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A new mathematical object called a preferred point geometry is intro-
duced in order to (a) provide a natural geometric framework in which to do
statistical inference and (b) reflect the distinction between homogeneous
aspects (e.g., any point § may be the true parameter) and preferred point
ones (e.g.,, when 6, is the true parameter). Although preferred point
geometry is applicable generally in statistics, we focus here on its relation-
ship to statistical manifolds, in particular to Amari’s expected geometry. A
symmetry condition characterises when a preferred point geometry both
subsumes a statistical manifold and, simultaneously, generalises it to arbi-
trary order. There are corresponding links with Barndorff-Nielsen’s strings.
The rather unnatural mixing of metric and nonmetric connections in
statistical manifolds is avoided since all connections used are shown to be
metric. An interpretation of duality of statistical manifolds is given in
terms of the relation between the score vector and the maximum likelihood
estimate.

1. Introduction. A great deal of recent research has been concentrated
on the interface between differential geometry and statistics, see, for example,
the review papers by Barndorff-Nielsen, Cox and Reid (1986) and by Kass
(1989). One goal of this activity is to establish a natural and productive
relationship between these two disciplines and hence to deepen our under-
standing of statistical methods. Some of the attractions are obvious, at least
from the statistical side. The language, insight and intuition that geometry has
to offer is invaluable in certain complex statistical issues. Moreover the two
disciplines are clearly compatible in certain important senses. For example, the
coordinate free approach to geometry mirrors the parameterisation invariance
approach to inference. The relationship has already shown itself to be produc-
tive. Instances of this include the higher-order asymptotic theory of statistical
inference as studied, for example, in part II of the monograph by Amari (1985),
and the invariant asymptotic expansions being developed by Barndorff-Nielsen
(1988) and co-workers as well as in many journal publications.

This developing relationship has not been all one-sided. In particular, it has
produced new mathematical objects worthy of study in their own right. These
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include string theory as introduced by Barndorff-Nielsen (1988) in connection
with invariant asymptotic expansions, and also statistical manifolds as for-
malised in Lauritzen (1987). These manifolds include as a special case the
expected geometry of Amari (1985) as well as the observed geometry of
Barndorff-Nielsen (1988) and the minimum contrast geometry of Eguchi
(1983).

Notwithstanding the progress already made a number of fundamental
issues remain. Two in particular stand out. First, Barndorff-Nielsen, Cox and
Reid (1986) end their review of the role of differential geometry in statistical
theory with the following sentence (the italics are ours): “ While the introduc-
tion of more specifically geometrical notions has considerable potential, it
remains a challenging task to introduce such ideas in a way that is statistically
wholly natural.” Equally, whatever their elegant properties, Lauritzen’s sta-
tistical manifolds are not wholly natural geometrically, at least in the tautolog-
ical sense that no pure geometer had ever dreamed them up before.

Second, in the traditional geometric approach, all points in a manifold are
treated equally. No point is singled out for special treatment, in which case we
say that the geometry is homogeneous. Current geometrisations of statistics
follow this homogeneous approach. From some points of view this is natural
statistically. When, for example, all points 6 in the parameter space ® share
the possibility of being the unknown 6, giving rise to the data. From other
points of view it is not. Frequently in statistics a single point has a special or
“preferred” status in @. This could be the (hypothesised) true value or the
(constrained) maximum likelihood estimate. In such cases it is natural to
consider defining a geometry on the whole manifold which reflects the status
of the preferred point.

With these considerations in mind, we introduce in this paper a new
mathematical object called a preferred point geometry. Its definition and use
are guided by two principles: to be as natural and simple as possible from both
the statistical and the geometric viewpoint and, where appropriate, to reflect in
a natural way the special status of the preferred point. The expectation is that
by providing a natural geometric framework for statistical inference, preferred
point geometries will provide a productive way to conduct statistical inference
in practice.

A preferred point geometry essentially is a Riemannian structure. Riemann-
ian geometries are generalisations of Euclidean geometry to curved spaces in
which the metric tensor determines the whole geometry. The metric enables
~ us to define the length of any curve in the manifold. In particular, it is natural
to use the metric or Levi-Civita connection whose geodesics are curves of
minimum length. The idea behind preferred point geometry is to follow this
natural path but to use a metric which depends upon the choice of preferred
point. One statistically natural such choice of inner product or metric is the
covariance of the score vector, or the inverse of the covariance of the maximum
likelihood estimate, taken with respect to the true distribution. In such a case
the true distribution will play the role of preferred point.
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In this paper we develop the relationship between preferred point geometry
and statistical manifolds, often focussing for illustration on the expected
geometry of Amari (1985). Wider uses of preferred point geometry in statistical
inference are outlined in the final section. Any preferred point geometry has a
homogeneous geometry associated with it. We show that, if and only if a
certain symmetry condition holds, this homogeneous geometry subsumes
a statistical manifold structure while at the same time naturally generalising it
to arbitrary order. There are corresponding links with Barndorff-Nielsen’s
strings. The geometrically rather unnatural mixing of metric and nonmetric
connections that occurs in statistical manifolds is avoided by following a
preferred point approach as all connections are shown to be metric based.
Statistically natural preferred point metrics are provided for the expected
geometry case, where the duality between connections can be interpreted as
reflecting a certain duality between the score vector and the maximum likeli-
hood estimate. Duality theorems for arbitrary preferred point manifolds are
also given.

The plan of the paper is as follows. Section 2 briefly reviews some necessary
differential geometrical background. Section 3 gives a short summary of
statistical manifold theory and identifies aspects of it that can be seen as
shortcomings. Section 4 introduces preferred point geometries formally and
gives examples. These are used as running examples throughout the paper.
Section 5 discusses the derivation of statistical manifolds from preferred point
geometries. Section 6 deals with duality in preferred point geometry. Section 7
follows through the earlier examples paying particular attention to the full
exponential family case. Section 8 shows how asymptotic links between the
distribution of the score vector and of local approximations to the distribution
of the maximum likelihood estimate throw light on the nature of duality in
Amari’s expected geometry. The natural extension of statistical manifolds to
higher order is discussed in Section 9. The final section reviews extensions and
further work.

