changes: First, due to our notation, we interchanged their sample
numbering. Moreover, they used for the conditional test the nonstandardized
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statistic W (1) and for the unconditional test the standardized version
W,(1)/V}Y/%(1), whereas we use in both cases the standardized version
W,(1/ \/1/ 2(1). At the outset our reason for preferring V,(1) to V,,,(1) was that
v (1) is the predictable quadratic variation of W, in the continuous as well as
in the discontinuous case, while V, (1) is the quadratic variation only for
continuous failure time distributions; see Remark 5.1. In fact, simulations not
included here show the superiority of V(1) in the conditional as well as in the
unconditional case. The actual level was in practically all cases considered
closer to the nominal one for V,(1); see also the following omnibus case.
Furthermore, the estimated level of the conditional versions [with variance
estimator \_/n(l)] was usually more accurate than that of the unconditional
version. In particular, for unbalanced cases (n; = 50, n, = 10) the uncondi-
tional versions were too conservative. Moreover, when the tests where per-
formed for rounded variables (ties!), a case not treated by Janssen and Brenner
(1991), the unconditional versions became highly anticonservative, while at the
same time the conditional version’s actual level was quite close to the nominal
one; see Table 1.

TaBLE 1
Actual levels of various unconditional (unc) and conditional (con) linear rank tests with pre-
dictable quadratic variation estimator (5.2). p, resp. py is the probability of no censoring in
sample 1 resp. sample 2

P1 P 1/21/2 1/411/2 17211 1/213/4
F ny, n, LR GW PW LR GW PW LR GW PW LR GW PW
Nominal level 5%

10 10 unc 54 52 52 59 55 54 59 56 55 60 53 56
con 52 50 49 52 56 56 54 55 52 48 48 54
50 10 unc 37 33 35 37 33 36 42 38 40 40 37 38
con 54 49 53 54 58 68 53 53 60 55 54 5.7
10 10 unc 59 54 54 68 60 63 70 58 62 65 57 59
con 47 53 50 55 58 64 60 59 69 54 51 65
50 10 unc 37 31 35 40 29 38 45 39 41 43 36 39
con 51 48 48 62 65 75 58 54 69 58 52 55
10 10 unc 55 50 50 59 58 57 62 55 56 59 55 54
con 53 47 46 50 55 65 56 54 54 56 49 54
50 10 wunc 36 36 35 38 32 37 42 38 38 40 37 38
con 58 44 53 56 60 66 57 55 59 58 54 6.5

S - -

Typical cases with observations rounded uptol /10

10 10 unc 11.1 6.0 70 74 47 58 147 78 89 141 73 84
con 50 47 52 45 50 49 35 46 49 38 51 5.0

W 50 10 unc 11.1 39 6.9 112 46 67 152 54 98 136 45 84
con 55 42 48 64 57 63 58 63 62 57 59 46

L 50 10 wunc 147 6.8 10.1 147 4.4 101 234 114 155 216 9.8 14.3
con 52 51 50 59 63 67 63 59 61 57 60 58
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The linear rank tests considered in the simulation study are the log-rank
test (LR), the Gehan-Wilcoxon (GW) and the Prentice—Wilcoxon (PW) test, see
(2.8), with variance estimator V,(1). The choice of distributions follows Latta
(1981): Let F be either the exponential(8)-d.f., F(x) = 1 — exp(—Bx), x > 0,
or the Weibull(8* 4)-d.f., F(x) =1 — exp(—(Bx)*), x > 0, or the log-
normal(B)-d.f., F(x) = ®(log(xB)), x > 0, with ® the standard normal d.f. and
parameter B > 0. The three classes of distributions will be abbreviated by
E = E(B), W= W(B), L = L(pB), respectively. Under the null hypothesis we
choose F| = F, = F with B = 1 in the three cases and the censoring distribu-
tion G, to be uniform on some interval [0, T, ], where T, is chosen such that
the probabilities of no censoring, p,, attain prescribed values p, =
1/4,1/2,3/4, 1, for the distributions E, W and L, respectively, £ = 1, 2.

