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CHI-SQUARE GOODNESS-OF-FIT TESTS FOR RANDOMLY
CENSORED DATA!

By Joo Han Kim

Chungnam National University

We consider general chi-square goodness-of-fit test statistics for ran-
domly censored data—call these generalized Pearson statistics—which are
nonnegative definite quadratic forms in the cell frequencies obtained from
the product-limit estimator, allowing random cells and general estimators
of nuisance parameters. This class of statistics generalizes the class studied
by Moore and Spruill in the no censoring case. The large sample behavior of
these statistics under the null hypothesis and local alternatives is pre-
sented. The chi-square type statistics based on the observed cell frequencies
obtained from the product-limit estimator are members of this class for
which the quadratic form is selected to produce a chi-square asymptotic
null distribution. The generalized Pearson statistic and the statistic by
Akritas for a simple hypothesis are compared on the basis of asymptotic
relative Pitman efficiency. It is shown that neither statistic dominates the
other. The efficiencies are shown to depend on the degree of censoring and
the number of cells. For heavily censored data, the Akritas statistic is
superior to the generalized Pearson statistic. In the uncensored case, the
Akritas statistic, which does not reduce to the Pearson statistic, is not as
good as the Pearson statistic in the sense of Pitman efficiency.

1. Introduction. Under the random censorship model, we assume that
the responses Xj,..., X, are independent nonnegative random variables with
continuous distribution function F. The censoring variables Y;,...,Y, are
also nonnegative and are assumed to be a random sample, drawn indepen-
dently of the X’s, from a population with continuous distribution function G.
We say that the X;’s are censored on the right by the Y;’s since we can only
observe Z; = min(X;,Y;) and §; = I[Z; = X;], which indicates whether Z; is
an uncensored observation or not. The problem of goodness-of-fit for censored
data is to test the null hypothesis that F is a member of a family {F(-|0)} of
distribution functions indexed by a parameter § running over a parameter
space ().

If there exists no censoring, the first step of the standard procedure for a
chi-square test of fit is to partition the range of the response variable into
k+1cells A,i=1,...,k+ 1. After the sample is taken, the observed cell
frequencies n; are obtained by counting the numbers of observations falling
into A;. These observed cell frequencies can be expressed as n; = nf, dF,
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where F, is the empirical distribution function. Then, using an estimate 6, for
6, the expected cell probabilities p,(8) = [, dF(x|6) are estimated under the
null hypothesis by p,(6,). A general chi-square statistic is a nonnegative
definite quadratic form in the vector of standardized cell frequencies W, =
Wy, - - Wyeps1)), Where w,; = (n, — np(6,))//np,(6,). A general asymp-
totic theory for these statistics appears in Moore and Sprulll (1975). The most
useful such statistics have a chi-square limiting null distribution.

If we have censored observations in the sample, the empirical distribution
function is is no longer a consistent estimator of F. The product-limit estima-
tor of F' introduced by Kaplan and Meier (1958) is the most commonly used
estimator for censored data. It is a consistent estimator of F and also reduces
to the usual empirical distribution function in the case of no censoring.

Let F be the product-limit estimators of F. The observed cell probabil-
ities are u; = [, dF. The expected cell probabilities can be estimated under
the null hypothes1s by p,(6,) = [4, dF(x|6,), where 6, is an estimate of un-
known 6. The vector of observed minus expected cell probabilities V,(6) =
(v,10), ...,v,,(0)), where v,(8) = Vn (u, — p,(6)), has a normal limiting null
distribution for fixed 6. Such asymptotic properties of the product-limit esti-
mator were established initially by Breslow and Crowley (1974) and more
generally by Gill (1983). Using this fact we can get chi-square statistics—call
these generalized Pearson statistics—as nonnegative definite quadratic forms
in V,(0) with suitable centering matrices.

Chi-square tests for type II censored data were developed by Mihalko and
Moore (1980). For randomly censored data, Chen (1975) proposed generalized
Pearson type chi-square tests for simple and composite null hypotheses using
the product-limit estimator. He used a modified minimum chi-square estima-
tor for composite null hypotheses. Habib and Thomas (1986) proposed a
statistic for composite hypotheses using the maximum likelihood estimator.
Turnbull and Weiss (1978) considered a likelihood ratio statistic applicable for
discrete or grouped censored data with finite support. Hjort (1984, 1990)
proposed goodness-of-fit tests based on a weighted version of the cumulative
hazard process. Akritas (1988) introduced Pearson type goodness-of-fit test
statistics based on the number of the uncensored observations in each cell.

Necessary notation and assumptions are introduced in Section 2. In Section
3, we present asymptotic theory for general chi-square statistics, which are
nonnegative definite quadratic forms in the cell frequencies obtained from the
product-limit estimator, allowing random cells and general estimators of nui-
sance parameters. This class of statistics generalizes the class studied by
Moore and Spruill (1975) in the uncensored case. This general theory includes
tests based on nonnegative definite quadratic forms in cell frequencies ob-
tained from the product-limit estimator such as the statistics by Chen (1975),
Habib and Thomas (1986) and Kim (1988), but it cannot include other types of
statistics. For example, the chi-square statistic by Akritas (1988) cannot be
studied in our framework.

