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LATTICE MODELS FOR CONDITIONAL INDEPENDENCE
IN A MULTIVARIATE NORMAL DISTRIBUTION!

BY STEEN ARNE ANDERSSON? AND MICHAEL D. PERLMAN

Indiana University and University of Washington

The lattice conditional independence model N(.¥") is defined to be the
set of all normal distributions on R’ such that for every pair L, M € K, xp,
and x,, are conditionally independent given x; . Here % is a ring of
subsets of the finite index set I and, for K € ¥, xy is the coordinate
projection of x € R? onto RX. Statistical properties of N(.¥) may be
studied, for example, maximum likelihood inference, invariance and the
problem of testing Hy: N(%¥) vs. H: N(.#) when .# is a subring of .%.
The set J(%) of join-irreducible elements of .% plays a central role in the
analysis of N(.¥). This class of statistical models occurs in the analysis of
nonnested multivariate missing data patterns and nonnested dependent
linear regression models.

1. Introduction. In this paper we define and study a class of conditional
independence (CI) models determined by finite distributive lattices. For multi-
variate normal distributions, the parameter space and the likelihood function
(LF) for such a lattice CI model can be factored into the products of parameter
spaces and conditional LFs, respectively, corresponding to ordinary multivari-
ate normal linear regression models. This in turn yields explicit maximum
likelihood estimators (MLEs) and likelihood ratio tests (LRTs) by means of
standard techniques from multivariate analysis.

These lattice CI models arise in a natural way in the analysis of multivariate
missing data sets with nonmonotone missing data patterns [cf. Andersson and
Perlman (1991)] and in the analysis of nonnested dependent linear regression
models [cf. Andersson and Perlman (1993a)]. The factorizations mentioned
previously can be readily applied to obtain explicit MLEs and LRTSs by stan-
dard linear methods.

We introduce this class of lattice CI models by means of the following simple
and familiar example. Let (x,, x,, x3)* denote a random observation from the
trivariate normal distribution N(3) with mean vector 0 and unknown covari-
ance matrix 3. [For simplicity, throughout this paper we shall assume that 3
is nonsingular and that the mean vector of the sampled normal population is
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known. The latter assumption is easily removed; cf. Andersson and Perlman
(1991, 1993a).] Consider the model that specifies that x, and x; are condition-
ally independent given x,, which we express in the familiar notation

(1.1) Xg AL Xglx;.
In terms of the covariance matrix 3, (1.1) is equivalent to the condition

(1.2) (37 2= (2713 = 0.

In order to express this as a lattice CI model, let I = {1,2, 3} denote the
index set and consider

(1.3) Fx={2,{1},{1,2},{1,8},1},

a subring of the ring Z(I) of all subsets of I. Clearly, % is a finite distributive
lattice under the usual set operations U and N. Define the class P(.%) of real
positive definite I X I matrices as follows:

(1.4) SeP(¥) ox tayl oy VL, Mex,

where x ~ N(2) and x; denotes the T-subvector of x when T c I. It is readily
verified that (1.1), (1.2) and (1.4) are equivalent conditions. [Note that
Xo L xglry & (xq, 29) L (xq, x4)l;.]

In this example the factorizations of the parameter space and LF mentioned
previously are represented as follows:

(1.5) DR (211, o2 29915 23121_11’ 233~1)’
(1.6) f(xq, %9, 23) = f(%,) f(lexl) f(x3|x1).

The five parameters on the right-hand side of (1.5) represent ordinary uncon-
ditional and conditional variances and regression coefficients. Whereas the
range of the positive definite matrix 3 in (1.5) is constrained by (1.2), the
ranges of these five parameters are unconstrained (except for the trivial
requirement that 2,,, 3,, ; and 3,;.; are positive definite). Thus the MLEs of
these five parameters, called the #parameters of the CI model, are easily
obtained from (1.6), and the MLE of 3 may be reconstructed from these
estimates.

A subset K € % is called join-irreducible if K is not the join (= union) of
two or more proper subsets of K (cf. subsection 2.1). The collection of all
Join-irreducible elements in %" is denoted by J(.%"). Thus, when ¥ is given
by (1.3),

(1'7) J(J”i/) = {{1}’{1’2}’{1’3}}-

It will be seen that the basic factorizations (1.5) and (1.6), as well as their
extensions to the general lattice CI model N(.¥') defined next, are always
indexed by the members of J(.%).

Condition (1.4) immediately extends to define the general lattice CI model.
Let I be an arbitrary finite index set and let .%¥ be an arbitrary subring of
(1), so again % is a finite distributive lattice. (By Birkhoff’s theorem, any
finite distributive lattice can be represented as a ring of subsets of some finite
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set 1.) Then (1.4) defines the class P(2%) of I X I covariance matrices deter-
mined by CI restrictions with respect to the lattice % 3 € P(%) if and only if
x;, and xp; are conditionally independent given x;, ~ 5, for every pair L, M € %
If N(3) denotes the normal distribution on R/ with mean vector 0 and
unknown covariance matrix 3, the normal statistical model

(1.8) N(¥) = {N(3)IS € P(¥))

is the lattice conditional independence (CI) model determined by % .

In this paper we study the structure of P(%") and the statistical properties
of the model N(.¥"). In Section 2.3 (Theorem 2.1) we generalize (1.2) by
characterizing 3 € P(.¥) in terms of the precision matrix 3 ~'. In Section 2.5
(Theorem 2.2) we generalize (1.5) by showing that each 3 € P(%") can be
uniquely represented in terms of its J#parameters, whose ranges are uncon-
strained, so that the parameter space P(.%") again factors into a product of
parameter spaces for ordinary linear regression models. In Section 2.7 we
present a general algorithm for reconstructing 2 € P(%¥") from its J#‘parame-
ters. A series of examples in Section 2.8 illustrates these results.

The factorization (1.6) of the LF as a product of conditional densities
involving only the J#parameters of 3 is extended to the general lattice CI
model N(.%") in Section 3.1 (Theorem 3.1). The MLEs of the %parameters of
3, are easily derived from the general factorization, then the MLE of 3 can be
reconstructed by the algorithm given in Section 2.7. This estimation procedure
is illustrated by examples in Section 3.2. In Remark 3.5 it is noted that the
model N(¥) is determined by a system of linear recursive equations [cf.
Wermuth (1980) or Kiiveri, Speed and Carlin (1984)] with additional lattice
structure.

In Andersson and Perlman (1993b) we treat the problem of testing one
lattice CI model against another, that is, testing

(1.9) H,:N(*%) vs. H, N(A),

when .# is a proper subring of % [Note that .# c % = N(%) € N(.#).] For
example, in the simple case considered previously with I = {1,2, 3}, suppose
that J#= {@,{1},{1, 2},{1, 8}, I} [cf. (1.3)] and .#= {J, I}. Then N(.#) is sim-
ply the normal model with no restriction on 2 and (1.9) becomes the problem
of testing x, L x5)x; [equivalently, (1.2)] against the unrestricted alternative,
which can be stated equivalently as the problem of testing

(1.10) H,: 04 = 0'210'1_110'13 vs. H_,:045 # 0'210'1_110'13,
where 2 = (0;,1i, j = 1,2, 3). If, however,
(1'11) HK = {Q’{l}’{3}’{1’2}’{1’3}’1}’

while .# = {,{1},{1, 2},{1, 3}, I}, then (1.9) becomes the problem of testing
(1, x5) L x5 against x, L x4lx;, which is equivalent to the problem of testing

(1.12) H,:013=0,;=0 vs. H_,: 0y3 = 0507 0y3.

In fact, each of the testing problems treated by Das Gupta (1977), Giri (1979),
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Banerjee and Giri (1980) and Marden (1981), including (1.12), is a special case
of the general problem (1.9).

[When % is given by (1.11) and %" = {@,{3},{1, 2}, I}, then N(¥") =
N(#"), so both lattices determine the same CI conditions, namely (x,, x5) 1L x5.
Thus two different lattices may determine the same CI model.]

The LRT statistic A for the general testing problem (1.9) will be derived in
Andersson and Perlman (1993b) and is readily expressible in terms of the
MLEs of the #parameters and .#parameters of 3. The central distribution
of A may be obtained in terms of its moments by means of the invariance of
the testing problem. Additional examples of this testing problem are treated in
Andersson and Perlman (1993b).

These and associated results are greatly facilitated by the fact that the
model N(.%¥) is invariant under a group G = GL(-%¥") that acts transitively on
P(.%). This group G is a subgroup of a group of nonsingular block-triangular
I X I matrices. To illustrate this, return to the trivariate lattice CI model
considered previously with % given by (1.3). It can be seen that the CI model
given by (1.1) = (1.2) is invariant under all nonsingular linear transformations
of the form

X1 aq 0 0 Xy
(1.13) X=Xy | ™ |21 Co2 0 Xq = Ax.
X3 as; 0 Q33| |\ %3

The collection of all such matrices A forms a subgroup of the group of all
3 X 3 nonsingular lower triangular matrices. It is also true, but not so easy to
see, that G acts transitively on the class P(%") of all covariance matrices 3
that satisfy (1.1) = (1.2), that is, for any such 3 there exists A € G such that
3 = AAL

These facts, some of which were used by Das Gupta (1977), Giri (1979),
Banerjee and Giri (1980) and Marden (1981) to study the distribution and
optimality of invariant tests for problems such as (1.10) and (1.12), will be
extended in the present paper to the general lattice CI model N(.%"). In Section
2.4 it will be shown how ¥ determines the invariance group GL(.%¥"), a group
of generalized block-triangular I X I matrices with lattice structure, while the
transitive action of GL(.%") on P(.%¥") is demonstrated in Section 2.6 (Theorem
2.3), generalizing the well-known Choleski decomposition of an arbitrary
positive definite matrix. The transitivity yields a factorization (Lemma 2.5) of
the determinant of X € P(.%¥), a generalization of the well-known Schur
formula det(3) = det(3;,)det(2,,.1).

As already seen for the trivariate example given previously, all statistical
properties of the general lattice CI model N(.%"), including the definition of the
H#-parameters of 3, the factorizations of its parameter space and LF as
products of those for linear regression models, the form of the MLE, the form
of the LRT statistic and its central distribution, and the partitioning and
location of zeros in the invariance matrix A € GL(%), are determined by the
fundamental structure of the lattice %, in particular, by the associated poset



1322 S. A. ANDERSSON AND M. D. PERLMAN

J(X') of join-irreducible elements of % (cf. Section 2.1). As in the case of a
balanced ANOVA design where the poset of join-irreducible elements of the
lattice of subspaces determines the ANOVA table [cf. Andersson (1990)], for
the lattice CI model N(.%¥") the poset J(.%") determines the statistical analysis
of the model.