Table 1 shows estimated levels under the null hypothesis F, = F, = F. The
abbreviation “unc,”’ respectively ‘‘con,” means the unconditional, respectively
conditional, version of the various tests. The nominal level is 5.0%. The second
part of Table 1 repeats for some typical cases the computations with all
observations rounded up to 1/10. Notice the inaccuracy of the unconditional
tests when ties occur! The conditional tests for p; = p, = 0.5 have the exact
level 5.0%. The variation in the corresponding part of Tables 1 and 3 is solely a
consequence of simulation and may help judging the accuracy of the results for
P1 # Py

Table 2 shows the power of the tests in Table 1 at the 5.0% level for
n, = ny = 10 under equal censoring p; = p, = 0.5 for various alternatives. It
turns out (also in many other cases not reported here) that the conditional and
unconditional tests have very similar power. Altogether the conditional ver-
sions appear to be preferable to their unconditional counterparts in most
situations.

TABLE 2
Power of various unconditional (unc) and conditional (con) linear rank tests with predictable
quadratic variation estimator (3.2) for sample sizes ny = ny, = 10 at level 5% under various
alternatives (E(B), E(1)), (W(B), W(1)) and (L(B), L(1))

(E(B), E(1)) (W(B), W(1)) (L(B),L(1)
B LR GW PW B LR GW PW B LR GW PW

0.5 0.6 0.6 05 09 1.8 1.7 1.6 05 0.3 0.3 0.3 unc

06 08 06 16 18 16 0.3 02 06 con
10 51 48 51 10 61 53 55 10 53 50 52 unc
49 51 4.9 44 49' 50 58 50 50 con
15 166 148 155 1.1 149 130 134 15 185 186 189 unc
144 148 139 129 125 125 17.7 189 13.0 con
20 317 272 292 14 646 555 582 20 363 367 366 unc
305 270 252 608 54.6 54.4 344 36.7 25.7 con
30 596 521 546 16 871 791 813 30 656 679 677 unc
57.3 50.8 48.1 842 1785 788 65.1 670 452 con

40 779 696 723 18 959 912 927 40 827 849 848 unc
75.7 684 684 944 909 916 81.7 838 611 con




G. NEUHAUS

1776

05=°u gg¢ g9 LV 6V 8% 0S¢ &y LV 8% 8% €F TF¥ 9F L¥ TS 8% SOM SOM

0¢ 09 6% 09 09 %S S¥ 0SS €v ¥vy OV ¢v Lv LY 8% 6% GIM SIM

or="u 6% 6% Sv LV ¥v 9% v 9% 6% 6% 9% 6% 0S¢ TS g gg dxg dxy
Jojew1)sd Abd yjim uorsisa euornyipuo))

05=%u gg¢ €¢ 9¢ 92 €9 19 T% ¥e 2S¢ TS ¥e LZ ¥9 09 CC %% SOM SOM

9¢ ¥¢ 9% ¥& 9% ¥S ¥e ¥Z 09 6% 8€ 6% LS TS 8% ¥E GIM CIM

or="4 ¢g 9¢ TIv 0€¢ TS ¥S Le 8¢ <¢F OF 6% 8T 0S L¥ 6¢ gz dxg dxyg
I0jewr)sd Abd yiim uoisiaa euorjipuooun)

05="%u L8 @01 €3I €LT €8 ¥O0T COT L%l LOT €31 Il €SI T[0T €€l SPl L60 SOM SOM

g6 GTIT %2l SLT €6 ¥IT STIT 99T SO0T €3T %Il 8ST 96 ¢3I Z¥%L 003 SIM SIM

0OT="Tu 68 80T 921 ZLI ¥6 ¥IT ¥3T ¥9T ¥8 66 96 €61 €0T G2l 9%l 66 dxg dxyg
JI0jeuwi)sd Ab qjm uoisIaA reuoryrpuooun)