Akritas (1988) introduced chi-square statistics for randomly censored data
based on the number of uncensored observations in each cell. The resulting



CHI-SQUARE GOODNESS-OF-FIT TESTS 1623

chi-square statistics have one more degree of freedom than the corresponding
generalized Pearson chi-square statistics and they do not reduce to the Pear-
son statistics in the no censoring case. The Akritas statistic and the Pitman
efficiency are discussed in Section 4 and Section 5. For the Pitman efficiency,
we will use the general definition of Rothe (1981) which can be used to derive
the Pitman efficiency for two chi-square distributed test statistics with differ-
ent degrees of freedom. In Section 6, the generalized Pearson statistic and the
statistic by Akritas (1988) for a simple hypothesis are compared on the basis of
the asymptotic relative Pitman efficiency. It is shown that neither statistic
dominates the other. The efficiency is shown to depend on the degree of
censoring and the number of cells. The Akritas statistic is superior to the
generalized Pearson statistic if we have heavily censored data. In the uncen-
sored case, the Akritas statistic, which does not reduce to the Pearson statistic,
is not as good as the Pearson statistic in the sense of the Pitman efficiency.
These facts are illustrated by computing the efficiencies of two statistics for
testing fit to the family of exponential distributions.

2. Notation and assumptions. We observe Z; = min(X}, Y;) and §; =
1[Z; = Xl Jj=1...,n, where X;’s are iid. with continuous distribution
function F(x|6,n) and Y;’s are also i.i.d. with continuous distribution function
G(y). Both X/’s and Y’s are nonnegative and they are independent. The
parameter 6 ranges over an open set (), in R* and n ranges over a neighbor-
hood of a point 1, in R™. We write F(x10,n,) = F(x|6), so that the composite
null hypothesis that the X; have a distribution function in the family F(x|6)
becomes H,: n = n,. We will present the large sample behavior of tests for H,,
under the sequence of parameter values (6,, 7,,) where 6, € Q, and 1, = ng +
n~1/2y for fixed y € R™. This model was used by Moore and Spruill (1975),
Durbin (1973) and Chibisov (1971) and covers many common alternatives such
as the contamination alternative under which

F(xl6,7) = (1 - ) F(x16) + 7K (x),

where 0 <7 < 1 and K is a fixed distribution function.

The cells for chi-square tests are intervals in R! whose boundaries are
functions of a variable ¢ defined on an open set Q, € R". The resulting
cells are denoted by A,(¢) =I[a;_(¢),a,(¢)), where 0= a,(p) < aqe) <

- <ay(p) <a,,(@) = In common cases r = $ and ¢ is replaced by an
estimator of 6. In general, since the parameter 6 is unknown, 6 has to be
estimated by an estimator 6, = 0,(Z,,...,Z,,8,,...,8,) satisfying 6, — 8, =
0,(n~'/?). For the cells, we will use ¢, = ¢.(Zy,...,2Z,,5;,...,8,) which
satisfies ¢, — ¢ = 0,(1). The arguments 6, ¢, 7 will usually be suppressed
when they take the values 6, o, 7o, respectively. Expected values and deriva-
tives are computed under (8, n,) unless otherwise stated.

Define the observed cell probability u,,(¢) for each cell by u,(p)=

Jage) dF(x) where F is the product-limit estimator of F. The expected cell
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probability for each cell under (6, n) is

(2.1) p:(0,71,0) =fA( AF(x10,m), i1,k
(4

Each p,(6, n, ¢) is estimated by p,(,, ¢,) under the null hypothesis. Let

(22) Uni(om,ﬁp) = ‘/;(uni((p) _pi(e’n’¢))’ i = 1"”’k
and V, (0, n, ¢) be the k-vector whose ith component is v,;(6, 1, ¢).

A general chi-square statistic has the form
(2'3) T, = V.(6,, ) K,V(0,,0,),
where K, is a nonnegative definite, possibly random, symmetric £ X k& matrix
converging to a fixed nonnegative definite matrix K. In some cases, K, will be
a generalized inverse of a consistent estimator'of the asymptotic variance-
covariance matrix of the random vector V,(6,, ¢,).

We impose the following assumptions, which are almost the same as the
ones used by Moore and Spruill (1975), slightly changed to fit the random
censoring case.

AssuMpPTION Al. Under (84, 7,), 6, — 0, = O,(n"/?) and ¢, — ¢, = 0,(1).
The cell boundaries a,(¢) are real valued continuous functions of ¢ in a
neighborhood of ¢,.

AssumprioN A2. For each i, p,.0,7m,¢) is continuous in (6,7, ¢) and
continuously differentiable in (6, n) in a neighborhood of (6,, 14, ¢,). More-
over, Lp, = 1 and p; > 0 for each i.