The CI models N(.%¥") play an important role in the analysis of nonmono-
tone missing data models. Under the assumption of multivariate normality, it
is well known that a monotone missing data model with unrestricted covari-
ance matrix 3 admits a complete and explicit likelihood analysis, remaining
invariant under the appropriate group of block-triangular matrices (in the
usual sense), which acts transitively on the unrestricted set of covariance
matrices [cf. Eaton and Kariya (1983) and Andersson, Marden and Perlman
(1994)]. If the missing data pattern is nonmonotone, however, then explicit
analysis is not possible in general. ‘

The relationship between lattice CI models and nonmonotone missing data
patterns is developed fully in Andersson and Perlman (1991) but can be
illustrated in terms of the trivariate example considered previously. Suppose
that one attempts to observe a random sample from the trivariate normal
distribution N(Z), where 2 is unknown and initially unrestricted, but that
some of the observations are incomplete. For example, suppose that we have
several complete vector observations of the form (x,, x,, x;)* and also several
incomplete observations of the forms (x,, x,)’ and (x,, x;)°. Then the missing
data pattern (actually, the pattern of the observed data) is the set

(1.14) <= {{1,2},{1,3},{1,2,3}},

that is, the collection of subsets of I = {1, 2, 3} corresponding to the subvectors
actually observed. Because the missing data pattern ./ is nonmonotone, that
is, not totally ordered by inclusion, the LF cannot be factored into a product of
LFs of linear regression models and the MLE of 3 cannot be obtained
explicitly. (In fact, for some nonmonotone missing data patterns with insuffi-
ciently many complete observations, 3 may not be estimable.) Instead, itera-
tive estimation methods such as the EM algorithm must be used, possibly
accompanied by difficulties with convergence or uniqueness of the estimates
[cf. Little and Rubin (1987)]. ,

An alternate approach, suggested by Rubin (1987) and developed in
Andersson and Perlman (1991), is to restrict 3 by imposing the CI conditions
of the lattice CI model N(.%¥), where %= #(.) is the lattice generated by
. With ./ given by (1.14) it is easy to see that .% is given by (1.3), so the
corresponding CI condition is given by (1.1). Under this condition the densities
for the complete and incomplete observations factor as

f(xy, 29, x3) = f(%) f(lexl) f(x3|x1),
(1.15) F(xy,%5) = f(x1) f(%al1),

f(x1,x3) = f(x1) f(x3lx,),
so the overall LF is a product of LFs of only the three types f(x,), f(x,lx,) and
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f(xslx,), the latter two corresponding to simple linear regression models. Also,
the overall parameter space is the product of the parameter spaces for these
three LFs. Therefore, the similar terms may be combined and the MLE of %
may be obtained by maximizing these three LFs' separately, which involves
only elementary calculations. Furthermore, under the CI restriction 2 €
P(.%), this nonmonotone missing data model remains invariant under the
group GL(.¥) of lower triangular matrices A in (1.13) and GL(¥") acts
transitively on P(.%). Finally, the CI assumption may be tested by means of
the LRT for (1.10) as discussed previously.

Whereas the determination of the appropriate CI conditions and the factor-
ization (1.15) is transparent in this simple example, a general missing data
pattern requires the lattice-theoretic approach developed in the present paper;
see Andersson and Perlman (1991) for complete details. Thus the results in
the present paper open the possibility of applying classical multivariate tech-
niques to a class of missing data models much larger than the monotone class
[and, similarly, to a large class of nonnested dependent linear regression
models; see Andersson and Perlman (1993a)l.

In Section 4 the CI models and results already described are recast in an
invariant (= coordinate-free) formulation, rather than in the matrix (coordi-
nate-wise) formulation just given. This is done for the following reason: A
model which, when presented in matrix formulation, may not appear to be a
lattice CI model according to the noninvariant definition given previously, may
in fact belong to this class after an appropriate linear transformation. (Of
course, this is by no means unique to the lattice CI models. For example, the
general balanced ANOVA model must be described invariantly in terms of a
collection of orthogonal subspaces, rather than by specifying the values of
certain coordinates of the mean vector.)

This is readily illustrated in terms of the trivariate missing data example
given in the paragraph containing (1.14). Rather than the missing data pattern
described by (1.14), consider a missing data array that includes incomplete
observations involving not only the coordinates of x but also one or more
linear combinations of these coordinates. For example, suppose that we have
several complete observations of the form (x;, x,, x3) and also several incom-
plete observations of the forms (x,, x,)° and (x; + %, x5)". Although this does
not directly fit into the framework of the coordinate-wise missing data models
discussed previously and in Andersson and Perlman (1991), it is easy to
transform it to such a framework by means of a nonsingular linear transfor-
mation (yq, ¥, ¥3) = (%1 + Xy, X5, X3). In terms of y,, y, and y; the missing
data pattern is now given precisely by (1.14); hence as before the associated
lattice CI model imposes the assumption that y, L y;ly;, that is, x5 L Xgley + Xy
(equivalently, x, 1L xglx; + x,).

The existence and form of an appropriate linear transformation from x to y
(or equivalently, of an appropriate vector basis for the observation space) may
not be so apparent in more complex missing data schemes with linear combi-
nations present. The invariant formulation of a general lattice CI model,
presented in Section 4, allows one to recognize and treat, without a prelimi-
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nary transformation, a set of CI conditions such as x, i xglx; + x, in the same
manner as the coordinate-wise lattice CI conditions in (1.4).

The invariant formulation is stated in terms of a lattice 2 of quotient
spaces @ of a real finite-dimensional vector space V. (All vector spaces and
matrices considered in this paper are defined over the field of real numbers.
See Section 4.1 for definitions, where it is noted that if .2 is distributive, then
it is finite.) For each @ € 2 let p,: V — @ denote the projection onto Q. Then
the general lattice CI model N(.2) is defined in Section 4.2 to be the set of all
nonsingular normal distributions N(o) on V with mean 0 and covariance o
such that pyp and py are conditionally independent given pyg . r for every pair
R,T € 2. In Theorem 4.1 it is noted that N(2) is nonempty if and only if 2
is distributive.

To express our original coordinate-wise formulation of the lattice CI models
in this invariant framework, set V = R/, identify each subset K c I with the
quotient space R¥ and let py: R’ - R denote the usual coordinate projection
mapping. Then the definition of the general lattice CI model in the preceding
paragraph reduces to (1.4).

The basic decomposition theorem for a distributive lattice 2 of quotient
spaces (cf. Section A.1) states that the observation space V can be represented
as a product of vector spaces indexed by the poset J(2) of join-irreducible
elements in 2 in such a way that for each @ € 2, the projection py: V — @
becomes simply a canonical projection. By means of this representation we
may choose a 2-adapted basis for V (cf. Proposition 4.1). In Section 4.3 it is
shown that in terms of the coordinate system determined by this basis, the CI
model N(2) can be expressed in the canonical coordinate-wise form (1.4) and
the statistical analysis of the model may then proceed according to the
coordinate-wise formulation.

The general problem of testing one lattice CI model against another is
formulated invariantly as follows: Test Hy: N(2) vs. Hy: N(J7), where 2
and  are distributive lattices of quotient spaces of V such that 9 c 2. In
Section 4.4 it is noted that one can choose a basis for V that is both Zadapted
and J-adapted, by means of which this testing problem can be reduced to the
canonical coordinate-wise form (1.9).

In recent years the study of multivariate dependence models defined by CI
conditions determined by directed or undirected graphs has received increasing
attention; see Whittaker (1990) for a readable introduction to this area. In
some of these graphical models the CI assumptions are equivalent to the
occurrence of patterns of zeros in the precision matrix 3! of a multivariate
normal distribution; hence the models are linear in 3 1. It will be seen from
Examples 2.6-2.8, however, that, unlike the special case (1.2), in general the
lattice CI models introduced here are neither linear in 3! nor 3. Further-
more, the statistical motivation and analysis of a lattice CI model appear to
differ from those of a model defined initially by graphical CI conditions.

2. The class P(.¥') of covariance matrices ¥ determined by pair-
wise conditional independence with respect to a finite distributive
lattice .. Let I be a finite index set, let 2(I) denote the ring of all subsets
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of I and let #c 2(I) be a subring, that is, % is closed under N and U. We
shall always assume that I, € %. Then % is a finite distributive lattice
with U and N as the join and meet operations, respectively. For T,U € 2(1)
we write T' C U to indicate that T < U but T # U. Let |T| denote the number
of elements in a set T.

Let N(3) denote the normal distribution on R! with mean 0 € R’ and
covariance matrix 3 € P(I), where P(I) denotes the set of all positive definite
I X I matrices. For any T C I and column vector x = (x;|i € I) € R’, define
xp == (x;li € T), the T-subcolumn of x. Note that x; = x and define x, == {0}.

DErFINITION 2.1. The class P(¥) c P(I) is defined [in Andersson and
Perlman (1991), P(.%¥) was denoted as P.(I)] as follows [cf. (1.4)]:

(21) 2eP(¥) ex bxylx,ny VL, Me¥ whenx~N(3),

that is, x, and x,, are conditionally independent (CI) given x,, VL, M € %"

If LNM=, then (2.1) reduces to x; 1 x,, that is, x; and x, are
independent. Note that the right-hand side of (2.1) is ordinarily written in the
form

(2.2) xL\(Lr\M)'”‘xM\(Lr\M),anM VLM< X%.

Some of these pairwise CI conditions are trivially satisfied, for example,
whenever L ¢ M (or M c L) (also see Remark 3.2). In particular, if % is a
chain, then P(.%¥) = P(I), that is, 3 is unrestricted (cf. Examples 2.1 and 2.2).

2.1. The poset J(%') of join-irreducible elements. The structure of 3 €
P(%) will be characterized in terms of the poset J(%) of join-irreducible
elements of %, which we now define. For K € %, K # (J, define

(K)= |J (K e ¥|K' cK),
[K]=EK\(K),
so that
(2.3) ) K=(K)U[K],
where U indicates that the union is disjoint. Then define
J(¥)={Ke XK+ Z,(K) c K}
={Ke ¥|K+@,[K] + )
- {(Ke¥K+O3,VLMe ¥: K=LUM=K=LorK=M}.

If K € J(%) we say that K is join-irreducible. [See Gratzer (1978), Chapter
II, or Davey and Priestley (1990), Chapter 8, for properties of J(.% ); in
particular, ¥ is uniquely determined by J(%).]
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For L € % define % = {K € #|K C L}, a sublattice of % (%] = %).
The following relations are elementary but fundamental:

(2.4) | L= U(Ked(#))
(2.5) J(#) =J(F) N F,

(2.6) J(Fram) =J(F) NI (Fy),
(2.7) J(From) =J(HF) VI (Fy).

ProposITION 2.1. Every L € % can be decomposed according to the mem-
bers of J(%') as follows:

(2.8) L= U ([KIK € J(#)).

Proor. Let K, M € J(%¥) with K+ M, sothat KNMcKor KNMcC
M. Suppose that K " M c M. Then K " M c (M) and it follows that [K] N
[MI=Kn{(KYNMn{M) = J; hence ([K]IK € J(¥)) is a disjoint fam-
ily. The inclusion 2 in (2.8) is trivial. To establish <, consider « € L. Define
K, = N(L € #,|v € L), the smallest set in %7 containing ¢. Then K, €
J(#,), as seen from the following indirect argument. Suppose that K, &
J(%#7,) and thus that K, = L, U L,, where L;,L, € %7, L, CK, and L, C
K,  Then « € L, or . € L,, contradicting the minimality of K,. Finally, if
1 € (K,) (cK,) the minimality of K, again would be contradicted; hence
« € [K,]. Since K, € J(%7) this establishes the inclusion C in (2.8). O

In particular, set L = I in (2.8) to obtain

(2.9) 1= U (K]K €J(¥)).

For example, suppose that I = {1,2, 3} and ¥ is given by (1.3). Then J(%¥) is
given by (1.7) and we find that [{1}] = {1}, [{1,2}] = {2} and [{1,3}] = {3}, so
(2.9) is evident.