2. Some differential geometric background. We briefly review the
differential geometric constructions used in this paper. Amari (1985) and
Barndorff-Nielsen, Cox and Reid (1986) are two sources which cover the
differential geometry used in the current statistical literature. Murray and
Rice (1987) and Murray (1988) give a more mathematical treatment and cover
the higher order covariant derivatives and covariant Taylor series which are
used in this paper.

We shall assume familiarity with the concept of a tensor, a manifold, a
vector field, a metric, a Riemannian manifold, (M, g) where M is the
manifold and g any metric defined on this manifold and a connection v
defined on the tangent bundle TM of the manifold. Also the Riemann—Chris-
toffel curvature tensor and the concept of a flat metric and affine coordinate
system are used. Definitions of these can be found in Barndorff-Nielsen, Cox
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and Reid (1986). Also we shall use the concept of an n-form, and a covariant
derivative, definitions of which will be found in Murray and Rice (1987).

Given a coordinate system {6} on a manifold M and a metric g,;(6), we
define the Levi—Civita or metric connection by its Christoffel symbols,

1/(0g;n(0) 98:(0) 3 ag;;(0)

kT2 a8, 26 30,

For a Riemannian manifold this is the natural connection and it is charac-
terised by the property that, if we denote the metric by { , ), then

X(Y,Z) = (VyY,Z) + (Y,V4Z),

where X, Y, Z are vector fields and V is the Levi-Civita connection. It also has
the property that the geodesics of the Levi-Civita connection are curves of
minimum length among those paths that lie in the manifold.

Of course not all connections are metric or derived from metrics in this way.
It is one main purpose of this paper to show that in fact all the connections
used in statistics are metric connections and to show how the metrics which
generate these connections are statistically very natural.

A connection V allows us to differentiate tangent vectors and covariant
tensors. Such a derivative is known as a covariant derivative. It also induces
the covariant derivative of differential forms and so allows the covariant
version of Taylor’s theorem. Following Murray and Rice (1987) we denote this
induced connection by V. Although the mathematics is similar this must not
be confused with the dual connection of a statistical manifold which is defined
below and is used extensively in this paper. V is defined by its Christoffel
symbols I" where if the Christoffel symbols of V are I' we have

BE_ Tk

Thus given a function f on a manifold its “first derivative” is a one form df,
and its covariant second derivative is the two form Vdf where

n 2 n af
Vdf = do* ® do’ + —T%de’ ® do*
f kEl FYLETE kEl agk /!

evaluating on the tangent vectors 9, and 9, will give the formula
2
B_f _ 8_f r*
a0k a6t ag* IV
which we shall call the covariant Hessian of the function f. It has the

property that it is a two tensor unlike the standard Hessian which is a tensor
if and only if

'vdf(ak,az) =

of
96°

=0 Vi,
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when in fact the two formulas agree. Thus the Hessian will be a tensor if f is
a constant or in any tangent space corresponding to a turning point of f.

We finish this short review by stating Murray and Rice’s formula for a
covariant version of Taylor’s theorem, which has the advantage that each term
in the series is a tensor, thus invariant to reparametrisation, unlike the
standard Taylor’s series expansion. Let f be a function on a manifold with
connection V. Let y(¢) be a geodesic, then if p = y(0) and v = y'(0) we have
the following expansion,

F(y(8) =F(v(0)) + X —V*1df(v,...,v),

p1 k!

where the higher order covariant derivatives are défined inductively. Such
covariant Taylor expansions can be used in statistical applications due to the
invariant nature of each term which then have a specific statistical and
geometric interpretation, see McCullagh and Cox (1986) and Barndorff-Nielsen
(1986).

3. Statistical manifold theory. We briefly recall here the definition of a
statistical manifold and some basic properties. Lauritzen (1987) proposed the
following mathematical structure for a statistical manifold as a unification of
earlier work notably by Amari, Barndorff-Nielsen and Eguchi.

DEFINITION. A statistical manifold (M, g, T') is a manifold M with a metric
g and a covariant 3-tensor T, symmetric in all indices, called the skewness.

From the mathematical point of view the new element of this geometric
structure is its one parameter family of (nonmetric) connections V¢ called
a-connections. For each a(€ R) a connection is defined by the Christoffel
symbols given by

e, =170, — ET“

ijk ijk 9 i Jko

where I'? are the Christoffel symbols for the Levi-Civita connection of the
metric g. .

Amari (1985), Barndorff-Nielsen (1988) and Chentsov (1972) have all shown
the fundamental importance of these connections in statistical theory. Also the
statistical curvature in an exponential family defined by Efron (1975) can be
seen as the curvature associated to Amari’s +1-connection. A number of
significant results about these connections do exist without a complete theoret-
ical framework. For example, one important property is that of duality or
conjugacy.
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DeriNITION.  Two connections V and V* are dual (or conjugate) with respect
to a metric  , ) if for all vector fields X, Y, Z we have

(VEY,Z) = XY, Z) - (Y, VxZ).

See Lauritzen [(1987), page 181]. A remarkable result here is that a statistical
manifold is flat with respect to V if and only if it is flat with respect to V*.

This concept of duality gives an equivalent way of defining a statistical
manifold.

DEFINITION. A statistical manifold (M, g, V) is a manifold M with a metric
g, and a torsion free connection V whose dual connection V* is also torsion
free.

The relationship between the two definitions of a statistical manifold is
given by the Christoffel symbols of the connection and its dual. These are
IS — 3T, and TS, + 3T, respectively.
Lauritzen noted that the dual connection is torsion free if and only if the
tensor T is symmetric.

DEFINITION. In this paper our examples are particularly concerned with
the expected geometry version of a statistical manifold, where the metric g is
the Fisher information and T, the skewness, is defined by

d a d
Tijk(O) =E, 56;1n p(x,0) 6_0jln p(x,0) - @ln p(x,0)].

Amari (1985, 1987) has considered this example of a statistical manifold
where the manifolds are parametric families of distributions satisfying certain
regularity conditions stated in Amari [(1985), page 16]. We shall assume all
parametric families in this paper satisfy these same conditions.