AssumpTiON A3. F(x) is continuous and sup,|F(x|n,) — F(x)| - 0 as
n — o,

AssuMPTION A4. K, is a nonnegative definite, possibly random, & X k
matrix which converges to a fixed nonnegative definite £ X 2 matrix K as
n — o,

AssumpTiON A5. Under (6, 1,,),
n
‘/;I‘—(on - 00) = n_1/2 Z h(zj’aj, nn) + Ay + Op(l)
j=1

for some s X m matrix A and measurable function A(z,8,7n) from R X
{0,1} X R™ to R® satisfying

E'(oo,nn)[h(z,ﬁ,nn)] =0 and E'(oo,nn)[h(z,B,nn)h(z,S,nn)'] =L(n,),

where L(7,) is a nonnegative definite matrix converging to the finite nonnega-
. tive definite matrix L = E[h(z, §)h(z,86)]as n — .

AssumPTION A6. The distribution functions F(x|n) and G(x) possess the
probability density functions f(x|n) and g(x) with respect to a o-finite
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dominating measure {. As n — », f(xln,) = f(xln,) and h(z,6,1,) -
h(z, 8,1, a.e. ({).

Assumption Al is a usual assumption about 6, and random cell boundaries.
Assumptions A2 and A4 are familiar assumptions for a chi-square statistic.
Assumption A3 is needed to handle the alternative case. In the null case we
only need the continuity of F(x).

Assumption A5 specifies the asymptotic behavior of the estimator 6, under
the sequence of alternatives. The raw data MLE 6§, and the minimum chi-
square estimator 6,, which minimizes the chi-square statistic V(§)¥,(6)V,(0),
where ¥,(6) is a consistent estimator of the inverse of the asymptotic covari-
ance matrix of V (0), satisfy Assumption A5 in most cases. This extends
Theorem 2.4.1 of Kim (1988) and results of Borgan (1984). Arguments of
Davidson and Lever (1970) can be used to obtain the asymptotic forms (2.5)
and (2.7) of estimators 6, and 6, as in Assumption A5 in regular cases. [See
Kim (1988).] Assumption A5 is in fact satisfied in many cases in which the
regularity conditions of Davidson and Lever (1970) do not hold.

Let I(z, 816, n) = & log (210, ) — [¢a(ul6, 1) du, where a(z|0, ) =
f(z16,71)/(1 — F(z|6,n)). Define an s X s matrix J and an s X m matrix J;,
by

0%1(z,4810,7) 9%1(z,610,7)
(2.4) J=[—E(——————30ia()j )} le:[_E(—aoianj )]

Then in regular cases we have under (6,,1,,),
A n al 2, 5'0’ n
(25) Va (b, —0,) =n"2 ¥ J(_._(___">
j=1

+ Wy + 0,(1).

In the case of minimum chi-square estimators 8, based on the random cells
Ap,) where ¢, — ¢, =0,(1), under suitable regularity conditions, these
estimators in the random cell case have the same limiting behavior as in the
fixed cell case under the null hypothesis.

Let ¥ be the inverse of the asymptotic covariance matrix of V,. The
elements of ¥ are listed in (3.1). Define a 2 X s matrix B and a k£ X m matrix
By, by

(2.6) . B-=

12

(9pi(0, 77)
Onj ’

Then, under (6,,7,), we have the following form for 6, which satisfies
Assumption A5:

Bpi(ﬂ,n))

96,

n
Vn (8, — 6,) =n"Y2 ¥ (B'YB) 'B'YW(z;,8;n,)
(2.7) J=1
+(B'¥B) 'B'¥B,y + 0,(1).

Here W(z, 8|m) is the function defined in Lemma 3.2.



1626 J. H. KIM

Assumption A6 is needed to obtain the limiting distribution of T, with
“estimators 6, satisfying Assumption A5 under (6,,7,). It is not needed when
limiting null distributions are being studied. In general, the assumptions
become less restrictive if only the null case is of interest.

3. General chi-square statistics for randomly censored data. Let
¥.(t) be the stochastic process y,(t) = Vn (F(t) — F(tln,)). The weak conver-
gence of y,(f) to a process with continuous sample paths can be proved by
using Theorem 4.1.1 and Theorem 4.2.1 of Gill (1981).

When we use random cells, the differences between the random cells
actually used and the fixed cells which they approach produce error terms in
the large sample form of chi-square statistics. The following lemma, that can
be proved easily using the usually random change of time argument as in
Billingsley [(1968), page 145], shows that those terms converge to zero in
probability.

Lemma 3.1. Suppose Assumptions Al, A2 and A3 hold. Then under
(00’ nn)’
yn(ai(¢n)) _yn(al((PO)) = p(l)'

Now we can describe the limiting behavior of the vector V, defined in (2.2).
Let B and B,, be the matrices defined in (2.6). The following result extends
Theorem 4.1 of Moore and Spruill (1975) to the case of censored data. This can
be proved by using arguments similar to those employed in Theorem 4.1 of
Moore and Spruill. [See Kim (1988).]