2.2. The Hparameters of 3. For any finite index sets T and U, let
M(T x U) denote the vector space of all T X U matrices, P(T') the cone of all
positive definite T X T matrices, M(T') = M(T X T') the algebra of all T X T
matrices and GL(T') the group of all nonsingular T X T matrices. For every
3, € P(I) and every subset T c I, let 3, [€ P(T')] denote the T X T subma-
trix of 3 and let 37! denote (3,)~ . For K € J(%') partition 2 according to
(2.3) as follows:

3 3
(2.10) 2K=( e ”“),

E[K> 2"[K]
50 3y € PUK)), 3 € P(KD, 35, € M(K] X (K)) and 2 g = (3x,)"
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Furthermore, define

(2.11) 2= 2k = 2k 20208, 2k € P(LK])
and let 2. denote (3 ;)" ". Then for every x € R/,

tr(2 gl xt
(2.12) (2 xk)

= tr( 2 (%) — 2 2 xan ) (7)) + (35 %0 ).
DEerINITION 2.2. For X € P(I), the family of matrices
(2.13) ((Bxy2 3y, 31y ) K € I (X))
is called the family of J#parameters of 3.
2.3. Characterization of conditional independence i terms of 3~!. Theo-
rem 2.1 presents an algebraic characterization of the set P(J%") of covariance

matrices 3 defined in terms of pairwise conditional independence [cf. (2.1)].
The following description of pairwise CI is useful.

LEmMA 2.1. Letx ~ N(2),2 € P(I). Then forany L,M C I, x; Lxylx; -y
if and only if ¥V x € RL:
(2.14) tr(SLimXLom¥iom) = tr(Sg e xf) + tr(Saf %)
- tr(zirlemeMximM)-
Proor. The difference

tr(zl_,tlJMxLquiuM) - tr(zirlemeMx]t,nM)
appears in the exponential term of the conditional density of x.; _ a\(z
given x; . Therefore, x; 1L x4,|x; -, if and only if this difference is the sum
of the differences appearing in the exponential terms of the conditional densi-
ties of X7\ 1) 8iVeN Xz oy and Xy~ ) BiVEN Xy This sum is

(tr(Sp e xy) — tr(SLAM¥LnmXLanm))
+(tr(21741xMx1tu) - tr(zirleanMximM)),

and the lemma follows. O
TueorReEM 2.1 [Characterization of P(%¥)]. For 3 € P(I) the following
conditions are equivalent:
(i) e P(x);
(i) Vx e RL:
tr(S ) = X (tr(Sy-(%ix) — 2 2R %y ) Y)K € J(x));
(iii) Vx € RLY L € -

tr(Spat) = X (tr(3 () — i 2% )K€ J().
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Proor. To show (i) = (ii), use induction on |[J(%)| =: q. If ¢ = 1, then by
(2.4), #=1{, I} and (ii) is trivial. Next, assume that (i) = (ii) whenever
q <k — 1 and suppose that ¢ = k. If I € J(¥), then J(%) = J(¥,;,) U{I};
hence |J(#{;,)| =k — 1. By the induction assumption, (iii) is true with L
replaced by {I), so (ii) follows from (2.12) with K replaced by I. If, on the
other hand, I &€ J(%), then I =L UM where L cI and M cI. It follows
from (2.4) that [J(#7)| < k and |J(#3,)| < &, so by the induction assumption
(iii) is valid with L replaced by L, M and L N M. Then (ii) follows from (2.6),
(2.7) and Lemma 2.1.

To show (ii) = (iii), let p: R’ - R’ be the coordinate projection and define
the subspace U c R’ as follows:

U= {x € Rllxx) - T, 3k %y = 0, K€J(K¥), K¢ L}
By (ii) and the Polarization Identity, for every x,y € R/,

tr(2 7yt = ) (tr(z[_Kl]-(x[K] - 2[K>2<_1K}>x<lﬁ’>)

X () — E[K>E(_K1)y<K>)t)|K € J(Jz/)).

For x € U those summands with K ¢ L vanish, while for y € p~1(0) those
summands with K C L vanish, hence U c (p~%(0))*, the orthogonal comple-
ment of p~1(0) with respect to the inner product determined by (ii). But
x € (p~W0)+ iff

tr(2 " 'axt) = tr(3S; % ),
while if x € U then (ii) implies
tr(3 ) = X (br(S5 (2 = S Zab b)) JK € J(#), K L),

so (iii) must hold for every x € U. Since (iii) depends on x € (R’ only through
p(x) = x,, in order to establish (iii) for every x € R’ it suffices to show that
p(U) = RE. Clearly p(U) c RL. Conversely, for any v € RF we can construct
x € U such that p(x) =v, as follows. Set x;, =v. Let K;,...,K, be a
never-decreasing listing of the members of J(.%") (cf. Remark 2.1 and the
notational conventions in Lemma 2.4, and Section 2.7). By (2.4) and (2.8), this
listing may be chosen such that L = U(K;llj =1,...,7), where 1 <r <gq.
Now set x,; = 3,24\ %, successively for & =r + 1,...,q. By (2.42) and
the first of the two relations that precede it, this process is well defined, while
by (2.9) it completely determines x = (x, X, 1., %,) € R". Clearly x € U
and p(x) = v.

To show (iii) = (i), consider any pair L, M € .¥. Apply condition (iii) four
times, with L replaced by L UM, L, M and L N M, and then apply (2.6) and
(2.7) to obtain (2.14). By Lemma 2.1, therefore, (i) is satisfied. O

2.4. The JFpreserving matrices: generalized block-triangular matrices with
lattice structure. We now introduce a group GL(.%") of nonsingular matrices
A that will be seen in Section 2.6 to act transitively on P(.%"). In the present



LATTICE MODELS 1329

section GL(.%) is shown to be a group of block-triangular matrices with lattice
structure determined by %"

For A€ M(I), K€ ¥ and L, M € J(%), let Ay (vesp., A;; ) denote the
K X K (resp., [L] X [M]) submatrix of A.

PrOPOSITION 2.2. Let A € M(I). The following three conditions on A are
equivalent:

() VxeRLVYLeX: x,=0= (Ax),=0;
(ii) VxE RI,VLE%: (Ax)L=ALxL;
(i) VL ,Med(x): MgL= Ay =0.

Proor. (ii) = (i) is trivial.
(iii) = (ii). By the usual formula for matrix multiplication by blocks,

(Ax), = (Z(A[KM]x[M]IM € J(*/y))lK € J(*%/L))
= (Z (Agmpean|M € I(H,))K € (K1)

= ALxL.

The first equality uses (2.8) and (2.9), the second uses condition (iii), while the
third uses (2.8) twice.

(i) = (iii). Suppose L, M € J(.¥) with M ¢ L. Let ¢ denote any column
vector in R satisfying &5, = 0 for K € J(%'), K # M. Then

ALmiEin = Z(A[LK]":[K]IK € J(Ji/)) = (A&)w-

But (Ae);, = 0 by (i); hence (Ag), = 0. Since &, is arbitrary this implies
Ay = 0 as required. O

Let M(.¥) denote the set of all A € M(I) that satisfy the equivalent
conditions (i), (ii) and (iii) in Proposition 2.2 and let GL(.%") denote the set of
all nonsingular matrices in M(.%"). It follows from (i) that M(.%¥") is a matrix
algebra and hence GL(.%) is a matrix group. It also follows by (i) that M(.%")
is the set of all matrices that, for each L € %, preserve the kernel of the
projection R — R given by x — x,. Note that when % = {J, I}, M(%¥") =
M(I) and GL(.%) = GL(I).

DerFINITION 2.3. The algebra M(%) is called the algebra of J“preserving
matrices and GL(%") the group of J#-preserving matrices.

REMARK 2.1. When ¥ is a chain then J(¥') = %"\ {} is also a chain, so
it follows from Proposition 2.2(iii) that M(.¥") is an algebra of block-triangular
matrices in the usual sense. For a general % let ¢ = |J(¥)| and let
K, K,,...,K, be a never-decreasing listing of the members of the poset
J(¥), thatis, i <j=K;,Z K, Ifevery A € M(1I) is partitioned according to
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the ordered decomposition
(2.15) I=[K]U[K;]JU -~ U[K,].

then it is seen from Proposition 2.2(iii) that M(.%¥") can be represented as a
subalgebra of the algebra of lower block-triangular matrices. That is, A €
M(.%") is lower block-triangular with additional blocks of zeros below the main
diagonal; see (1.13) and also Section 2.8 for further examples.

ReEMARK 2.2. For K € J(%¥') and A € M(I), partition Ay according to
(2.3) and (2.10) as follows:

-
K

Ay, A
(K) (K]
(2.16) Ay =
K A[K> A[K]

note that A gx; = A[x, when K € J(%"). By Proposition 2.2(i), if A € M(%)
then for every K € J(¥) and x € R/,
(2.17) Ak =0,
(2.18) (Ax) ik =A[K]x[K] +A[K>x<K>.
Furthermore, the linear mapping
M(x) > X (M([K] x (K)) x M((K])IK e J(%)),
A= ((Agy, A € J (%))

is bijective. This holds because, by Proposition 2.2(iii), A € M(.¥") if and only
if the [K] X (I \ K)-submatrix of A is 0 for every K € J(.¥). Under the
correspondence (2.19) the subset GL(.%¥") corresponds to the subset

(2.19)

(2.20) X (M([K] X (K)) x GL([K))IK € J(¥)).
LEmMA 2.2. For A e GL(%), L € ¥ and K € J(¥),

(2:21) (A" =(AL) " = AL,

(2.22) (A= (Ag) = A,

(2.28) : (A‘l)[,oA(K> = —A[‘,}]A[K>.

Proor. From Proposition 2.2(ii), (AC), = A, C; for every A,C € M(%¥),
L € %, which implies (2.21). Then (2.22) and (2.23) follow from (2.17). O

LemMmA 2.3. The mapping
P(I) > X(M([K] x (K)) X P([K))K € J(¥)),
3 - (S0 33y Sk K € I(X))
from 3 to its Jparameters commutes with the actions of GL(.%¥") on P(I)

(2.24)
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and on X(M(K] X (K)) X P(K)DI|K € J(.%¥)) given by
GL(x) x P(I) > P(I),

(2.25)
(A,3) > AS A

and
GL() X (X(M([K] X (K)) X P([K])K € J(¥)))
- X (M([K] % (K)) x P([K])K € J(¥)),
(2.26)
(4, ((Bixyr Aix)K € (X))
> (A By ATy + Ay Ay A Al K € I(X)),

respectively.