We offer the following remarks about certain aspects of statistical manifolds
which the present paper sets out to clarify by adopting a preferred point
perspective:

(a) Statistical manifolds are homogeneous geometries. No point is singled
out for special treatment. For example the expected geometry reflects the fact
that all parameter values share the property that they could represent the true
one. However, it does not reflect the fact that in any particular problem only
one of them is the true parameter.

(b) Statistical manifolds mix metric and nonmetric connections within a
single structure. This is a novel construction in pure geometric theory and
thus invites further investigation.

(c) The statistical meaning and implications of duality, and of the results
concerning it, are far from clear.
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(d) As Lauritzen (1987) points out, statistical manifolds are limited to third
order structures. For example in the expected geometry case, they deal with
the second and third moments of the score vector only. This limits the
information which they contain. It is therefore natural to inquire about higher
order extensions.

4. Preferred point manifolds. The application of statistical methods
naturally requires some assumption regarding the true distribution. This
induces an asymmetry between the true model and other points in the
manifold which represent alternative models. Existing statistical manifold
theory does not adequately capture the formal structure required to properly
analyse statistical methods since the geometry does not reflect this asymmetry.
The new geometric structure which we introduce takes account of this asym-
metry by treating one point as being different or preferred. In fact the
preferred point need not correspond to the true distribution since this may not
lie in the manifold of models being currently considered. This is particularly
important since we rarely ever know the true data generation process. Taking
this view of the preferred point enables us to consider the properties of
estimators when the true data generation process does not necessarily lie in
the assumed model set [see, e.g.,, White (1982) or Gourieroux, Monfort and
Trognon (1984)]. In addition the preferred structure enables us to consider
problems of misspecification, and testing for separate families following Cox
(1961), within a proper geometric framework.

DEFINITION. A preferred point manifold (or geometry) is a pair (M, g#(9)),
where M is a manifold and g?#(6) a symmetric covariant 2-tensor on M which
is positive definite in a neighbourhood of 6 = ¢ and defined smoothly as a
function of the (preferred) point, ¢ € M.

Thus, in a neighbourhood of ¢, g#(8) is a metric whose value is defined as a
smooth function of the preferred point ¢ as well as 9. Clearly it is enough for
the preferred point metric to be positive definite at the preferred point, due to
the smooth dependence on ¢.

When considering a specific preferred point 6, we shall use the notation
(M,g%(6),0,). If the manifold M is a p-dimensional object, then the full
preferred point manifold (M, g#(6)) is essentially 2p-dimensional, since the
geometric structure at a point 6 depends on the value of both 6 and ¢.
However once the value of the preferred point is fixed at 6,, (M, g%(9), 6,) is
again p-dimensional.

We show in Section 5 that the relationship between preferred point mani-
folds and statistical manifolds can be seen by examining what happens on the
diagonal; that is, when 6 = ¢. We shall see that on the diagonal the preferred
point metric can agree with the metric in the statistical manifold, while its
Levi-Civita connection will agree with the + 1-connection. We call such a
preferred point manifold + 1-compatible. There will in fact be infinitely many
preferred point manifolds compatible with any statistical manifold. It is an
important question, therefore, whether there are compatible preferred point
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geometries which are natural and compelling in their own right. The following
examples, which we develop throughout the paper, show that the answer is in
the affirmative for Amari’s expected geometry.

Reference to the context will avoid confusion in using the same symbol
g%(6) for a general preferred point metric and also for that used in Example 1:

ExampLE 1. Consider the preferred point geometric structure (M, g#(6)),
where M is a (regular) parametric family of densities {p(x, )}, & € M is the
preferred point, and the preferred point metric is given by

85(0) = Epo0| 74 lnp(x 9) - —~lnp(x 0)|-

J
This metric is just the second moment of the score vector with respect to
the distribution labelled by ¢. This differs from the Fisher information metric
simply by the fact that all expectations are taken consistently with respect to
the preferred point. We see that when 6 is evaluated at the preferred point ¢
the metric is just the Fisher information at that point. The Christoffel symbols
for the Levi-Civita connection for the preferred point metric g%(6) are

given by
2

ng(o) = p(x ®)

20, 96, ———In p(x,0) - —lnp(x 0)]

At 6 = ¢ the connection agrees with the + 1-connection in Amari’s statistical
manifold. See Amari [(1985), page 39]. Thus (M, g#(9)) is + 1-compatible with
Amari’s statistical manifold. We immediately see the power of the preferred
point method as we can now rationalise the -+ l-connection as metric, or
Levi—Civita, connection for this (preferred point) metric. Thus we can bring
the concept of metric connection back into the core of statistical geometry.

ExampLE 2. Consider a related preferred point metric which is the p(x, ¢)
covariance of the score vector:

J J
(Eézln p(x,0) — Ep(x,d,)[a—oiln p(x, 0)])

ad
.(:9_0—.111 p(x,0) — P(x ¢)[30 . 0)])]

J

g'f;(O) =E,q.0

Clearly this reduces to the Fisher information when 6 = ¢. The Christoffel
symbols of the Levi-Civita connection in this case are
2

1-‘zq‘l;’k(o) = p(x ®)

2, 36, — In p(x, 0)—ln p(x, 0)]

p(x, ¢)[50 lnp(x 0)}

82
- E,., 4’)[80 %0, In p(x,0) |E
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We can immediately see that by evaluating 6 at the preferred point they agree
with the + l-connection of Amari, as in the noncentral moment case. Thus
(M, §%(9)) is also + l-compatible with Amari’s expected geometry. It is, per-
haps, more natural to consider the central moments, as in Example 2, since
away from the preferred point

# 0.

d
Ep(x"”)[a_aln p(x,0)

The previous two preferred point geometries can be seen as generalisations
of the Fisher information when it is written in the form

Ep(x,O)[ —1In p(x,0) - ———ln p(x, 0)]

.I

We could however also generalise the second derivative form

62
Ep(x 6)[80 70, In p(x, 0)}

ExampLE 3. If we took the expectation of the Hessian about some fixed
preferred point we would not get a tensor since it does not transform correctly
under a change of coordinates. Rather we have to look at the covariant version
of the Hessian which was defined in the introduction. We obtain the following
preferred point metric which clearly reduces to the Fisher information when
0= ¢:

2

ht(0) = —Ep 4| 7o In p(x,0) — (&%) ‘ﬁ’s((’) ln p(x, 0)]

a0, 90,

where g™ is the inverse of g% the preferred point metric from Example 1
and I'? is its Christoffel symbol. In this case the Levi-Civita connection of h‘f’j
equals that of the 0-connection when 6 = ¢ (see Theorem 4). We note we get
the same compatibility if, in the formula, we replace the metric of Example 1
with that of Example 2, as long as we change to the corresponding Christoffel
symbol.