THEOREM 3.1. If Assumptions Al, A2 and A3 hold, then under (8,,7,),

Vi(0n,0,) = Vo(m,) — BV (6, — 65) + Bryy + 0,(1).

The following lemma states that the vector V, can be expressed as a
normalized sum of continuous functions of (Z, §,),...,(Z,,5,). This can be
obtained from Breslow and Crowley’s (1974) results. [See Kim (1988).]

LemMa 3.2. Let q(tln) = 1 — F(¢ln) and H be the distribution function of
Z;. Define a continuous, nonnegative, nondecreasing function C(t|n) by
dF(sln)

(1 - F(slm))*(1 - G(s))

t
C(tln) =
7_'»hen, for fixed 7,

1 n
V.(n) = = .le(zpﬁﬂn) +0,(1).
=
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The ith component of the k-vector W(Z i» 8;1m) is given by

wi(Z;,8;ln) = ki(Z;, 8;ln) — k,_1(Z;, 8;In),

where

k(2 8,In) = a(aiin)| Cailm) — 1[2; < a] [ dC(uln)
—1[Z;<a;,8;=1](1 - H(Zjln))_l).

It requires more notation to describe the limiting distribution of a general
chi-square statistic of the form T, given in (2.3). A, & and L are as in
Assumption A5, S is a k£ X k matrix such that K = SS’, B and B, are as in
(2.6). Let W(z, 8) = W(z, 8|n,) which is defined in Lemma 3.2. Now define

n = (Bip — BA)y,

Mo = S,I-Ly
3 =T+ BLB - BE[h(Z,5)W(Z,8)] — E[W(Z,8)h(Z,5)]B,
%, =838,

where I' = E[WW'] is the asymptotic covariance matrix of V,. The following
form of the elements of ¥ = I'"! are derived in Kim (1988):

U = 12"‘ Zk: %, i1=1,...,k—1,
r;q; m=i+1 Tm9mqm-1
1
(3.1) Upr = gl
p; k Py .

Vis =¥ = rjq,-_quf i m§+1 raiah_, P
where
(3.2) g;=1-F(a;,) fori=0,1,...k,
(3.3) r = oF(x) fori=1,... k.

4. (1 - F(x))*(1 - G(x))

The limiting distributions of 7, under the null hypothesis and local alterna-
tives are presented in the next theorem. This extends Theorem 4.2 of Moore
and Spruill (1975) to the censored data case.



1628 J. H. KIM

THEOREM 3.2. If Assumptions A1-A5 hold with n = ny and y = 0, then
under (8,,n,) the limiting distribution of T, is the distribution of
& .
Z Ajx f J»
j=1
where ); are the characteristic roots of 3, and the ij are independent x?
random variables with one degree of freedom.
If Assumptions A1-A6 hold, T, has as its limiting distribution under
(69, m,) the distribution of
Y apd(vi/a) + X
A;#0 A,=0
where )(fj(vj2 /A;) are independent noncentral x? random variables with one
degree of freedom and noncentrality parameter ij /Aj, and v; are the compo-
nents of the vector v = P'w,, where P is an orthogonal matrix such that P'% P
is a diagonal matrix with diagonal elements Ay, ..., Ay.

The proof of this theorem is similar to the proof of Theorem 4.2 of Moore
and Spruill. See Kim (1988) for details. Theorem 3.2 seems to be hard to apply
because of the complicated form of 3. But we will see in the next example that
for the usual chi-square statistics 3 simplifies immediately.

ExampLE 3.1. In this example we will show that the limiting distribution of
the chi-square statistics introduced by Chen (1975), Habib and Thomas (1986)
and Kim (1988) can be derived using Theorem 3.2. Since we derive the limiting
distributions of test statistics under the null hypothesis, u and u, equal zero
in this example.

Cask 1 (Simple hypothesis case). For a simple hypothesis, since there is no
parameters to be estimated, 3 = I'. Let #; be an estimator of r; defined in (3.3)
which is obtained by replacing the unknown distribution function G in r; by
the product-limit estimator G. Let K, = ¥, where ¥, is the result of replac-

ing the r, in ¥ by the 7. Since ¥, is a consistent estimator of ¥ and
¥ =T"1 K=%¥ and 3, = I,. Applying Theorem 3.2 establishes

k d; _Pi)2
3.4 Q=V,VV =n _—
(3.4) i§1 "iqz'zqz'z—1

where ¢; is as in (3.9) and d; = q;_1F(a;) — q;F(a;_,). This chi-square
statistic reduces to the Pearson statistic if there is no censoring.

2
a Xk>s

Cask 2 (Composite hypothesis case using the minimum chi-square estima-
tor). In this case, the chi-square statistic is @ = V,(8,)¥,(8,)V,(6,). Here 6,
is the minimum chi-square estimator which minimizes @(6) = V(0)V,(0)V,(0).
The centering matrix is K, = ¥,(8,) and it converges to K = V. Therefore, by
2.7),S =¥~ — B(B'¥YB)"'B’ and 3, = I, — V/2B(B'¥B) 'B'¥'/?, where
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W1/2 is a symmetric square root of ¥ and B is the matrix defined in (2.6). %,
is an idempotent matrix with rank £ — s. Hence @ —, x?_, by Theorem 3.2.
This generalizes the Pearson—Fischer statistic in the uncensored case.