Proor. It is straightforward to verify that (2.26) is a group action. We
must show that for every A € GL(%¥), 2 € P(I) and K € J(%),

-1 _ _ _
(2.27) (AS ANk (A A ) (ky = A[K]E[K>E<,}>A<,}> + A[K>A<,}>
and
(2-28) (AEAt)[K]' = A[K]E[K]'AEK]'

It follows from Proposition 2.2(ii) that (AZ A"), = Ag 3 A%. Let Ax and 3
be partitioned as in (2.16) and (2.10), respectively. Since A g, = 0, (2.27) and
(2.28) follow by direction calculation. O

PropoSITION 2.3. If 3 € P(%) and A € GL(.%), then AS A’ € P(%).
Proor. We will show that condition (i) of Theorem 2.1 is valid with 3
replaced by A3 A’. Since 3 € P(.%), (ii) holds for 3. Now replace x by A~ 'x in

(ii) and let B = A~ L. The left-hand side of (ii) becomes tr((A3 A?)~1xx?) while
the summands on the right-hand side become

tr(E[_KI].((Bx)[K] - 2[K>E{,}>(Bx)<K>)( )t)
= tr(E[}ll.(B[K]x[K] + By Xy — Sy 28y By xoxy ) )t)
B tr( Bix2(x)-Bix)
% (25, + (BidBugy - BisSuey 3 By )2 )+ )')
= tr((A[K]E[K].AfK])_I
X () = (A, ATy + AperSer 2 A )% ) ()’

~ tr{(AZ A k111 — (AZA) e (AZA) o ry ) (')
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The first equality uses (2.18) and Proposition 2.2(ii), the third uses (2.22) and
(2.23), and the fourth uses (2.27) and (2. 28) Therefore, condition (i) of
Theorem 2.1 holds for A3 A’ O

2.5. The Hparametrization of P(J%). Theorem 2.2 establishes the one-
to-one correspondence between 3, and its #parameters. Together with Theo-
rem 2.1(ii) and Lemma 2.5, this decomposition of the parameter space P(.%")
yields the fundamental factorization of the likelihood function for the CI
model N(.%¥") (cf. Theorem 3.1).

LEmMmA 2.4. For any family

((R[K>,A[K])IK IS J(JZ/)) e X(M([K] x<K) xP([K])K e J(X)),
there exists a matrix A € GL(.%") such that for every K € J(%),
(2.29) Aky = Ry A iy
(2.30) A Al = Mg

Proor. First choose matrices A[ k) € GL(K], K € J(¥), that satisfy
(2.30). As in Remark 2.1 let K,,..., K, be a never-decreasing listing of the
elements in J(%). For notational convenience abbreviate K, by k, (K,) by
(k), [K,> by [k) and [K,] by [k] whenever they appear as subscripts. If
K, c Ky, then (K,) = [K,], 50 Ay, = A,y and Ap, is uniquely determined by
(2.29); if K, ¢ K,, then (K,) = &, so (2.29) is vacuous. Now suppose that we
have determlned Apy, ..., Ay yy satisfying (2.29). These & — 2 matrices (some
of which may be vacuous), together with Ay,..., Ay, _q;, completely determine
A ;- This follows from the decomposition [cf. (2.8)]

(2.31) (K = U (KK, < <K})

and the fact that K; c (K,) = i < k for a never-decreasing listing. Now A,
is uniquely determined by (2.29) and, after induction on %, the matrix A is

completely determined. By the surjectivity of the mapping (2.19), A € GL(%¥").
0O

THEOREM 2.2 [The J#parametrization of P(%¥")]. The following mapping is
bijective:

P(*%) - X(M([K] X {K>) XxP([K])IK € J(%¥)),

2.32
(2:32) S - ((2[K>2;,§>, Sk )K€ J(%/)).

Proor. By Theorem 2.1(ii), (2.32) is injective. To show that (2.32) is
surjective, consider

((Rixy, M) K € J(x)) € X(M([K] x (K)) x P([K])IK € J(¥)).

By Lemma 2.4 there exists a matrix A € GL(.%) satisfying (2.29) and (2.30).
Define 3 = AA% then 3 € P(.%¥") by Proposition 2.3 (with 3 = 1;). The
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Jparameters of 3 are given by 3y E<K AgyAgy = Rig, and 34 =
A Alg = A, K € J(0) [set S — 1, in (2.27) and (2.28)].

2.6. Transitive action of the group of J“preserving matrices.

THEOREM 2.3. The action
GL(x¥) X P(x) » P(X%),
(A,3) - AS A

is well defined, transitive, continuous and proper.

(2.33)

Proor. That (2.33) is well defined follows from Proposition 2.3. By Lemma
2.3 the bijective mapping (2.32) commutes with the actions (2.33) and (2.26).
By Lemma 2.4, however, the action (2.26) is transitive, so it follows that (2.33)
is also transitive. That (2.33) is continuous is trivial. Since P(-%¥") and GL(.%¥")
are closed subsets of P(I) and GL(I), respectively, and the classical action of
GL(I) on P(I) is proper, it follows that the action (2.33) is also proper. O

ReEMARK 2.3. Set P(¥) 1:={A"1 e P(I)|A € P(%¥)}. By Theorem 2.3,
the action
GL(¥)XxP(x¥) ' >P(x)" ",
(250 () x P(H) " > B(X)
(A,A) > (A ) AA?
induced on P(¥)~! by (2.33) is also well defined, transitive, continuous and
proper.

ReEMARK 2.4. Since both P(%) and P(.¥)~! contain the I X I identity
matrix 1;, it follows from the transitivity of the actions (2.33) and (2.34) that

(2.35) P(%) = {AA' € P(I)|A € GL(.%))},
(2.36) P(#) ' = {A'A € P(I)lA € GL(¥)).

If % ={@, I}, then P(¥) = P(¥)~! = P(I), so both actions (2.33) and
(2.34) reduce to the well-known transitive actions of GL(I) on P(I). If ¥ is a
chain as in Examples 2.1 and 2.2, then again P(.¥) = P(%¥)~! = P(I), but
now GL(.%¥) is a group of nonsingular lower block-triangular matrices in the
usual sense and the actions (2.33) and (2.34) are the well-known transitive
actions of GL(.%") on P(I).

The following lemma generalizes the Schur decomposition formula for

det(3).

LemMA 25. For S € P(%),
(2.37) det(3) = [(det(Zx, )|K € J(K)).
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Proor. By Theorem 2.3 there exists A € GL(.¥) such that 3 = AA’.
Thus

det(2) = det( AAY)
= [T (det( Ay ALy ) K € J(5))
— T (det(Syx; ) K € J(F)).

The second equality holds since A can be represented as a lower block-triangu-
lar matrix (cf. Remark 2.1), while the third equality follows from (2.28). O

2.7. Reconstruction of 3 from its Jparameters. By Theorem 2.2, 3, €
P(%) is uniquely determined by its J¥parameters

((Rixy Axc))lK € J()) € X(M([K] x (K)) x P([K])K € J(¥)),
where
(2.38) Rig, =3k, 3%, and A= S

Because the MLE 3, is obtained by first estimating the J#parameters of 3,
then using these estimates to obtain 3, itself, it is important to find an explicit
method for reconstructing 3 € P(¥) from its J%parameters.

One such method is to apply the formula

(2.39) 3= Y (A(K)K e J(¥)),

which is just a reexpression of Theorem 2.1(ii), where A,(K) is the I X I
matrix whose K X K submatrix is
- —1

(2 40) R[tK>A[K1]R[K> _R[tK>A[K]
_A[_KllR[K > A[_KII
and whose remaining entries are 0. In general, however, it is not a simple task
to determine 3 from (2.39) by matrix inversion. We now present a stepwise
algorithm for reconstructing 3, directly from its .#parameters.

Let K,,..., K, be a never-decreasing listing of the members of the poset
J(#) (cf. Remark 2.1 and the proof of Lemma 2.4), partition 3 according to
(2.9) and list the #parameters in the corresponding order:

(A[I]’ R[>2>’ A[2]’ treo R[Q)’ A[Q])
(2.41) € P([K,]) x M([K,] x (K,)) X P([K,])
X X M([Kq] X <Kq>) X P([Kq])‘

(Recall that whenever they appear as subscripts, K, (K,), [K,) and [K ] are
abbreviated by &, (&), [k) and [%], respectively.) The reconstruction algorithm
proceeds stepwise as follows. At step & the relations in (2.38) are inverted to
determine 3,, and 3. from the corresponding #parameters R,y and Ay,

“and from the matrix 3, .. (k—1y constructed in step £ — 1. The remaining
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entries in 3, ... ,, are determined by the CI conditions.
Step 1: S = Ay
Step 2: 2[2> = R[2>2<2>,
3 = Ay + Bigy3a)

At this point the submatrix 2, ,, is completely determined: If K, c K,,
then 3, ,, = 3,, whereas if K, ¢ K,, then K; N K, = &, so the [K;] X [K,]-
submatrix of % is 0 by (2.2). (Recall that 1 U 2 abbreviates K, U K, when
appearing as a subscript.) By (2.42), (K;) € K; U K,, 50 33, is a submatrix of
319 hence the next step may be carried out.

Step 3a: 2[3) = R[3>2<3>,

2s = Ay + Ry 3ay-

It is important to note that after steps 1, 2 and 3a, the three submatrices
31, %5 and 3; are now determined but the complete submatrix 3,5, may
not yet be fully determined. The remaining [K;] X (K; U K, U K;) \ K5)-
submatrix of %, ,,3, which we denote by 33, is determined from 3, by
means of the pairwise CI requirements imposed by % [cf. (2.44)]:

Step 3b: E«[3) = R[3>2<3}

(=203 3%m)
where 3 5, is the (K;) X ((K; U K, U K3)\ Ky)-submatrix of 35,3 By
(2.42) and (2.43), however, 3 ;, is in fact a submatrix of 3, ,,; hence it may be
used to obtain 33, in this step.
After k — 1 such steps, the submatrix 3, ... ;) is fully determined and
in turn may be used to obtain 3, .., as follows. First note that by
Proposition 2.1 and the never-decreasing nature of K;,..., K,

U ([K]li = L., k),

Kk U([Kj]|j=1,...,k,Kngk).

From these relations and (2.3) it may be deduced that
(242) (K =-K,Nn(K,U--UK, )CK, U - UK, 1,
(KyU -~ UK )\K, = (K U~ UK,_)\ <K,

CK,U- UK, ,.
Thus, if we denote the [K,] X (K; U -+ U K,)\ K,)-submatrix of 3, .. ,,
by 3, and the (K,) X (K; U -+ U K})\ K))-submatrix by 3 ,,, it follows
from (2.42) and (2.43) that both 3 ,, and X, are in fact submatrices of
310 - uk—1) SO the next step may be carried out:

K]_U"'UKk

(2.43)

Step k: 2[k> = R[k>2(k>’
201 = Ay + By Za
(2.49) 2ky = By 2any

(= 20y 23 Zeny ) -



1336 S. A. ANDERSSON AND M. D. PERLMAN

The relation in (2.44) is seen as follows. Since K, (= L)and K, U --- UK,_,
(=: M) are members of % it follows from the pairwise CI condition (2.2) and
from (2.42) and (2.43) that the [K,] X (K, U -+ U K,)\ K,)-submatrix of
(31, .. up) ! is a zero matrix, which is equivalent to (2.44).

The submatrix 2, .. ,, of 3 is fully determined after step k; after ¢ steps,
31y . ug = 2 is fully determined.

[In carrying out this algorithm, one must use the convention that if C # &
and D # &, then the product of a C X & matrix with a @ X D matrix is the
C X D zero matrix.]

2.8. Examples. A series of nine examples will illustrate the following basic
aspects of a lattice CI model N(.¥"): (a) the distributive lattice ¥’ c 2(I) and
the poset J(.%") of join-irreducible elements; (b) the #parametrization (2.32)
of P(%) and the associated decomposition of tr(Z ~lxx?) given in Theorem
2.1(ii); (c) the choice of a never-decreasing listing of the members of J(.%") and
the reconstruction of the covariance matrix 3 € P(.%¥") from its ordered
Jparameters [cf. (2.38)] by means of the stepwise algorithm in Section 2.7, as
well as the form of the precision matrix A = 37! € P(¥)~!; (d) the form of
the J#preserving matrices, that is, the group GL(.%¥") of matrices, partitioned
according the ordered decomposition (2.15), that acts transitively on P(.%") (cf.
Remarks 2.1 and 2.2). The reader should verify directly that (2.35) and (2.36)
hold for P(.%¥") and GL(.%¥") in these nine examples.