05=°%2 9% ¢v T% €% 9F 9V 6% 8% GF S¥ 8% LV 0S 6% TS TS SOM SOM

vv ¥v v ¥ TS 0§ TS €9 6% 6% ¥S €S 6% 6% 6% 8% GIM CIM

0s="4 6% 6% 6% 8% €¢ €¢ &S TS GF 9% 9¢¢ €¢ €S €¢ gg gg dxg dxg
Joyewnr)sd Abd gjm uoisieA [euorIpuo))

05=°% T¥ gv 8Z 8% 9% 6% L% 08 9% 0S 63 63 LS 09 ¥e 9 SOM SOM

I'v 9% 9% 8% 8% TS 82 8% €% 9% 62 0€ L% TS 0€ & GCIM SIM

0g="vu 0 €¢ 2T¢&€ TE& ¥S 69 e L€ ¥V 9% ST 8T TS GG LT LG dxy dxg
JI0rewr)sd Abd gjim uorsIoA [euoripuodun

WO MWD S MSM WD MWD SM MSY WO MWD SM MSY WO MWD SM MSM °¥p 'Jp

g/11v/¢ s/1 11 vy/118/1 5/1138/1 d d

sapdwms 1y10q u1

u0OUN UOYNQLUISIP UOWWO0D Yy $1 8 [P = V[ *p *7 a7dwps “dsat T ajdwns u1 Suri0suad ou fo K117190q04d 23 51 °d *dsas 'd
" ynqLysp Y3 S P P 7 T9] 1 oul 1119001 Y7 S1
“%0°G $2 1202] pourOU YT, "0G = Pu ‘0T = Tu pup 0G = Pu = Tu saz1s apdwps uof 7537 SNQrUWO SNOLIDA 40 (% u1) sjana) pappwysiy

€ &1av],



CONDITIONAL RANK TESTS 1777

7.2. Omnibus tests. Our simulations follow partially those of Schumacher
(1984), who considered three types of alternatives: Proportional hazards
with F, = exponential(A,), & = 1,2; large early difference with F, =
Weibull(A,, 1.5), F, = Weibull(A,, 1); and crossing survival curves with F; =
Weibull(A,, 0.5), F, = Weibull(A,, 1), abbreviated by (Exp,Exp), (W15, Exp)
and (W05, Exp), respectively, in the tables. Under the null hypothesis #}:
A; = Ay = 1, in the three cases the censoring distributions are chosen in the
same way as for linear rank tests. Under alternatives the censoring d.f. is the
uniform distribution on the interval [3, 5] for both samples resulting in equal
censoring, and A;, A, chosen so that prescribed five-year survival probabilities
g1, 95, say, result; see Schumacher (1984).

Several omnibus test statistics are considered: KS? from (8.5) and CM?
from (4.4) (W, the hazard process), KSK’ from (4.2) and CMK? from (4.3),
called KS, CM, KSK, CMK, respectively, in Tables 3 and 4, with the addition of
the “pqv estimator” (predictable quadratic variation), respectively ‘“‘qv estima-
tor” (quadratic variation), if V,, respectively V,,, is used. In fact, in order to
get results comparable to Schumacher’s (1984) simulations, instead of V,, the
slightly altered estimator V} is used which is the reduced form of the
estimator V;; see Gill (1980), (3.3.11), with dN, /Y, replaced by dN,,/(Y, — 1),
k = 1,2. Moreover, the norming factor (n,n,/n) in all processes is replaced by
“n” which influences the computation of KK, = V, /(1 + V,) and K* = V /(1
+ Vi ). We follow the usual practice and stop the processes at the largest i/n
with Y,(X; ) > 0, k = 1,2, when using V,, respectively Y,(X, ,) > 1,k = 1,2,
when using V.