Cast 3 (Composite hypothesis case using the maximum likelihood estima-
tor).

(i) Let 6, be the maximum likelihood estimator that has the asymptotic
form (2.5). Replacing the unknown parameter 6 in Q(6) by 6, yields Q, =
V/(0,)¥,(6,)V,(6,). K, = ¥(8,) converges to K =¥ and 3 = ¥~! — BJ"'B’
where o is the matrix defined in (2.4). So 3, = I, — ¥1/2BJ~'B'¥1/2 There-
fore @, >4 L*_;A;x?, where ); are the characteristic roots of 3, and x{; are
independent x? random variables. This extends the result of Chernoff and
Lehmann (1954) to the censored data case. The statistic ), is not useful
because the limiting distribution is not a chi-square distribution and it de-
pends on the true parameter value 6,,.

(i) To get a chi-square limiting distribution, let 3(8) = ¥,7(0) —
B(6)J;, (8)B'(6), where

J, o d il N(u)d
W(0) = —— fae,.aoj og a(ul8) dNy(u) _faoiaej“(“'o) () du|.

Here Ny(u)=%Y7_,IlZ;<u,8;=1] and N(u) =X} ,I[Z; > u]. Borgan
(1984) showed that J,(#) is a consistent estimator of J(#) for fixed 6. So
K,=3"%,) converges to K =31 Now Q = V.(6,)5749,V,(8,) —, x?
follows from Theorem 3.2 together with 3, = I,. This statistic reduces to the
chi-square statistic by Rao and Robson (1975) when no censoring is present.

4. Akritas statistics. Akritas (1988) introduced chi-square statistics for
randomly censored data based on the number of uncensored observations in
each cell. The model in Section 2 will be used without the parameter 6.
Suppose that the cell boundaries are fixed. Let H be the distribution function
of Z, and H be the empirical distribution function defined by H(¢) =
(l/ni ;?=II[ZJ~ <t]. Note that 1 — H= (1 — F)X1 — G). Define an estima-
tor G of G under the null hypothesis, that is n =7, by G(x)=1—
(1 — H(x))/(1 — F(x)). This G will replace the unknown censoring distribu-
tion function G in the Akritas statistic.

Let n,, be the number of uncensored observations in each cell, that is
ny = X7 ,IZ; € A;, §; = 1]. The expectation of ny;/n is given by

(4.1) mi(n) = [ (1= G(x)) dF (xln).

This is the ith component of the (k + 1)-vector (7). Denote by #(n) the
result of replacing the unknown censoring distribution function G in m(n) by
G. Define W,(n) = (w,(n), ..., w,qp(m) where w,(n) = Vn(ny/n —
#.,(n). Let D.(n) be the diagonal matrix with elements #,(n). The Akritas
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statistic [see Akritas (1988)] for a simple hypothesis is given by

E+1 (n.. — pi. )2
(4.2) Qu=WiD; W, =y )

- b
i=1 ny;

which has asymptotically the y?2,; distribution under the null hypothesis.

5. Pitman efficiencies. Rothe (1981) introduced a general approach to
Pitman efficiency as a limit of sample sizes. His results can be used to compute
the Pitman efficiency of tests based on asymptotically y2-distributed test
statistics with different degrees of freedom.

For n, € Q, let {¢,} be a sequence of level a tests based on n observations
for Hy: m = m,. We assume E (¢,) > @, lim, . E (¢,) = 1, and {ny} # C(n,)
where C(n,) is the connected component of 7,. Let Q' = Q — {n,}. Let II be
the set of all sequences {7, } satisfying 1, € ' and n,, - n,. Rothe considered
sequences of tests which satisfy Conditions P1-P3 given below.

ConpiTION P1. There are functions p: Q — (0,%) and 7: (0,%) - (a, 1)
such that:

(a) p is continuous and p(n) = 0 if and only if 7 = 7,.

(b) 7 is strictly increasing and bijective.

(c) For sequences {n,} in Q satisfying p(n,)n > { > 0 as n — © we have
lim,_, E, (¢,) = 7.

ConbrrioN P2. For every n, the function ¢,: n —» E (¢,) is continuous at
n = MNo-

ConbniTiION P3. For every sequence {n,} € Il such that p(n,)n — o,
E (¢,) - 1

If two sequences of tests satisfy Conditions P1-P3 with functions p,, p, and
T4, T9, Tespectively, and also
p1(1,) p(1,)

p1p = inf liminf = sup lim sup ,
12 I n-w Pz(’ﬂn) I n—ow Pz(nn)

then Rothe showed that the asymptotic relative Pitman efficiency of two tests
exists and is given by p,,(75; }(8)/77 (B)), where B is the power of the test.