Examples 1, 2 and 3 generate the +1- and 0-connections of Amari when
evaluated at the preferred point. We give below preferred point metrics that
are — 1-compatible with Amari’s expected geometry. Indeed we will show later
that these are dual to their + 1-compatible counterparts in a sense that re-
flects a certain duality between the score vector and the maximum likelihood
estimate.

We have seen the preferred point generalisation of two different forms of
the Fisher information matrix. We can also consider the form of this matrix in
the case of misspecification. If 6 lies outside our manifold and the maximum
likelihood estimate on the manifold converges to 6*, then the form of the
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information matrix at 6* is

9 d 9 -1
s e ey D *
Eo[aasaoilnp(x,o )HEo[aoslnp(x,G )aotlnp(x,o )”

82

——1In p(x,0*)J.

< Eq 96, 96
t7vj

For details of this form of the information matrix see White (1982) or
Gourieroux, Monfort and Trognon (1984).

ExampLE 4. Consider the formulas
k(0) = 8::(0)8%(0)g;,(0) and 1#,(0) = he,(0)g**!(0)he(6),

where g is the Fisher information and g¢ and h? are defined in Examples 1
and 3. Then kf’j(O) and / ;f;.(a) are both preferred point metrics which reduce to
the Fisher information at § = ¢. Further they are — 1-compatible with Amari’s
expected geometry. This is proved in Theorems 3 and 4. Again as in the case of
Example 3, we get the same results if we replace the metric of Example 1

everywhere with that of Example 2.

5. The derivation of statistical manifolds from preferred point
geometry. Having observed these links with the particular case of Amari’s
expected geometry, this section considers the general relationship between
statistical manifolds and preferred point geometries. It shows how the statisti-
cal manifold structure can be explained in the setting of preferred point
manifolds. The new geometry enables us to extend the definition of statistical
manifolds from purely a third order structure to any arbitrary order. In
particular we can provide a geometric interpretation for the fourth order
extensions proposed by Barndorff-Nielsen. This is taken up in Section 9. In
Section 6 we see the general relationship between a preferred point geometry
and the dual structure of statistical manifolds. This is given a direct statistical
interpretation in Section 8.

In Section 3 we noted two different ways of viewing a statistical manifold,
either as (M, g,V) or as (M, g, T'). We shall look at both of these interpreta-
tions in turn and see how they can be understood in terms of preferred point
geometry. We start with (M, g, V).

5.1. Homogeneous structures. Any preferred point geometry (M, g%(0)
has twice the dimension of its underlying parameter space. Let M be p-dimen-
sional. We can then view the preferred point geometry as a geometric structure
on M XM as we let both 6 and ¢ vary independently. We can recover a
p-dimensional geometric structure on M by choosing some fixed value of the
preferred point 6, and looking at the Riemannian manifold (M, g?(6)). This is
natural statistically when, for example, we regard 6, as the (hypothesised)
true value. However, this is not the only way of recovering a p-dimensional
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M, ¢-space Submanifold ¢=6

‘4>=90

M, 0-space

Fia. 1.

structure. Consider Figure 1, the diagram denotes the preferred point mani-
fold as M X M with the vertical axis representing the variation in the pre-
ferred point ¢ and the horizontal axis the variation in the parameter 6. Thus
the p-dimensional structure defined by fixing a value of the preferred point at
0, is represented by a horizontal line. Consider the p-dimensional structure
defined by the diagonal 6 = ¢.

DEFINITION. A p-dimensional substructure of (M, g#(6)) can be defined by
taking geometric objects in the preferred point geometry and restricting to the
diagonal ¢ = 6, as ¢ varies across M. Such a structure is called homogeneous.
This name is used since in these geometric structures all points are given the
same importance and no one point is singled out to be preferred.

Theorem 1 shows there is a Riemannian structure induced by a preferred
point geometry (M, g%(#)). This is the one given by (M, g°(0)), called the
homogeneous Riemannian structure.

ExampLE. If we are working in any of the preferred point geometries given
by Examples 1, 2, 3 or 4, then the homogeneous Riemannian structures are all
given by the Fisher metric. This follows at once from properties noted above.

In a preferred point manifold we can define other homogeneous structures
apart from the Riemannian one. We shall now show, in the theorem below,
how a statistical manifold can be seen as a homogeneous connection geometry
of a preferred point manifold.

DEFINITION. Let us define V4(6) to be the Levi-Civita connection of g%(0)
evaluated at 6, and define V() to be the Levi-Civita connection of the
homogeneous Riemannian metric.

“Turorem 1. () Let (M, g%(6)) be a preferred point manifold. The homoge-
neous structure (M, g%0)) defines a Riemannian manifold, which we will
denote by (M, g).
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(i) V%8) is a homogeneous connection structure. In particular V°(0) de-
fines a torsion free connection on M.
(iii) Then (M, g,V°(0)) is a statistical manifold if and only if

T(8) = 2(V(6) — V°(9)),

which is a 3-tensor, is symmetric. In this case we call T the skewness of the
preferred point manifold, following Lauritzen.

Proor. (i) Defining g(8) = g°(0), we show that g is a metric on M. Clearly
it is a symmetric, positive definite, bilinear form. Thus we need to show that it
transforms as a tensor. Since for each fixed preferred point 6, we know the
transformation rule for the metric g°(9) is given by

%06 .—>80' 0 ’30t 0 2%0( 0
£;7(0) 5@() B_t/f,-( )8,2(0)

setting 8, = 0 we get the result. Thus (M, g) = (M, g°(0)) is a Riemannian
manifold.