Table 3 (n; = n, = 50) and (n, = 10, n, = 50) contains estimated levels,
and Table 4 (n, = n, = 50) contains estimated powers of the various tests.

TABLE 4
Estimated power (in %) of various omnibus tests for sample sizes n, = ny = 50 and various
distribution functions d. f.; and d. f., with prescribed five-year survival probabilities ¢, and q, in
sample 1 resp. sample 2. The censoring distribution is uniform (3, 5) in both samples

Uncondi-
Conditional tests Conditional tests tional tests

KSK KS CMK CM KSK KS CMK CM CMK CM

df.; d.f., q; qy pqv estimator qv estimator qv estimator

Exp Exp 080 070 150 149 154 154 159 162 16.6 16.5 14.7 144
W15 Exp 080 070 287 287 306 306 285 284 304 306 439 426
W05 Exp 080 0.70 9.9 9.8 7.8 7.8 9.3 9.4 7.8 7.8 6.9 6.1
Exp Exp 055 045 119 119 126 126 112 113 120 121 106 103
W15 Exp 055 045 424 424 465 465 421 420 461 46.0 490 476
W05 Exp 055 045 246 246 241 239 271 270 260 258 280 269
Exp Exp 030 020 129 126 132 133 110 11.0 128 129 137 134
W15 Exp 030 020 690 689 751 752 681 681 753 753 752 742
W05 Exp 030 020 607 604 653 654 629 628 648 647 639 628
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The nominal level is 5.0% in all tables. The unconditional versions are applied
with asymptotical critical values of the usual KS and CM statistics.

Discussion. Several questions may be asked: What are the differences
between the hazard processes and the Kaplan-Meier processes? Are the
predictable quadratic variation (pqv) estimators preferable to the quadratic
variation (qv) estimators? How sensitive are the different versions to unbal-
anced sample sizes? How robust are the different versions against unequal
censoring?

It has turned out that the pqv estimators and the qv estimators behave
quite similarly as long as the sample sizes are equal, whereas for unbalanced
sample sizes the qv estimator may give disastrous estimated levels as shown in
rows 7-9 of Table 3 with n, =10, n, = 50 in contrast to rows 10-12.
Therefore, the pqv estimator V, seems to be the better choice. Accepting V,,it
is seen in all of our simulations that the hazard process—and the Kaplan—Meier
process—versions behave almost identically under the null hypothesis as well
as under alternatives. Since the test statistics based on the hazard process W,
are somewhat easier to compute, the latter versions seem to be the preferable
ones.

As already found by Schumacher (1984) in his unconditional setting (with
the qv estimator and equal sample sizes), the KS tests are too conservative
compared to the corresponding CM tests. The same observation holds true for
the unconditional version with the pqv estimator; see Table 3. In contrast, for
the conditional versions the attainment of level is very good for the KS tests
as well as for the CM tests under equal censoring and under unequal
censoring, see the last three rows of Table 3 with n; = n, = 50 and n, = 10,
ny = 50.

Let us look at the power results in Table 4. The unconditional tests CMK
and CM with the qv estimator are Schumacher’s tests @@y, and Q%y,,
respectively. The powers of the unconditional CM tests of Schumacher are
very. similar to the powers of their conditional counterparts. Moreover, condi-
tional KS tests (being nonapplicable in their unconditional version because of
their too strong conservatism) have power properties similar to the corre-
sponding CM tests. Among the tests considered here the conditional CM test
with the pqv estimator seems to be the most attractive one. Each entry in our
tables concerning unconditional tests is based on 2000 Monte Carlo repeti-
tions. The conditional versions are based on 3000 Monte Carlo repetitions
preceded by 2000 repetitions for estimating the conditional critical values, that
is, 3000 - 2000 runs were made for each such entry. In order to make the
computed powers of the different conditional tests comparable, we have used
randomization to achieve exactly the nominal level.
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