In each example the lattice diagram of % appears in an accompanying
figure, in which the members of J(.%¥) are indicated by open circles and the
remaining members of % by solid dots. In each figure the minimal element &
appears at the left while the maximal element I appears at the right.

These examples will be continued in Section 3.2, where the MLE 3 is
determined for each of these CI models, and in Andersson and Perlman
(1993b) to provide examples of the problem of testing one CI model against
another. Additional examples appear in Andersson and Perlman (1991).

ExampLE 2.1. First consider the simple case where ¥ = {J, L, I} (see
Figure 1). Since % is a chain, P(.¥) = P(I). Note that J(.%) = {L, I} and
(L) =@,{I) =[L] = L. Thus the #parametrization of P(_¥") becomes

P(I) « P(L) x M([I] x L) x P([I]),
PR (EL, 2[1>EI_,1’2[I]')’

(2.45)

and

(246) tr(3 ') = tr(3p ) + tr(SEh (- 33 %) o0))
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o e—o— -+ —0—0]
K, K

gq-1

FiG. 2.

The algorithm for reconstructing 3 from its ordered #parameters ALy By
and A, takes the following form:

Step 1: %= A
Step 2: 2[]> =R[I)2L’
2= Ay + By 3qgy.

The group GL(.%¥') is a lower block-triangular matrix group in the ordinary
sense: GL(%") consists of all nonsingular I X I matrices of the form

(2.47) a-|® 0

' Ay Am)

Exampre 2.2. If #={0=K,K,,..., K, ,K,=1} is an ascending
chain, that is,  c K, ¢ --+ c K, , C I, then a well-known generalization of

the preceding example is obtained (see Figure 2). Again P(.¥') = P(I), but the
Jparametrization is changed. Note that J(%#) = {K,,..., K Jand(K,) =g,
(K,>=K,_1, k=2,...,q. Then the #parametrization of P(.¥") becomes

P(I) © P(K,) x M([K,] X K;) X P([K,])
(2.48) X X M([K,] X K,_) X P([K,]),
3o (30330 S5 30, 200, 30 )
and
tr(3 " lex’) = tr(37 %y x)) + tr(E[EJI.(x[z] = 330 ( )t)
+ .- +tr(2[;]1.(x[q] — E[q>2;_11xq_1)( )t),

where K, K,,..., K , are abbreviated as 1,2,...,q whenever they occur as
subscripts. Then 3 is reconstructed from its ordered #parameters
Apyp Ry, App--s R, A, as follows:

Step 1: 3= Ay
Step 2: 2[2) = R[2>21,
2z = Ay + Rigy 2 g5

(2.49)

Step q: 2[q> =R,3, 4,
21 = Mgy + Brgy2¢qy-
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The group GL(.¥) is again a group of lower block-triangular matrices in the
usual sense. For example, when g = 4, GL(.%¥) consists of all nonsingular
I X I matrices of the form

A, 0 10 0
(2'50) A= A[2> . A .. A[Z]‘ Z . ./:.g .
[3) B 1
.......... .A.[4.>. e ./E.A[;].

ExampLE 2.3. Consider the lattice #={=LNM,L M, LNM=1}
(see Figure 3). Here the CI requirement determined by %" is nontrivial, so
P(%) c P(I). Now J(¥) = {L, M} and (L) = (M ).= &. The JFparametri-
zation takes the form

P(%) o P(L) X P(M),

2.51
( ) 3 o (3L,3y)

and

(2.52) tr(3 " xt) = tr(Sp %L xp) + tr(Sa ey )-

Since L, M is a never-decreasing listing of J(%"), 3 may be reconstructed
from its ordered nontrivial #parameters Az, Ay as follows:

Step 1: 3= Ay
Step 2: 3u = Ay
E[M} = 0.
Thus P(.¥) consists of all block-diagonal matrices 3 of the form
5., O
2.53 2 = ’
(259) EEEIr

where 3, is partitioned according to the ordered decomposition
(2.54) I=LUM.

In this example, as in Examples 2.1 and 2.2, P(%¥) = P(%¥)~" and both are
linear, that is, closed under (nonnegative) linear combinations. The group
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GL(%¥) consists of all nonsingular I X I matrices of the form

A 0)

(2.55) A= ( 0 4,

\

Exavpie 24. If #¥={0=LNM,L,M,L UM,I} (see Figure 4), then
again P(%¥) c P(I). Here J(%¥)={L,M,I} and (L) ={(M) =@, {I) =
L U M. The H#‘parametrization of P(.%¥") assumes the form

P() o P(L) x P(M) x M([I] x (L UM)) x P([I]),
(2.56)
3 e (EL, EM, E[I)EZLIJM’ 2[1].)

and
tr(S lax?)
= tr(2g % xf) + tr(Sifey )
+ tr(E[}]l,(x[” - 2[1>EELIJM3CLUM)( )t)

Now L, M, I is a never-decreasing listing of J(.%"), so 3 may be reconstructed
from its ordered nontrivial #-parameters A, Aprp Bry, Ay as follows:

Steps 1 and 2:  Repeat steps 1 and 2 in Example 2.3.
Step 3: 31y = Ry, Diag(3,,3y),
2= A+ By
Thus P(%") consists of all 3 of the form

(2.57) =0 3. ,

where 2, is partitioned according to the ordered decomposition
(2.58) I=LUMU[I].

The precision matrix A =371 € P(¥)~! is characterized by the condition
that 37! ,, = Diag(3; !, 3;/9). Thus, unlike the preceding example, here P(.%")
is linear while P(.%¥)~! is not. The group GL(.¥") consists of all nonsingular

L
LuM

Fic. 4.
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I x I matrices of the form

AL O : O
(2.59) A=|0 Ay: 0
A[1> A[I]

ExampLE 2.5. Suppose that %= {3, L "M, L, M, L UM = I} (see Figure
5). [Note that (1.3) is a special case.] Now J(%¥)={L NM,L, M}, and
(LNM)=@, {LY=(M)=LnNM. The Hparametrization of P(%) is
given by

P(¥) o P(L N M) x M([L] x (L N M))
(2.60) - x P([L]) x M([M] x (L "' M)) x P([M]),
3o (ELmM,E[mEZrIwM,E[L]., Sy 3L Am 2[M]~)
and
tr(3 7 'x’) = tr(SLA M%L o M¥L M)
(2.61) + tr(E[_L]j(x[L] - E[L)EZ}\MxLﬂM)( te )t)
+ tr(E[_Ml].(x[M] - E[M>21:rlemeM)( )t)

Since L N M, L, M is a never-decreasing listing of J(.%"), 3 may be recon-
structed from its ordered J#parameters Az, Rirys Arzp Biary Apary @s fol-
lows:

Step 1: Spam=MNrLowmgs
Step 2: Sy = Riny2pams
32y = Ay By
Step 3: Sy = Riu2pam
(2.62) S = Apny + By 2y

Simy = B2
(=S SrhmZw)-

LnM

FiG. 5.



LATTICE MODELS 1341
(Note that 3/, = 2 ;;) Thus P(¥) consists of all 3 € P(I) of the form
2pom 2 2
(2.63) S = |2 2 2wy,
E[M> 2"[M) E[M]

such that 3,/, satisfies (2.62) and where 3 is partitioned according to the
ordered decomposition

(2.64) I=(LnM)U[L]U[M].

Then P(%)~! consists of all A € P(I) having the simple form
Apam Ay A

(2.65) A=1A8p Ay O
A[M> 0 A[M]

Thus in this example P(.¥) " is linear while P(.%") is not. The group GL(.%¥")
consists of all nonsingular I X I matrices of the form

Arou O 0

(2.66) A= |45, Ay 0
A[M> 0 A[M]

ExampLE 2.6. Consider the lattice ¥ ={3,LNM,L,M,L UM, I} (see
Figure 6). Note that J(#) ={J,LNM,L,M,I} and (LN M) = &, (L) =
(M)=LnM,<I)=LUM. The Hparametrization of P(.¥) is given by

P(#%) o P(LNM) x M([L] x (L nM)) x P([L])
XM([M] x (LnM))xP([M])

(2.67) X M([I] x (L uM)) xP([I]),
PARES (ELnM, Sy LA M 2Ly Sy 2L o Mo 2M1o 2SI M ),
and
tr(E_lxxt) = tr(El_'}‘MxLﬂMxinM)
+ tr(S’[_Lll'(‘x[L] - 2[L>EljrlﬁManM)( . )t)
(2.68)

* tr(z’[_Mll'(x[M] - E[M>2£r1\ManM)( e )t)

+ tr(2[_111~(x[11 — 33 mrom)( )t).
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Since L N M, L, M, I is a never-decreasing listing of J(.%¥), 3, can be recon-
structed from Ay Biry, Ay Riary Aimyp Bipys Agpy as follows:
Steps 1,2, 3: Repeat steps 1, 2 and 3 in Example 2.5 to obtain 3, ,,,.
Step 4: S =Rpn3um
2= Ay + By 2.
Thus P(%") consists of all 3, of the form

(2.69) 3 = (E“’M E<”)

partitioned according to I = I}, ,, ULI], where 3, , ,, is given by (2.63), (2.64)
and (2.62). The precision matrix A = %~! € P(#)~! is characterized by the
condition that 37 ,, have the form (2.65). Thus neither P(.%) nor P(%)~!
is linear. The group GL(.%¥") consists of all nonsingular I X I matrices of the
form

Apam 0 0 :0
2.70) P A A
(2. “1Aw, 0 Ay o0

ExampLE 2.7. Let % be the lattice in Figure 7. Then J(¥) = {L N M,
L,M,L'y M} and {LNM) =0, (L)y={M)=LnNnM, (L)=(M') =
LUM =L NnM'.The #parametrization of P(%¥") is given by

P(#) o P(LN M) x M([L] x (L N M)) x P([L])
X M([M] x (L n M)) x P([M))
X M([L'] X (LU M) x P([])
(2.71) X M([M'] x (L UM)) x P([M']),
RS (2L0M7 Sy 2L A DI E[M)E[jrl‘wM’E[M]"
Sin L 2 Sy 200 s E[M’]-)a

from which the decomposition of tr(X ~!xx?) is directly obtained. The matrix 3

L L
LNnM LUM
@o—o<><:>nl
M M’
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can be reconstructed from its ordered #‘parameters
Az Biey, Moy Boweys Apep Bioys Ay By, Ape
as follows: ’
Steps 1, 2, and 3: Repeat steps 1, 2 and 3 in Example 2.5 to obtain
ELuM = EL’nM"
Steps 4 and 5: Repeat steps 2 and 3 in Example 2.5 with L, M replaced by
L', M.