(ii) Denote the Christoffel symbol for the Levi-Civita connection of the
preferred point metric g°(8) by I'’3(6). The homogeneous connection infor-
mation is defined by the Christoffel symbols

I5.(6)

for each 6. As for the metric case we can easily check that I';,(8) transforms
as a Christoffel symbol for a connection. Furthermore for all 8,, I;5(6) is a
Levi-Civita connection and hence torsion free. That is, its Christoffel symbols
are symmetric in i and j. Therefore the Christoffel symbols I‘fjk(()) are also
symmetric in i and j, and so represent a torsion free connection.

(iii) The final part of this theorem follows from a result by Lauritzen (1987,
page 183). O

We give as a corollary some conditions under which the preferred point
connection and the homogeneous connection of a preferred point geometry
agree everywhere, not just at the preferred point. This result is used in Section
7 in the exponential family case. We recall that an affine coordinate system for
the metric g,;(6) is one in which the metric has a constant representation,
independent of 8, and a metric for which an affine coordinate system exists is
called a flat metric.

COROLLARY. Let (M, g*(8)) be a preferred point manifold such that g*(8)
is a flat metric for each value of the preferred point. Suppose, further, that
there exists a coordinates system § which is offine for g®(6), for all ¢. Then
for each ¢ the preferred point connection V*(0) agrees with the homogeneous
connection V%(0) at all points 6.
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Proor. Working in -coordinates, the Christoffel symbols for the homoge-
neous connection at 6 are those of the preferred point connection when 6 is
the preferred point. These are zero since the Christoffel symbols for V#(6) are
identically zero for all # and ¢ in the -coordinate system. Consider the two
connections V%(6) and V(). As both their Christoffel symbols are zero
everywhere and they are both torsion free they must be identical. O

ExaMPLE. The preferred point geometry of Example 2 generates Amari’s
expected statistical manifold. We have already seen that the homogeneous
Riemannian structure is given by the Fisher metric. We therefore look at the
second order homogeneous structure. We have already seen that this is given
by the +1-connection of Amari. Therefore we simply need to check that the
symmetry condition on T holds. The 3-tensor in this case is given by the
tensor

ad

J a
E,, a—aln p(x, 0)8_6'.1n p(x, O)EIn p(x, 0)}
i J

)
0p=0

which is clearly symmetric.

Example 1 will also generate Amari’s expected statistical manifold in exactly
the same way. Thus this demonstrates that there is not a one to one corre-
spondence between preferred point geometries and statistical manifolds. Fur-
thermore, it is easy to construct preferred point geometries for which the
skewness is not symmetric. Thus for both these reasons preferred point
geometries should be considered as a more general construction.

5.2. Correction terms. In this section we look at the relationship between
the second form of the statistical manifold structure (M, g, T') and that of
preferred point geometries. We show that there is a direct geometric interpre-
tation of Amari’s skewness tensor in the preferred point geometry.

As we saw in the previous section a statistical manifold is a homogeneous
structure. It is important to understand how a homogeneous structure differs
from a preferred point one at the preferred point. Consider, as an example, the
contrast between the homogeneous Riemannian and preferred point metric
structures. At the preferred point 6, the two metrics agree. They only differ at
other points. It is therefore in their derivative at 6, that they could disagree.
To demonstrate this consider the preferred point metric as a perturbed version
of the homogeneous metric.

We define a perturbation of a preferred point metric gf;(e) to be pf}(@),
where

8i;(0) = g/p(8) +pi(6),  plp(6) =0

and ’ig is the homogeneous metric. Thus the perturbation is a symmetric
2-tensor which is zero at the preferred point. The difference in the derivatives
of the homogeneous structure and the preferred point metric are given by the
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derivative of the perturbation. We therefore define the first order correction to
the homogeneous Riemannian structure to be

- a
T, ..(0) = 0
ljk( ) 00 pz]( ) bo=0

TuEOREM 2. T(6) is a homogeneous 3-tensor. Further if T'(0) is symmetric
in all its indices, then we have that T(8) = T(9), defined above, and so the
symmetry condition of Theorem 1 holds.

Proor. Since we are evaluating on 6, = 8 we see that 7'(6) is homoge-
neous. Under a change of variable 0 - ¢f) p transforms as

pip(0) = (0) (0)103?(0)
thus (39,/90)p}(0) transforms as

7(0)

0
50—kpfj°(0) - (

6‘1//J

i

Hence evaluating on the diagonal = 00 and using p"°(00) = 0 we have the
transformation rule

T;j4(8) — (0)

(0) rst(e) *

Thus it is a tensor.
Calculating the Christoffel symbols of the Levi-Civita connection of g; ;(0)
and evaluating at 6 = 6, we see that

8, 98 agij) + _1_

[klo=00 = 2( 0, a6, a6, ) 2

il oplp "Pf,‘?)
J

90, = 06, 46,

1 -
=Fljk+ (Tklj+T _lek),
where T is the Christoffel symbol for the homogeneous metric. Thus if 7(6) is
symmetric we see that it must equal T'(9) and so T itself must be symmetric.

O

ExaMpPLE. Consider the preferred point metrics of Examples 1 and 2. Both
these examples generate Amari’s geometry. We calculate that in both cases
.T(6) equals

ad
E, %, lnp(x 0) lnp(x 0) lnp(x 0)|.
J
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In other words, the skewness as defined by Amari. (We have the symmetry
condition required and T(9) = T(9) as calculated above.)

We need to use this first order correction if we are calculating the homoge-
neous connection structure from the homogeneous Riemannian one. The
homogeneous metric gives us (Lauritzen’s) 0-connection, but by adding the
first order correction we get
05 = 3(Tuiy + Toni = T

i

which, under the right symmetry condltlons, is a + 1l-connection.

Thus we have seen that the homogeneous structure of a preferred point
geometry generates a triple of the form (M, g, T), that is, the manifold, its
homogeneous metric and the first order correction to the derivative of the
homogeneous metric. Lauritzen (1987) shows that if we have such a structure
and T is symmetric, then we have a statistical manifold and it can be written
as (M, g,V) where V is the + 1-connection generated by g and 7. We have
shown that if we have Lauritzen’s symmetry condition then the preferred
point geometry which generates (M, g, T') generates the same statistical mani-
fold (M, g, V).