Therefore, to calculate asymptotic relative Pitman efficiencies, we need to
verify Conditions P1-P3 and find suitable p and 7. In most cases we can easily
find p and verify Conditions P2 and P3. The following theorem by Rothe is a
useful tool in finding 7 as in Condition P1 for an upper level « test based on a
statistic which has a limiting normal or chi-square distribution.

THEOREM 5.1. Let ¢, be an upper level a test based on a test statistic T,
which has one of the following asymptotic properties C, for k > 0.
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Cy. There is a u > 0 such that p(n,)n — { implies £(T,In,) - N(*, 1)
for every { = 0.

C,. There is a u > 0 such that p(n,)n - { implies Z(T,|n,) - x*(k, {**),
where x*(k, 8) is a noncentral x? distribution with k degrees of freedom and
noncentrality parameter 6.

Then, for 0 < a < B < 1, Condition P1 holds with r~X(B) = (d(a, B, k) “.
Here d(a, B,0) = ®~1(B) — @ Xa), where ® is the distribution function of the
standard normal distribution and, for k > 1, d(a, B, k) = V& where & is the
uniquely determined noncentrality parameter such that the (1 — B)th quantile
of x4(8) and the (1 — a)th quantile of xi coincide.

6. Comparison of tests. In this section we will compare the asymptotic
performances of the generalized Pearson statistic € in (3.4) and the Akritas
statistic @, in (4.2). Let us consider the model used in Section 4 with fixed cell
boundaries. Recall that our goodness-of-fit testing problem is equivalent to test
H,: n = ny under the model. Define

)

b, — apy(m) apr(m) )’ b — (377'11(77) a""'1(/«»,+1)(77) ’

where p,’s and 7 ;’s are as in (2.1) and (4.1).

THEOREM 6.1. Assume that, for each i, p;(n) and m,(n) are continuous in
1 and continuously differentiable in a neighborhood of m,. Then, for 0 < a <
B<1,

(a) @ satisfies Conditions P1-P3 with
pi(m) = 3(n = mo) VWb, and 77Y(B) = 8(a, B, k),

where 8(a, B, k) is the noncentrality parameter defined in Theorem 5.1.
(b) Q, satisfies Conditions P1-P3 with

po(n) = 2(n — m)°0yD; b, and 73Y(B) = 8(a, B,k + 1).

Proor. We will only prove (a). (b) can be proved similarly. Conditions P2
and P3 can be verified easily. Suppose np(n,) — ¢, then Vi (n, —m¢) = v,
where y = + /{/A and A = b{¥b,/2. Now, by the Taylor theorem,

Vn'(u, —p(no)) = Vr (u, = p(n,)) + Vn (p(n,) = p(7))
) =Vn (u, —p(n,)) +vby +0(1).
So, under 7, Vn (u, — p(ny) >4 Ny(yb, ¥™1) and @ —, x2({). @ therefore

satisfies C, with u = 1/2. Hence, by Theorem 5.1, @ satisfies Condition P1
with 77 (B) = 8(a, B, k). O
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COROLLARY 6.1. Under the assumption of Theorem 6.1, the asymptotic
relative Pitman efficiency of @ to Q, is given by

Wb, 8(a, Bk +1)
2Dy, 8(a,B,k)

eP(Q’ QA) = b

The Pitman efficiency in the corollary is a product of two terms, a ratio of
quadratic forms and a ratio of noncentrality parameters. We present some
facts about those two terms. We need the following lemma to prove that the
ratio of the two noncentrality parameters is always greater than 1.

LEMMA 6.1. Let G, be the distribution function of the x2 distribution and
g, be the density function. Let ¢,(a) be the ath quantile of the x?2 distribution.

Then G,(£,(a) — ¢) is increasing with v for any ¢ where 0 < ¢ < §(a).

This lemma directly follows from the proof of (1.3) in Saunders and Moran
(1978) via their (1.5) through (1.8). [See Kim (1988).]

THEOREM 6.2. Forall 0 <a < B <1andk,
8(a, B,k +1)
8(a,B, k)

ProoF. Let G,, g, and £, be defined as Lemma 6.1. Let A(x; &, A) be the
distribution function of xZ(A) distribution. Then &(a, 8, & + 1) and &(a, B, k)
satisfy

1-B=A(&si(1 —a);k + 1,8(a, B,k + 1)) = A(&(1 — @); &, 8(a, B, k).
Now, since A(x; %, A) is decreasing with A for fixed x and k, it is enough to
show that A(&,, (1 —a);k + 1,A) > A(£,(1 — @); k, A) for any A. The distri-
bution function A(¢,(1 — a); k, A) can be expressed as '
o J
[(/\——/.2) e M2
J!

A(&(1 = a);k,A) = & Gir2j(£(1 — @)).