Thus P(¥) consists of all 3 of the form (2.63) with L, M replaced by L', M’,
partitioned according to the ordered decomposition

(2.72) I=(LUM)U[L]U[M]
and where 3, 3 = 2.0 i8 given by (2.63). The precision matrix A = 57t
has the form (2.65) with L, M replaced by L', M’ and satisfies the condition

that 371 ,, has the form (2.65). Again, neither P(%¥") nor P(# )~! is linear.
The group GL(.%") consists of all nonsingular I X I matrices of the form

Aoy O 0 .0 0

Ag, Ay 0 -0 0

(2.73) A= |4 O A 0 0
A A[.L .> ....... : A.[L.,]. RS
Apary 0 A

ExampLE 2.8. Let % be the lattice in Figure 8. Here J(X¥) =
(LAM,L,M,L’,M"} and {LNM) =0, (L) ={M)=LNM, (L") =1L,
(M'y =L UM =L N M' The Hparametrization of P(%¥) is given by

P(I) o P(L N M) x M([L] x (L n M)) x P([L])
< M([M] X (L A M)) x P([M])
X M([L] X L) x P([Z'])
(2.74) X M([M'] x (L U M)) x P([M']),
3 e (ELHM’ E[L)EI_,}WM’ 3L E[M)EI_,}WM’ DI

-1 -1
S'[L”)EL ’ 2"[L”]» E[M’)ELUM’ 2[M’]~)’
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from which the decomposition of tr(2 ~lxx?) follows directly. The matrix 3, can
be reconstructed from its ordered J#parameters
Aiwamy Bioy, Ay By Ay Biery, Ay By Apary
as follows:

Steps 1,2,3: Repeat steps 1, 2 and 3 in Example 2.5, to obtain 3, =

S
Step 4: Sy =R 3,
S = Moy + By Z s
(2.75) S = RS

_ 2(1‘4]
(= E[L")ELl(E(M]))y

where 3 ;) = 3{5,; thus we obtain %,

Step 5: ZIM'> = R[M')ELUM’
Sy = Apey + By 2
(2.76) 2y = By 2oy

I Bt

= 4MYy“LuM ’
[M") E(L”]
where %1, = 3{p,).

Thus P(.%") consists of all 3, of the form

anM 2(L] 2(M]
: RN
2Ly 2y 0 Z : 2
(2.77) s = .2.[.M.> ......... 2.[.M.}. . E[M] E(L] -
2[L> ........ .E;L.;.:.E.[.L’:]....E.{.Al.]..
el 2[}‘}; ........ E.[.M.}. . .2.[1.‘4.]. .

partitioned according to the ordered decompositi;)n
(2.78) I=(LNnM)U[L]U[M]U[L']U[M],

where 23, ¥, and 3., satisfy (2.62), (2.75) and (2.76), respectively.
The precision matrix A = 37! satisfies the following three conditions: Its
[M'] X [L"]- and [L"] X [ M']-submatrices are 0, the [L"] X [M]- and [M] X
[L"]-submatrices of 27! are 0 and 37! ,, has the form (2.65). Neither P(.¥")
nor P(%¥)~! is linear. The group GL(.%¥") consists of all nonsingular I X I
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F16.9. (a) The lattice % . (b) The lattice .#.

ces of the form

Apon 0 10 0 0
AL, Ay, 0 010
. e P g
S £ i
........... e A

ExampLE 2.9. Finally, consider the lattice % in Figure 9a. Although this
lattice properly contains the lattices in Examples 2.7 and 2.8 as sublattices, the
set P(.%¥") that it determines is much simpler than those in Examples 2.7 and
2.8. The reader may verify that P(.%") is identical to P(.#), where .# is the
sublattice in Figure 9b (compare to Example 2.5). Likewise, P(.%¥") = P(.#")
and P(%") = P(#"), where %" and .#' are the sublattices in Figures 10a
and b, respectively, and where %" and .#” are the sublattices in Figures 11a
and b, respectively.

For the original lattice %, the group GL(%') consists of all nonsingular
I X I matrices of the form

Ap oy ‘0 0 0 0
A :.A[.L.]..(.) ...... RS
(250 Ao [ag f'("mf'A['z\}]mf'dm-’ oo
LA " [.L/;......(.) ...... AL
.A[.M. (.L.m.n.h.]. 5 "'A[}\} ;”.]. 0

L L

M’ M’
F1e. 10. (a) The lattice %'. (b) The lattice 4"
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Fig. 11. (a) The lattice %". (b) The lattice .#".

ReEMARK 2.5. For any K € 2(I) define K’ :== I \ K. It is an elementary
exercise to verify that for L, M € 9(I), x; 1L xylx,~ » under N(2) if and only
if x,, 1 2,1%, - 3 under N(S~1). From this it follows that P(#") = P(x") Y,
where %" = {K'|K € % is the dual lattice of . For example, if % is the
lattice in Figure 4, then %" has the same form as the lattice in Figure 5; the
relation P(¥) = P(#")~! may be verified by comparing (2.57) and (2.65).

3. Likelihood inference for a normal model determined by pair-
wise conditional independence.

3.1. Factorization of the likelihood function; the MLE of 3. Consider n
independent, identically distributed (i.i.d.) observations x,...,x, from the
lattice CI model N(.%¥) defined by (1.8) and (1.4), and denote the matrix of
observations by y, that is,

(3.1) y = (%g,...,%,) € M(I X N),

where N =({1,...,n}). For L € % let y; denote the L X N submatrix of y,
while for K € J(%) partition yy according to (2.3) as follows:

_ | Y
Yk (y[K] )
The fundamental factorization of the LF for the model N(.%") is an immediate
consequence of Theorem 2.1(ii), Lemma 2.5 and Theorem 2.2.

TueoreM 3.1 (Factorization theorem). The likelihood function based on n
i.i.d. observations from the statistical model N(%') has the following factor-
ization:

P(¥) X M(I X N) = 10,[,
(3,5) = (det(2)) ™ *exp(—tr(Z~'yy)/2)
= TT((det(Zx)) ™"
xexp(—tr(3- (Vi) — STy () /2)K € I(H).

The parameter space P(%) has the factorization given by (2.32).

(3.2)
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Note that the factor corresponding to K € J(%') is the density for the
conditional distribution of Yik) 8iven y .

It follows readily from Theorem 3.1 and well-known results for the multi-
variate normal linear regression model that the MLE 3(y) of 3 € P(%) is
unique if it exists, and it exists for a.e. y € M(I X N) if and only if

(3.3) n=2max{KK)| + |[K]IK € J(¥)} = max{|K| K € J(¥)}.

In this case the J#<parameters of 3 are determined from the usual formulas
for regression estimators:

(34)  Zg3%,=SxySKy,  n3k= Sk, Ked(X¥),

where S(y) =yy’ is n times the empirical covariance matrix. The explicit
expression for ¥ itself may be obtained from its #parameters in (3.4) by
means of the reconstruction algorithm given in Section 2.7.

If I € J(%¥'), then the condition (3.3) reduces to N > [Il, so in this case S
is positive definite a.e., hence a fortiori k. exists a.e. for every K € J(%¥).
If, on the other hand, I & J(.%¥'), then condition (3.3) does not guarantee that
S is positive definite, but it still guarantees that 5)[ K] (and hence 3)) exists a.e.

By Lemma 2.5, when (3.3) is satisfied the maximum value of the LF (3.2) is
given by

-n/2

(35) o T1((det(Sx,)) IR € T(H)) = - (det($))

where ¢ = exp(—n|I|/2). This fact is used in Andersson and Perlman (1993b)
to express the likelihood ratio statistic for testing one model against another.

REMARK 3.1. The statistical model N(.%¥") is a curved exponential family; it
is linear if and only if P(J¥)~! is a linear set, that is, closed under positive
linear combinations. In the linear case the MLE 2 based on n i.i.d. observa-
tions from N(.%") is a minimal sufficient statistic, but 3 is not necessarily
sufficient in the general case.

3.2. Examples of pairwise conditional independence models. For each
lattice % in Examples 2.1-2.9, consider the associated normal model N(.¥").
When % is a chain as in Examples 2.1 and 2.2, P(.¥) = P(I) and N(.¥) is the
unrestricted covariance model regardless of the length of the chain. [The
Jparametrization of P(.%¥") does depend on this length, however.] Condition
(3.3) for the existence of the MLE 3, reduces to the familiar condition n > |1,
while (3.4) reduces to n3 = S.

For the lattice % in Example 2.3, partition the observation x € R! accord-
ing to (2.54) as x = (x}, x},)". The model N(.%¥") states simply that x; L x,,.
According to (3.3), the MLE 3 exists if and only if n > max{|L|, M|} (whereas
S is positive definite if and only if n > |I|) and is given by n3 = Diag(S,, S,,).

For the lattice .# in Example 2.4, partition x € R! according to (2.58) as
x = (x1, %}, %{;))". Then the model N(.%') again states that x, 1 x,,. Condition
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(8.3) for the existence of the MLE takes the form n > |I|, while from (3.4).
niL=SL, niM=SM, 2[1>2£&1M= S[1>SElI_,M, n2[]]= S[I]"

We reconstruct 3 from its #parameters by following steps 1-3 in Example
2.4 to obtain

nﬁ:LuM = Diag(Sy, Su)»
nim = S[I)Sl_,llJM Diag(S., Su),
nﬁ)[,] = Sip.+ Syry(Diag( Sy, SM))_ISu] (# Si)-

In Example 2.5, x is partitioned according to (2.64) as (x} 4, X{1}, X(ar)"-
The model N(.%) states that x;;L X 3|%;,~ »- Condition (3.3) becomes n >
max{|L|, M|}, while (3.4) becomes

(3.6a) nSiam=Scnm

(3.6b) E[:E?]M = SiySeams =Sy

(3.6c) S Lom = Sy Suams ni[M1«= Stary-
By steps 1-3 in Example 2.5, 3. is given by (3.6a) and

(3.7a) ni[m =81y ni[L] =Sy,

(3.7b) ni[m = Simy» nS[M] = Sty

(3.7¢) n2iyy = Stars Sz A mS Ly (# Spany)-

In Example 2.6, x is partitioned as (X[, p, X{1} X{arp> X(1)° @nd the model
N(%) states that x;,)L x4 X}, »- Condition (3.3) reduces to n > |I|, while
(3.4) is given by (8.6a)—(3.6¢) and

E[[)EZLIJM= S[I)SEE)M’ n2[]].= S[]]..
From steps 1-4 in Example 2.6, $ is given by (3.6a) and (3.7a)-(3.7¢) and
nSiry = SinSrbm(nELom)(# Suy)
nSy =St Sy Srim(nELum)SrémuSa (# Sy
where, from (3.6a) and (3.7a)-(3.7¢),
. Spam S(L] S(M]
(3.8) nSLom=| Sw Sizy SiLySramSca |-
Sty SpnySramS Stary
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In Example 2.7, x is partitioned as (xf, 5, %{r1, X{arp *{rp X))’ and the
model N(J%¥) states that
XLy L X2y and that x4 2| (XL Ao, %) %) -

[Note that x, =%, = (anM, %) Xap)-] Condition (3.3) becomes n
> max{|L|, [M'|}, while (3.4) is given by 83 6a)-(3.6¢) and by (3.6b) and (3.6¢)
with L, M replaced by L', M’ (note that Sy, = S, ). From steps 1-5 in
Example 2.7, $ is given by (3.6a), (3.72)—(3.7c) and

ni[l/) = S[L’)‘SI_AIJM(niLUM)a

nﬁ:[L’] =S+ S[L’)Sl_,LlJM(niLUM)SZLIJMS(L’]y
(3.92) nﬁ)[M/> =S[M,>SZL1JM(n§lLuM),
(3.9b) nS0ey = Sper+ Sy ST m(n S0 0w ) SZ L 1S cary

(3.9¢) ni[M’} = S[M’)SI_,LIJM(niLUM)SL_,&JMS<L’] (#* Sty

where n3, ,, is given by (3.8).