6. Duality in preferred point manifolds. Thus a preferred point ge-
ometry can generate the basic structure of a statistical manifold in both its
forms. The internal mathematical structure of a statistical manifold also has
an interpretation in preferred point geometry theory. In particular the signifi-
cance of the dual connection can be understood very clearly using our new
techniques. We first develop the mathematical framework of duality in pre-
ferred point geometries. In Section 8 statistical interpretations are given for
our constructions. Recall that Examples 1 and 2 generate Amari’s + 1-connec-
tion in a natural way, Example 3 generates the 0-connection and Example 4
generates the — 1-connection. This section shows how this behaviour can be
generalised.

DerINITION.  Let the preferred point geometry (M, g¢) generate the statis-
tical manifold (M, g, V) assuming the symmetry conditions stated above. We
call V, the homogeneous connection, the + 1-connection of this structure,
following Lauritzen. Let

4)'(0) = gis(f))gd’s’(B)gjt(B)

where g?/(9) is the inverse of -2 #(60) and g is the homogeneous metric for the
preferred point geometry.

THEOREM 3. With the above definition k"°(0) is a preferred point metric
whose connection at 0 = 0, equals the dual connection to V.

Proor. k? is a preferred point metric since it is a symmetric 2-tensor
which is positive definite when evaluated at the preferred point. Consider
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differentiating and evaluating at 6 = 6,

i b9 9 8ost
@kl] 0p=0 - @(gLS(B)th(e)g ° (0)) 00=é
d d
= @(gzs(e))ﬁjs (gﬁ(B))ﬁt + gls(e)gjt(e) (g"O“(O)).
Now

872(0)g"*!(0) = 8;.
So diﬁ'erentiating gives

(g 2(0))g%*(0) + g! (0)—(g”°s’(0)) = 0.
At 6 = 0,,

a a
20, (8" (0) = = 5o-(£22(9)) " (9)8"/(0)

a
( (gzj(e)) ”k)gsl(g)gtj(a)
Hence substituting into the original equation we get

a a
—kl0=—(g..(0)) + T

70,75 = a9, (8:(9))
Therefore the Christoffel symbols for this metric are, using the symmetry
condition,

0
jk + T'zjk’

in other words we have the dual connection to V since its Christoffel symbols
are I,%, — (1/2)T;

Thus if a preferred point metric generates a + 1-connection there exists a
related preferred point metric which generates the — 1-connection. This method
of constructing the dual connection is however, not entirely consistent with
the preferred point philosophy since the dual preferred point metric is con-
structed using a homogeneous object. The following construction which is
appropriate to expected geometries will also produce a preferred point metric
which generates the dual connection. In Section 8 we shall see how the first
can be viewed as simply a special case of the following method.

As recalled in Section 2, Murray and Rice (1987) give a clear exposition of
the way connections can be used to calculate invariant Taylor series using the
higher order covariant derivatives of a function. This gives us an interpreta-
tion of the metric in Example 3. It is simply the expected value of the covariant
Hessian using the connection defined by Example 1. We generalise this con-
struction in the following theorem which shows that for the expected geometry
case any preferred point geometry whose homogeneous connection is the
+ 1-connection will also generate a preferred point metric which is the general-
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isation of the Hessian form of the Fisher information. This metric will
generate the 0-connection as its homogeneous connection structure. Further-
more, from these two a third preferred point metrlc can be constructed which
generates the — 1-connection.

THEOREM 4. Let g® be a preferred point metric which generates Amari’s
expected statistical manifold (M, g, V) where g is the Fisher information, and
V is the + 1-connection. Then

2

a
(0) p(x b) 00 00 lnp(x 0) - (gd)) Ljs lnp(x,B)

is a preferred point metric whose homogeneous connection is the 0-connection.
Further,

19 = ht(g) " he,

is also a preferred point metric and its homogeneous connection is the —1-
connection.

Proor. By calculation
2

—In p(x,0) — (&%) T2 2 p(x,0)

96, 96, Y540,

is a 2-tensor and hence so is h‘fj. Further at ¢ we see that h‘f’j is positive
definite since at ¢ it equals the Fisher information. Therefore h‘f-’j is positive
definite in a region of ¢ thus is a preferred point metric.

At 0 = ¢ we see that

33
_Ep(x,d>)[——ln p(x, (15)} + Fi‘ﬁs((b)

26,96, 0,
32

X Ep(x 4,)[00 %, In p(x,9) gt

03
_Ep(x,qb)l_—"ln p(x, 4’)} - Fi}r'kl((b)

36,36, 00,
3
_Ep(x,¢) WIH p(x, 4’)]
92
Ep(x "’)[00 6, In p(x, ¢>) ln p(x, qﬁ)l
ad 92 d
- 30, 50 Enc, 9)[30 26, In p(x, 0)} s —@g(e) .

Thus its homogeneous connection agrees with the 0-connection.
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The proof that h? (g¢)"*h?, is a preferred point metric with homogeneous
metric g and connection the —1-connection exactly mirrors that of Theo-
rem 3. O

We note that if g¢ and h® are any two preferred point metrics generating
the +1- and O-connections, then [? constructed as above generates the
— 1-connection. Again, if gf and g¢ are preferred point metrics generating the
a;- and a,-connections, then, for any real number A,Agf + (1 —A)gg is
another preferred point metric that generates the Aa; + (1 — AM)a, connection.
However rather than pursue such purely formal matchings of preferred point
metrics, we prefer to concentrate on results such as Theorems 3 and 4 for
which a clear statistical interpretation is available.

We can now summarise the content of these theorems as they relate to
Amari’s expected geometry. There are four triples of natural preferred point
metrics which generate the (+1,0,— 1) connections, respectively. They are
(g% h?, k®) and (g%, h*,1%) with g¢ as in Example 1, and the two further
triples that result by replacing throughout g¢ by % of Example 2 to obtain
(g%, h*, E®) and (g%, h?, [%). Thus there are two choices to make in this 2 X 2
classification of possibilities:

(a) g% or §%? (We have already indicated that §¢ is preferred.)
(b) the & or [ form of duality?