Jj=0

[See Johnson and Kotz (1970), page 132.] Now, by Lemma 6.1, for all j =
1,2,...,

Gura(&(1 — @) = [* G461 - @) — u)gy,(x) du

»(1—a)
< /: ! Gk+1(§k+1(1 - 01) - u)gZJ(u) du

+1(1—a)
< [0 (En(1 — @) — w)gy;(w) du

= Gk+2j+1(fk+1(1 - 0‘))'
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Hence A(¢,, (1 —a)k + 1,A) > A(§,(1 — a); k, A) for all A. This completes
the proof. O

In the next theorem we will prove that the ratio of the two noncentrality
parameters converges to 1 as a goes to 0.

THEOREM 6.3. Forallk and 0 < B <1,
y 8(a, B,k +1)
ano  o(a, B k)
Proor. Let 8, = 8(a, B, k) and &,(a) be the ath quantile of the x7 distri-
bution. A noncentral chi-square random variable with % degrees of freedom
and noncentrality parameter 8, can be expressed as Y + (Z + \/a )2, where Y

and Z are independent x2_, and N(0, 1) random variables. Since £,(1 — a) —
© as a — 0, from the definition of §;,

B= Pr[Y+ (z + \/E)Z > £(1 - a)
- Pr[(Z +V5) 261 -a) -V, 6(1—a) > Y] +o(1).

By the Taylor theorem,

Y Y?
Ve —a) =Y = V& - o) - g ~ g

for —Y+¢0 —a) <U<g( —a). Now Y2/8U32 and Y/2/£,(1 — )

are 0,(1) because £,(1 — a) > © as @ — 0. So we have

B=Pr[Z+ 6, = E(1-a) - Y, &(1 —a) > Y]
+Pr[Z + /6, < —/E(T—a) — ¥, (1 - a) > Y] +o(1)
=Pr[Z + 5, = JE(A —a) | + Pr[Z+ /5] < /& - a) | +o(1).

Moreover, \/EI — o as a« — 0, so that the second probability in the preceding
equation converges to 0 as @ — 0. Therefore

B = Pr[Z > V&(l—a) - \/5;] +0(1),

and hence as a — 0,

(6.1) Vo, = V&(l —a) — @Y1 - B +0(1)),
where ® is the distribution function of N(0,1). Further, for sufficiently
small «,

- uk=2/25-u /2

- du=C 1 — a) ¥ 272 -61-a)2
‘/;k(l—a) 2k/2r(k/2) du k(gk( a)) e )

o =



1634 J. H. KIM

where C, = k=*~3/2¢k/2 /\/z (k + 1/6). So log a can be approximated by

1 1 1-
loga = log C, - Efk(l —a)|l- (k-2 O?ikl(—a)a)
k
1
zlong— Egk(]. —a)

We now have an approximation of £,(1 — ) for small a:

1
(6.2) &r(1 —a) = 2log — + 2log C,,.
a

Combining (6.1) and (6.2) yields /8(a,B,%) = y/2log(1/a) + 2log C, —
@~ (1 — B). Similarly

Vé(a, B,k + 1) = /2log(1/a) + 2log C;,, — ®~1(1 — B).

Hence

o Bokt 1) (/2log(1/a) +210g Cppy — @711 - B))

= lim =1.
a=0 @ pk) >0 (/3log(1/a) + 2log G, — 0 Y(1 - B))

If no observations are censored, the statistic @ reduces to the Pearson
statistic. The Akritas statistic @,, however, does not reduce to the Pearson
statistic. In the case of no censoring @, that is, the Pearson statistic, is
superior to @, in the sense of Pitman efficiency. This follows from Theorem
6.2 and the following result.

THEOREM 6.4. If there is no censoring, then
0(a,B,k+1)

Q) = =55

Proor. When there is no censoring, m,(n) = p,(n) and
1,1,

¥ = diag(p; "(no),---, Pz H(mp)) + ————,
( 1-( O) k ( 0)) Pk+1(”70)

where p;,(n) =1 - I p(n). Now, if we let c; = [0p(n)/9m],_,,, since
S IEie =~ b¥b, = Ll /ping) = b,D;'b,. Hence e”(Q,Q,) =
e, B,k + 1)/8(a,B, k). O

In thhe next theorem, we will consider a sequence of censoring distribution
functions such that the corresponding sequence of the Pitman efficiencies of @
to @4 converges to zero.
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THEOREM 6.5. Let {G,} be a sequence of censoring distribution functions
which satisfy

6.3 lim —— o0& _ 10 b
) — = <a<b<o.
(6.3) lim —— G.(a) fora a

Assume that
J5(1 = G,(x)) dM(xln,)
[5(1 = G,(x)) dF(xlno) | ~

for some & > 0 and for all n, where M(xln) = dF(x|n)/dn. Then
lim, . ef(Q,Q,) = 0, where {e£(Q, Q,)} is the sequence of Pitman efficiencies

corresponding to {G,}.

(6.4)

e>0,

ReMARK 1. Equation (6.3) specifies the tail behavior of the sequence of
distribution functions G, and implies the probability of censoring converges to
1 as n — ». Sequences of gamma and Weibull distributions satisfy the condi-
tion. [See Kim (1988).]