In Example 2.8, x is partitioned as (x] . », %{1} X(arp *{rrp Xar))’ It may be
seen from the form (2.77) of 3 € P(¥') [or from (3.11)] that the model N(.¥)
is determined by the following three conditions:

(1) XL Xl A v
(i) xary L Xl (X s xiLy)s
(iii) XL | (%L A s XLy Xpary) -

Condition (3.3) becomes n > max{|L’|, [M'|}, while (8.4) is given by
(8.6a)-(3.6¢),

-1 _ -1 A _

2[L”>2L - S[L”)SL s nzwl.— S[L,,],,
-1 _ -1 A _

E[M/>2LUM - S[M'>SLUM’ nE[M:]— S[M/]

From steps 1-5 in Example 2.8, 3 is given by (3.9a) and (3.7a)~(3.7¢), by
n2[L1/> = S[L")’ nill‘u] = S[L"]’

S

A (M]
— -1

nS 1y = Sy Si

S[L>SE}1MS(M] ’
by (3.9a) and (3.9b), and by
’ Sy

' _ -1
{L"]
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Finally, for the lattice .# in Example 2.9, x is partitioned as

t
¢ ¢ ¢ ¢ t
(%L aes 51> Xarys X1y X)) -

It is readily seen (cf. Remark 3.2) that the model N(.%¥) is determined by the
single condition that

(x[L]’ x[L”]) lL(x[M], x[M”])le nM:

This reflects the fact that this model is of the same form as that in Example
2.5 (see the discussion in Example 2.9).

REMARK 3.2. The normal model N(.%) is defined in terms of the set of all
CI conditions determined by %" ’

(3.10) SeEP(¥) ox Layl,oy VL MeX.

It may be seen from the previous examples that many of these conditions are
trivial (e.g., when L ¢ M or M cC L) or redundant and may be omitted. (For
example, the CI condition is redundant when L C L', Mc M and LN M =
L' n M, for then x;, L xpplxy, A = xp L X% ~ 3r.) Any never-decreasing list-
ing K;,..., K, of the members of J(%) (cf. Section 2.7) may be used to
replace the set (3.10) of CI conditions by a subset (3.11) of only ¢ — 1 CI
conditions (some possibly trivial) that determines the same model N(.%"):

(3.11) 2 eP(X) e Hyx, Lx .. yeplXinys k=2,...,q,
Ad Hk: x[k]J-Lx(IU U(k_l))\<k>lx<k>, k = 2, .o .,q,
< Hk: E[k—Z[k)E(_kl)E(k) = 0, k= 2,.. ., q.

Here we use the notational conventions of Section 2.7 and the equality in
(2.42). The equivalence of (3.10) and (3.11) follows from the fact that (3.11)
implies the factorization (3.2), which in turn implies that condition (ii) of
Theorem 2.1 holds. [We thank the referee for suggesting condition (3.11).]

In Example 2.8 each of the following four sets of CI conditions determines
N(Xx¥):

(1) xplayleynys () xpopLapley; (i) xp L xppley s
(1) xpLoxpglay s () xprLoxppler;
(1) xpyLaployqps (i) xp L appler s
(1) xppLocprlog nags () xp Lxppla.

The first three sets are of the form (3.11) (omitting trivial conditions), cor-
responding to the three never-decreasing listings (L N M, L, M,L", M’),
(LAM,L,M,M',L")and (LN M, L,L", M, M’) of J(%°). The fourth, how-
ever, is not of the form (3.11).
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REMARK 3.3. For I = ({1, 2, 3, 4}, consider the statistical model consisting of
all normal distributions on R’ such that x, is independent of x, and x; is
independent of x,. It is readily seen that this model is not of the form N(.%")
for any #. The same is true for the normal model determined by the two
conditions that x; and x, are CI given (x,, x,) and x, and x, are CI given
(x4, x5).

REMARK 3.4. The general model N(.%¥') is defined by the pairwise CI
requirement (1.4) for every pair L, M € .%. This requirement does not neces-
sarily imply, however, that for every subset .”C %/, (xx|K € ) are mutually
CI given x gk <. For the lattice .%# in Example 2.9, this may be seen by
considering the subset .= {L", L U M, M"}.

REMARK 3.5. An alternative statistical interpretation of the CI model
N(#') may be obtained from (2.35): x = (xx|K € J(%¥)) € R’ is an observa-
tion from the normal model N(.%¥) if and only if x can be represented in the
form x = Az for some (generalized block-triangular) matrix A € GL(%),
where z = (24K € J(%¥)) € R’ is an (unobservable) stochastic variate such
that z ~ N(1,). From Proposition 2.2(iii), this representation is equivalent to
the system of equations

(3.12) X =3(Apm@EmM € H(L)), Led(X),

where H(L) ={M € J(X)IM c L} =J(*%}). Since A€ GI(¥)= A le
GL(.%), this shows that the CI model N(.¥") can be interpreted as a multivari-
ate linear recursive model [cf. Wermuth (1980) and Kiiveri, Speed and Carlin
(1984)] with additional lattice constraints.

Conversely, suppose that J is a finite index set and let (H(<)|/€ J) be a
family of subsets of o that satisfies the following two conditions:

(i) /e H(),
(ii) weH() = H(m) CH(Z).
For each /€ J let D, and E, be finite index sets such that |D,| < |E,| and let

I=UD Med), I' = U(E |/ € J). Consider the normal statistical model
defined by the system of equations

(3.13) L x=2(ALz. € H(Z)), (e,

where x;, € IR < is observable, z;,,, € R~ is unobservable, z = (z,, |» € J) ~
N(1;)onRY, A, € M(D,x E_), and rank(A ) = |D |. Let # be the ring of
subsets of J generated by {(H()|ze J} and for H € # define I;; = U(D I/ €
H). Then trivially %= {I4|H € 2#} is a ring of subsets of I and the model
determined by the system (3.13) has the form (8.12), that is, it is the model
N(x¥).

3.3. Invariance of the model. It follows from the well-known transforma-
tion property of the multivariate normal distribution that the i.i.d. model
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determined by N(.%") is invariant under the transitive action (2.33) of GL(.%")
on the parameter space P(.%¥") and the action

(3.14) GL(%) XM(I XN) - M(IXN),
(A,y) = Ay
of GL(.¥") on the observation space M(I X N). The MLE is thus equivariant.

4. Invariant formulation of the CI model and testing problem.

4.1. The lattice structure of quotient spaces. Let V be a finite-dimensional
real vector space. A quotient space (or simply a quotient) of V is formally
defined to be a pair (, py) consisting of a vector space @ and a surjective
linear mapping py: V — Q. For ease of notation, (€, Pg) usually is abbreviated
to Q.

Let R and T be two quotients of V. If there exists a linear mapping pp;:
T - R such that pp = pgry ° pr, then pg, is necessarily surjective and unique;
hence (R, pgy) is a quotient of 7. In this situation we write (R, pg) < (T, py),
or simply R < T. This relation is equivalent to the condition that pz'(0) 2
p70). The relation < on the set of all quotients of V is not antisymmetric;
hence one defines an equivalence relation ~ on this set by R ~ T if pz(0) =
p7X0). The collection of equivalence classes is denoted by 2(V). Equipped
with the relation induced by < (also denoted by <), 2(V) becomes a
partially ordered set (= poset).

We identify a quotient (@, pg) of V with its equivalence class in 2(V). A
convenient representative for this equivalence class is the canonical quotient
space (V/pg1(0), p), where p: V — V/p5'(0) is the canonical quotient mapping
given by p(x) = x + pg(0), x € V.

The poset 2(V) is in fact a lattice: If R, T € 2(V), then their minimum
and maximum exist and are given by

R AT =V/(pz'(0) + pr'(0)),
RV T =V/(pz(0) NnprY0)),

respectively. The minimal and maximal elements exist and are given by {0} and
V, respectively. If dim(V) > 2, then 2(V) is not distributive and | 2(V)| = .
Since V is finite dimensional, the lattice 2(V) has finite length; hence so does
any sublattice 2 c 2(V). Therefore, if 2 is a distributive sublattice of 2(V),
it must be finite. The reader is referred to Section 3 of Andersson (1990) for
the properties of posets and lattices used here.

4.2. Invariant formulation of the pairwise CI model. For o € P(V) := the
cone of all positive definite forms on the dual vector space V* of V, let N(o)
~denote the normal distribution on V with mean vector 0 € V and covariance o
[cf. Andersson (1975), Section 5]. Let 2c 2(V) be a sublattice such that
{0}, Ve 2
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DEFINITION 4.1. The class P(2) c P(V) is defined as follows:
(4.1) 0 €P(2) < pr(x)Lpr(x)pgar(x) VR, TE 2 whenx~ N(o),

that is, py and p; are conditionally independent (CI) given pg 7 (compare to
Definition 2.1).

THEOREM 4.1. The class P(2) is nonempty if and only if the lattice 2 is
distributive.

Proor. See Section A.2.
The normal statistical model N(2) defined by the requirement (4.1) of
pairwise conditional independence wrt 2 is then given by

(4.2) N(2) == (N(o)lo € P(2))
[compare to (1.8)]. By Theorem 4.1, N(2) # ¢ if and only if 2 is distributive.

ExampPLE 4.1. Let V=R, where I is a finite index set. Every sub-
ring #C 2(I) determines a distributive sublattice 2(%") C 2(RY) as fol-
lows. For each K € % define the coordinate projection pg: R' — REX by
prl(xli € 1) = (x,i € K). Since % is a ring, it follows that 2(%):=
{(R¥, pr)IK € ¥} is a distributive lattice of quotients of RI If @, I € %, then
{0}, R € 2(%). Thus each canonical coordinate-wise CI model N(%') given
by (1.8) is a special case of the general CI model N(2) given by (4.2).

Conversely, by Proposition 4.1 every distributive sublattice 2 2(V) can
be represented in the form 2= 2(%) for some ring of subsets % and every
CI model N(.2) can be represented as a canonical model N(.¥").

4.3. Reduction of the CI model to canonical coordinate-wise form.

PROPOSITION 4.1. Let 2C 2(V) be a distributive lattice of quotients. Then
there exists a set I, a ring % of subsets of I with the property 3,1 € %, a
lattice isomorphism @ — K(Q) of 2— % and a basis (e,li € I) for V such
that the quotients (Q, Py) € 2 can be represented as follows:

(4.3) Q = spanfe,li € K(Q)},
» e for i € K(Q),
(4:4) Pole) =0, foricINK(Q).

Proor. See Section A.1.

We say that a basis (e,li € I) for V satisfying the conditions in Proposition
441 is adapted to 2. Thus, when V is identified with R through a 2-adapted
basis (e,;li € I), the distributive lattice 2c 2(V) is identified with the ring
H(2) = {K(Q)|Q € 2} of subsets of I and the quotients P,, @ € 2, are
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identified with the coordinate projections py: R - RX K € ¥#(2) (cf. Exam-
ple 4.1). Furthermore, P(V) is identified with P(I) through the correspon-
dence o — 2, where X is the matrix of o wrt the dual basis (e}|i € I) for V*.
The condition (4.1) is then transformed into the condition (2.1); hence P(2) is
identified with P(.#(2)) and the model N(2) is transformed into the canoni-
cal form N(#(2)).

REMARK 4.1. Since the identity matrix 1; € P(¥(2)), the model N(.2) is
nonempty when 2 is distributive.