To make this second choice requires a clearer statistical grasp of what is
involved. Again we refer forward to Section 8.

7. Examples in the full exponential family case. In this section we
look in more detail at our examples of preferred point metrics in the case of a
full exponential family.

We consider a full exponential family whose density with respect to some
carrier measure can be written

p(x,0) = exp{x’6, — ¥(9)}.

Here 0 is the canonical or natural parameter. Amari (1985) introduces the
expectation parameter n with general element n, = E Jx;]. It is immediate
that in this case

p(x,0

o
n, = 0_01(0)

Because of our preferred point geometry context, and in order to be able to
generalise to arbitrary likelihoods, we introduce the preferred point expecta-
tion parameter u® with general element

)
wt(0) = Ep(x’¢)[3_01n p(x, 0)]
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In the exponential family case, these two parametrisations are related by:
I-L?(B) =n(¢) — ﬂi(e)-‘

In particular, u®(@) vanishes identically in . When ¢ is evident from the
context, we write w;(9) for u?(9).

PROPOSITION.  Let g;;(8) denote the form of the Fisher information in the
6-coordinate system and g'/(0) its inverse, in the same coordinates. Consider
the above exponential family. We recall that

%y
96; 99,

gij(e) = (6).

Then we have the following results:

(a) In the 6-coordinates system, g 1(0) gi,(d) + ulu

() In the 6-coordinate system, g9(6) =g, (0), a constant independent
of 6.

(¢) In the u-coordinate system, k? P(w) = g(¢), a constant, independent
of w.

(d) In the 9-coordinate system, h*(8) = g, (6).

(e) ld’ ) = kd’ (0), thus a constant in the ,u-coordtnates

In particular for each 6,, Example 2, (M, & J 0.8,), is flat and the natural
0-coordinates are affine, and its dual preferred point manifold (M, k ,00),
which in this case equals (M, l ,00), is also flat and the expected,u-coordt-
nates, are affine.

ProoF. (a) and (b). These parts follow by a simple calculation.

(c) Amari (1985) notes that the change of basis matrix for the reparametri-
sation {6} — {n} is given by the inverse of the Fisher information matrix.
Clearly, that for the reparametrisation {n} — {u} is minus the identity matrix.
But, by definition k"’(e) = g,s(e)gd’s’(a)gt (6). Thus in the w-coordinate sys-
tem (c) has the form g"’s’(f)(/.t)) that is, the inverse of the form of (b) in the
6-coordinate system. The result now follows from (b).

(d) Since the metric in (b) is flat, the associated Christoffel symbols vanish
in the 6-coordinate system. So the covariant Hessian equals the standard
Hessian in this coordinate system. Moreover in the present exponential family

2 32
Inp(x,0) = —

¥
o5 (9~ ~€u(0).

38; 96,
Hence,
h.(0) = —Ep 4| —8:,(8) — 0] = £,;(0).

(e) Given (d), this is immediate. O
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Amari has shown that the exponential family is +1-flat and that the
6-coordinates are + 1-affine. We remark that this follows at once from part (b)
of the above proposition, when we recall the corollary to Theorem 1, since the
6-coordinates are affine for all values of the preferred point, and the fact that
the homogeneous connection for (M, gd’(a)) is the + 1-connection. By part (c)
of this proposition, similar remarks apply to Amari’s result that the exponen-
tial family is — 1-flat and that the expected coordinates are — 1-affine.

Finally we note that the preferred choice g gives neater results than g.
Explicit formulae for h, £ and [ are not given here.

8. Duality and asymptotic statistics. In this section we take an
asymptotic statistical look at duality in Amari’s expected geometry.

The preferred point metric in Example 2 has a direct statistical interpreta-
tion in the space of random variables spanned by

d

{ —In p(x, 0)}

i=1--p
Amari identifies this space with the tangent space to the manifold at the point
6. Consider a random sample x = {x,...,x,} and let the data generation
process lie in our manifold of distributions with parameter 6,. Under these
conditions the score vector for the sample x will be the sum of the scores for
each x,. So we can consider it in the vector space spanned by these vectors or
in the representation of the tangent space. We can apply the central limit
theorem immediately and see that the score for x has an asymptotic normal
distribution

no9

s; 290 P(%5,0) % N(n(u), ngls),
where pfo is defined in the previous section and &’ is the covariance which is
given by the preferred point metric from Example 2.

Having found a statistical interpretation for the metric of Example 2 in
terms of the score vector we now show a direct statistical interpretation of the
duality of a statistical manifold in both the special case of an exponential
family, and then in generality. We shall show that the duality in fact corre-
sponds to the relationship between the asymptotic distributions of two random
variables, the score and the maximum likelihood estimate.

It is helpful to first recall the derivation of the asymptotic normality of the
maximum likelihood estimate from Cox and Hinkley [(1974), page 294]. The
asymptotic distribution of the random variable (6 — 6) is derived under the
assumption that 6 is the true parameter. Asymptotically the relationship
between the maximum likelihood estimate and the score test is given by the
~approximation

A 1 a
(*) ﬁg(e)(e—e)zﬁza—alnp(xs,e)
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where we have an i.i.d. sample vector (x,, x,,...,%,) and g(8) is the Fisher
information at . The key to the calculation is the approximation of the
maximum likelihood random variable with a sum of i.i.d. random variables
which are score vectors. Under the assumption that 6 is the true parameter
value the asymptotic distribution of each of the score vectors is N(0, g(8)).
Thus (*) is used to calculate the asymptotic distribution of n'/%(@ — 0) as
N(0, g~(9)).

Denoting the true parameter value by 8, consider the distribution of 6 - 0)
for all possible #. We have a choice over which set of linear i.i.d. random
variables to approximate (§ — 8). We could use, as in the standard derivation,
the score at 6,

a
g a_olln p(xs’ 00)

or we could use the score at 0

a
Z Eln p(xs90)'

S 13

The first course will give the same derivation as the classical case except for
a trivial translation. Following the second choice and expanding the score at
the m.l.e. in a Taylor expansion we get
92 ~ 2
In p(x,,0) + O((G - 0) )

d N i
0= Za—alnp(xs,é’) +(6-0) %

~ 36, ~ 36, 00,
Thus for small values of (§ — ) we have a good approximation
32
36, 60,

a
In p(x,,0) = ¥ 2-In p(x,,6).