REMARK 2. The left-hand side of (6.4) is the absolute value of the derivative
of I,(1:2) with respect to m evaluated at n = 7n,. Here, I,(1:2) is the
Kullback-Leibler information function for the discrimination between the
density of an uncensored observation under the null hypothesis (1 —
G (x)) f(x|ny)/m,. , and the density of X; under the alternative f(x|n). Many
sequences of alternatives and censoring distributions satisfying the condition
can be found. One such simple model is considered in Example 6.1.

Proor oF THEOREM 6.5. We will use the same notations p;, q;, r;, 7y;, b;
and b, except the censoring distribution function G is replaced by G,. Let b,;
and b,; be the jth elements of the vectors b; and b,. Let

j-1by  LThby
q; 91
Then &b, = X*_,12/r; and so
b, 12

TD-1p E+1p2 :
sz'rr bz i=1 ri2j=1b2j/77'1j

l. =

12

Since the Z,’s do not depend on n, it is enough to show that r,X%X163. /7 ; — o
asn—o>oforalli=1,...,%k Now

R+1p2 k1 (g \Zoo E+1p. . o \2 B2

v b _ Z(ﬁ) LATIY s TR Th I

j=1T1;  j=1\T1) 71 jo1 T T .

where ;.= [§(1 — G(x)) dF(x|ny) and b, = [§(1 — G, (x)) dM(x|n,). So
rXkiib2, /w2 1b3. /my=rilby. | - by /. Now |by /7| > > 0 by (6.4).

To show r,|b,.| > » let M(x|n,) = 1/(1 — F(x|n,)) and c be a constant such
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that a;_; <c¢ < ai. Then

- G
r|b2|—f Gn(( ))dM(xIno) ’f —I—Gn({%dM(xan)
C ]. - n a; 1 Gn C
= (j; ———1 ~ G Ex)) dMl(xl"’]()) + f ﬁ% dMl(xIno))
G.(x) =1 — G, (x)
X /;) 1= n( ) dM(xl’ﬂo) +j; I——(;,l.((;dM(xan) .

So, by (6.3), we have

lim (fc 1o Gn(c) dM1(x|770) + f 1— n( ) dMl(xh?o)) =®

nr Yo, 1= Go(x) 1-G(x)
and
1 - Gy(x) 1-Gy(x)
aM + M = o,
,Hw/ 1= G, () M(ximo) f 1= Gy(o) M(xmo)| =
Hence lim , _,, r;|b,.| = « for all i. This completes the proof. O
4.0
3.5 A
f1=0
3.0 -
fi=oo
0.5 A
0.0 T
0 2 4 6 8 10 12 14

fa
Fic. 1. R =b¥b,/b,D b, as a function of f, when k = 5.
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From the results presented in this section, we can conclude that neither @
nor @, dominates the other. For heavily censored data @, is superior to @. In
the uncensored case @, is not as good as @, the Pearson statistic, in the sense
of Pitman efficiency. In the following example, it can be seen that @ performs
better than @, when we have moderate censoring. We believe this is true in
most cases with reasonable number of cells if the ratio min,_;_, ., (7y)/
max, _; _,(r;) is not too small. However, the proof is technically difficult in
general because the efficiency function depends on the null distribution, the
alternative distribution, the censoring distribution, the number of cells, and
the cell boundaries. It can be done numerically case by case.

In the next example, we will illustrate the theoretical results in Theorems
6.4 and 6.5 by computing the efficiencies of @ to @, for testing the exponen-
tial distribution versus a contamination alternative.

ExampLE 6.1. Consider testing H,: F = F, versus H;: (1 — n)F, + nF,.
Suppose that Fy(x) =1 — e %% F(x) =1—e " and G(x) = 1 — e *2*. We
use k equiprobable cells for & = 3,5,7,9. Let f; = A;/Ay, fo=2Ay/Ay and
d; = (k —i)/k. Then the ratio of quadratic forms in e?(Q, @,) can be ex-
pressed in terms of &, i, f, and d,’s. Let R be the ratio of quadratic forms.

1.6

1.2 4

1.0

0.6 -

0.4 -

0.0 - T : T —

f2
FiG. 2. R =bWb,/b,D b, as a function of f, when f; = 2.
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We present two pictures to see the behavior of R for different values of f;, f,
and k.

Figure 1 is a graph of R versus f, for fixed & = 5, f; = 0.5,2, 3,8 and the
limits of R as f; = 0 and f; — «. The graph shows that @, performs better
in the heavy censoring case and @ is superior to @, if we have moderate
censoring. For example, if we look at the graph f; = 3, R equals 1 when f, is
about 5. That means the probability of censoring Pr[é = 0] is somewhere
between 5/8 and 5/6 depending on the value of 7. For a fixed value of f,, @
gets better as f, gets smaller, that is, the mean of the contaminating distribu-
tion gets larger relative to the mean of the null distribution.

Figure 2 is a graph of R versus f, for fixed f; = 2 and different numbers
of cells, 2 = 3,5,7,9. Again @, performs better in the heavy censoring case.
For fixed f,, @ gets better as the number of cells gets larger.
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