4.4. Invariant formulation of the testing problem. Let 2 and Z be two
distributive sublattices of 2(V) such that 9 c 2. Then P(2) c P(Y) and
one may consider the general problem of testing N(2) against the (possible)
larger model N(.7") on the basis of n i.i.d. observations from V, that is, testing

(4.5) Hy 0 €P(2) vs. Hy:0ecP(T).

By Proposition 4.1 we may choose a 2-adapted basis (e;|li € I) for V; clearly
this basis is also adapted to 7. It follows immediately that the testing problem
(4.5) is transformed into the canonical testing problem (1.9) by this choice of a
D-adapted basis.

APPENDIX
In Sections A.1 and A.2, the notation and terminology of Section 4 are
followed.

A.1. The decomposition theorem and existence of a .*adapted
basis.

LEMMA A.l. For R € 2(V), the set 2(V), = {Q € 2\Q < R} is a sublat-
tice of 2(V) isomorphic to the lattice 2(R) of quotients of R through the
lattice isomorphism

2(R) & 2(V)pg,
(Q, pQR) «> (Q, DPgr °pR)~
Proor. Straightforward. O

LEMMA A.2. LetR T € 2(V) with RV T =V and let rg: R - pg 1 z(0)
and rp: T — pg 1. 7(0) be surjective linear mappings. Then the linear map-

ping
¢: Vo> (RAT)Xpghr r(0) Xpghrr(0),
x = (pR/\T(x)’rR(pR(x))?rT(pT(x)))

(A1)

is bijective.
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Proor. Suppose that ¢(x) = 0. Then pg,r(x) =0 and we obtain that
Pr(x) € prhr £0). In fact, pp(x) =0 since rp is surjective. Similarly,
pr(x) = 0; hence x € pz'(0) N p71(0) = {0}. The linear mapping ¢ is thus
injective. Since dim(V) = dim((R A T) X pgh 1 2(0) X pz 1 7(0), ¢ is also
surjective. O

As in Section 4.3 let 2 be a distributive sublattice of 2(V) such that {0},
Ve 2(). For Q € 2, Q # {0}, define

@ =V(@ec2Q <Q)
and let J(2) denote the poset of all join-irreducible elements in .2, that is,
J(2) ={Q € 2Q + {0},{(@) < Q)
={@e2Q+{0},VR,T€e2:Q=RVT=Q=RorQ=T)}.

In the following theorem the space V' is represented as a product of vector
spaces indexed by J(.2) such that the space with index @ € J(2) has dimen-
sion dim(Q) — dim({@)).

THEOREM A.1 (Decomposition theorem). For each @ € J(2), let ry: Q@ —
p{Q1>,Q(O) be any surjective linear mapping. Then the linear mapping

ov: V= X(pig),0(0)Q €J(2)),
(A2)
x — (rg(Pe(2))Q € J(2))

is bijective.

Proor. For R € 2 define 2 = {Q € 2\Q < R}, a sublattice of 2 (2, =
2). Then

(A.3) R=V (Q<J(2y)),
(Ad) J(25) = J(2) N 2y,
(A.5) I(Zpnr) = J(2) N I(2y),
(A.6) | I(Zrvr) = J(28) UI(2y)

[cf. (2.4)-(2.7)]. The proof proceeds by induction on |[J(2)| =: q. If ¢ = 1, then
2= {{0},V} and the result is trivial. Next, assume that the result is true
whenever ¢ < k — 1 and suppose that ¢ = k. If V € J(2), then |J(2y,)| =
k — 1; hence the mapping

. (V) - X (p(_Ql),Q(O)lQ € J(Q<V>))’

x > (1(Pq,wvy(%))IQ € J(2y,))
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is bijective by the induction assumption and Lemma A.l. Since the linear
mapping

V= (V) X py(0),

x> (%), ry(x))

is bijective and pg (v ° Py, = pq for every @ € J(2,y,,), the mapping (A.2) is
bijective in this case.

If, on the other hand, V ¢ J(2),then V=R Vv T where R<Vand T < V.
It follows from (A.3) that |J(2g)| < k and |J(2;)| < k, so by the induction
assumption and Lemma A.1, the mapping

V= X(p@),e(0)1Q € J(25)),

x — (rQ(pQ(x))IQ S J(.QR))

is (equivalent to) the quotient mapping pg: V — R. Similarly, the quotient
mappings p, and pg . can be represented in an analogous way; hence

Prnr r(0) = X(p<_Ql>,Q(0)|Q €J(Zg) \ J("QR/\T))’
Prnr,7(0) = X(pg),q(0)1Q € J(27) N J(Zg a1))-
Thus, by (A.5) and (A.6),
X (p@).0(01Q €I(2)) = X (Pg),0(0)Q € J(Zg 1))
X X (p@),q(0)1Q € J(Zg) N J(Zr 1))
X X (p@),a(0)Q € J(21) \ J(Zg \1))-

Lemma A.2 now implies that ¢y is bijective. O

ReEMARK A.1. The representation (A.2) shows that V can be identified with
a product of vector spaces indexed by J(2); similarly, each R € 2 can be
identified with the product X(p g, o(0)IQ € J(Zz)) through the bijective
linear mapping ¢ defined by qu(x) = (re(pe(x))IQ € J(.QR)) x € R; under
these identifications, each mapping pgr, B < T <V, is simply a canonical
projection mapping.

ProOF OF PROPOSITION 4.1. For each @ € J(2), let [ K(Q)] be a set with

I[K(@)]] = dim(pg),¢(0))-
For R € 2, define

(A7) K(R) = | ([K(Q)]|Q € J(2%))

and define I := K(V). From (A.5) and (A.6) it follows that J#= #%(92) :=
{K(R)IR € 2} is a subring of 2(I) and the mapping ‘R — K(R) is a lattice
isomorphism between 2 and %. Now Remark A.1 implies that there exists a
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basis (e;|i € I) for V such that the elements (R, py) in 2 can be represented
as in (4.3) and (4.4). O

A.2. Proof of Theorem 4.1.

LemMmA A.3.  Suppose that x ~ N(o), o € P(V). Then forany R,T € 2(V),
PR L pr(Olpg A r(x) © pz0) and p;Y0) are geometrically orthogonal
(g.0.) wrt the inner product & = ¢~ on V [cf. Andersson (1990), Definition
4.1, for the definition of g.o.).

Proor. Let pz'(0)*, p7(0)* and pzl 7(0)* denote the orthogonal com-
plements of pz*(0), p;'(0) and pgz? (0), respectively, wrt §. Furthermore, let
9r, 9r and gp , 7 be the orthogonal projections of V onto pz%(0)*, p71(0)+
and p};}\ T(O)J' . Then (p};l(O)‘L s qR), (p}l(O)l s qT) and (p};}\T(O)J‘ s AR /\T)
represent the quotients (R, pg), (T, py) and (R A T, py . 1), respectively.

Therefore,
Pr(%) L pr(x)lpg A (%)
< qr(2) Lqr(x)lgg A (%)
= (9r(%) = qrAr(2))L(q7(%) = ggrr(%))lgg A7 (x)
< (9r(%) = qrar(2))1(qr(x) = grAr(x)).
< (px'(0)* NPz 7(0)) L (P71(0)* Npz} 1(0))
< pr'(0)" and p7'(0)" are g.o.
= pz'(0) and p;1(0) are g.o.

The third < follows since (qz — gr A1) qr — ¢ ra7) 1S @ projection onto
(PO Nprh7(0) & (p7 0" N prL (0)), and this direct sum is orthogo-
nal to pg ) (0)* wrt 6. The fifth and sixth < ’s are elementary properties of
geometric orthogonality. O

Proor oF THEOREM 4.1. Since the correspondence @ < pg '(0) between
2(V) and the lattice -£(V) of all subspaces of V [cf. Andersson (1990), Section
4.1] is a lattice anti-isomorphism, it follows that #Z:= { o 0)IQ € 2} c A(V)
is a lattice and is anti-isomorphic to 2. If ¢ € P(2) + @, then by Lemma A.3,
- is g.o. wrt 8 .= o~ '. Thus, by Proposition 4.1 of Andersson (1990), -7 is
distributive; hence so is 2. Conversely, if 2 is distributive, then P(2) # @& by
Remark 4.1. O

A(;knowledg‘ment. We wish to thank a referee and Jesper Madsen for
their careful reading of the manuscript and many insightful suggestions.



1358 S. A. ANDERSSON AND M. D. PERLMAN

REFERENCES

ANDERSSON, S. A. (1975). Invariant normal models. Ann. Statist. 3 132—-154.

ANDERSSON, S. A. (1990). The lattice structure of orthogonal linear models and orthogonal

) variance component models. Scand. J. Statist. 17 287-319.

ANDERSSON, S. A., MARDEN, J. I. and PERLMAN, M. D. (1994). Totally ordered multivariate linear
models. Unpublished manuscript.

ANDERSSON, S. A. and PERLMAN, M. D. (1991). Lattice-ordered conditional independence models for
missing data. Statist. Probab. Lett. 12 465-486.

ANDERSSON, S. A. and PerLMAN, M. D. (1993a). Normal linear models with lattice conditional
independence restrictions. In Proceedings of the International Symposium on Multi-
variate Analysis and Its Applications (T. W. Anderson, K.-T. Fang, 1. Olkin, eds.). IMS,
Hayward, CA.

ANDERSSON, S. A. and PERLMAN, M. D. (1993b). Testing lattice conditional independence models.
Unpublished manuscript.

BANERJEE, P. K. and Gigri, N. (1980). On D-, E-, D4-, and, Dy-optimality properties of test
procedures of hypotheses concerning the covariance matrix of a normal distribution. In
Multivariate Statistical Analysis (R. P. Gupta, ed.) 11-19. North-Holland, Amsterdam.

Das GuPTa, S. (1977). Tests on multiple correlation coefficient and multiple partial correlation
coefficient. J. Multivariate Anal. 7 82-88.

Davey, B. A. and PriEsTLEY, H. A. (1990). Introduction to Lattices and Order. Cambridge Univ.
Press.

EaToN, M. L. and Kariva, T. (1983). Multivariate tests with incomplete data. Ann. Statist. 11
654-665.

Giri, N. (1979). Locally minimax test for multiple correlations. Canad. J. Statist. 7 53-60.

GRATZER, G. (1978). General Lattice Theory. Birkhduser, Boston.

Kiuveri, H., SPEeD, T. P. and CARLIN, J. B. (1984). Recursive causal models. J. Austral. Math.
Soc. Ser. A 36 30-52.

LirTiE, R. J. A. and RuBiN, D. B. (1987). Statistical Analysis with Missing Data. Wiley, New
York.

MARDEN, J. I. (1981). Invariant tests on covariance matrices. Ann. Statist. 9 1258—1266.

RuBiN, D. B. (1987). Multiple Imputation for Nonresponse in Sample Surveys. Wiley, New York.

WERMUTH, N. (1980). Linear recursive equations, covariance selection, and path analysis.
J. Amer. Statist. Assoc. 715 963-972.

WHITTAKER, J. (1990). Graphical Models in Applied Multivariate Statistics. Wiley, New York.

DEPARTMENT OF MATHEMATICS DEPARTMENT OF STATISTICS
INDIANA UNIVERSITY UNIVERSITY OF WASHINGTON
BLooMINGTON, INDIANA 47405 SEATTLE, WASHINGTON 98195