S 13

~(6-0)'%

S

Note the difference in the approximation arguments between this and the

standard case. There the approximation between the two random variables is

due to the fact that asymptotically (§ — 6,) converges to zero since we have

assumed that 6, is the true distribution. Here we are using a different

condition. If the m.l.e. lies in a small neighbourhood of 8, then our approxima-
tion will be a good one. Note that if

1(6 — 8)l < I(6 - 8,)

it will be this second approximation which is the better one. This condition will
hold in a number of cases. For example, in the case of misspecified models
where the distance between the maximum likelihood estimate and the true
data generation process will never get small since the true data generation
process does not lie on the manifold.

We use this different approach to give us an approximation to the distribu-
tion of the maximum likelihood estimate in a small region of the point 6,
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whether or not this is the true parameter. We call this method the local
approximation to the distribution.

We shall first complete this calculation in the exponential family case. We
have, working in the natural coordinates 6, the formula that

92

L

30 30 lnp(xsae) =gtj(0)

the Fisher information. Hence we get the approximation for small (§ — 6)

A d
(% *) n'/%g(6)(6 — 9) zn‘l/zz‘,%lnp(xs,a).
s i
This approximation is then used to locally appro‘ximate the asymptotic distri-
bution of the m.le. since the asymptotic distribution of the score is known.
Thus using (* *) we find that

-1
1/2(49 _ o 1/2,-1 . 9 Lo
w728~ 0) < N(n12%g7(6) - (uth), (B) ).
In particular the covariance of the asymptotic distribution if n'/2(6 — 0) is

[2(0)(8™(0)) "2(0)]

which is the inverse of the preferred point metric from Example 4, k"JO Note
that when 0 is 00 this local approximation reduces to the standard one.

We can work in better coordinates for this preferred point metric kli';? that
is, its affine coordinates which are the expected u coordinates. We have already
seen that in this parametrisation the preferred point metric has the constant
form g'/(8,). Further the mean of the normal approximation will transform to
be n'/2y, since from Amari (1985) the change of basis matrix is given by the
Fisher information matrix. Thus in this coordinate system the variance will be
a constant and the mean will simply be a translation from the preferred point
for each different point of evaluation, that is, the local approximation will be

RV — ) & N(—nV2(ulo), g9 (6y)).

We can also ask the question what formulation do we get outside the full
exponential family case? The approximation (*) is based on the Taylor expan-
sion

2

0= Za—lnp(xs,f)) +(6-0) Z In p(x,,0) + O((9 - 6)°),

s

a0, 90,

- which is not geometrically well behaved since it depends on the coordinates
used, as is pointed out in Barndorff-Nielsen (1987) or Murray and Rice (1987).
It is more natural to use the covariant version of Taylor’s theorem with
respect to the metric we have on the space of the scores. This would give the
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formula
0=y i 0
o n p(x,,0)

; 92 F]
A J ~
+(0-0) X In p(x,8) — %I}y —In p(x,0)
- [aai 26 7599,

+0((8 - 0)°).

For large values of n we can use the approximation

1 92 3 P
n M [5‘0-6‘0‘11& p(x,,0) — goortrfﬁ(e)wln p(xs,f))}
S 13 J r

92 ) 9 )
= EP"‘""»)[_ae.ae.ln p(x,0) — g90rt]f‘i“;.0t(0)£ln p(x, e)] = h33(0)~
1 J r

Note that in the case of a full exponential family this approximation will
reduce to ( %) and the same analysis follows through.

Thus for large n and small (6 — 6 we would find the inverse of the
covariance of this distribution is given by the metric,

4= ht(8°) ke,
as in Theorem 4. We have shown that in this general case we have the duality
between the preferred point metric for the score and the metric for the local
approximation of the distribution of the m.lL.e. This duality corresponds exactly
to that between the +1- and — 1-connections when evaluated at the preferred
point. We sum up the key points in the above developments in the following
theorem.

TueoreM 5. Let 6 denote any point in a parametric family {p(x, 0)} and let
¢ = 0, € O denote the point which is the true data generation process.

(i) The covariance of the (asymptotic) distribution of the score vector at 6
is given by the preferred point metric :

. d d
n: gfjp(o) =n- EP(x»oo)[(a_aln p(x>0) - “L)(%lnp(xye) - :u'j)]
12 J

whose homogeneous connection is Amari’s + 1-connection.
(i) If the family is a full exponential family, then the local approximation
tosthe distribution of n'/%(8 — 0) around 0 is

n1/2(§ —-8) ~ N(nl/zg—l(f)) . (M@O), (/}?})—1)'
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It covariance is the inverse of the preferred point metric

k™%(0) = £(6)(£7()) '&(6),
where g is the Fisher information. The homogeneous connection for this metric
is Amari’s — 1l-connection.
(iii) In the full exponential family both these metrics are flat and their affine
parametrisations are the natural and expected parameters, respectively.
(iv) In the expected coordinate system the local approximation of the distri-
bution of n*/%( — 6) has the constant variance form

1/2(“' _ #) ~ (_ 1/2(“00) gu(a ))
™ Ina general parametric family the dlstrzbutton of n'/%(6 — 6) which is
constructed using the score at 0 is given by

n1/2(§ -0) % N(nl/zg—l(f)) . (#";0), ([?;)_1),

where

I%(6) = his(g%)" Al
and
32

h?‘l(a) = P(x 4’)[00 30

I, 3, are the Christoffel symbols for §%(0) the preferred point metric in (i).
Again the homogeneous connection for this preferred point metric is Amari’s
— 1-connection.

(vi) In the full exponential family, [°(0) is flat for each 0, and the
u-coordinates are affine. The homogeneous connection for this preferred point

geometry is Amari’s — 1-connection.

In p(x,0) — ¢’SF;’J’r£ln p(x, 0)]

9. Higher order extensions of statistical manifolds. In this section
we demonstrate a natural way to extend the definition of a statistical manifold
to higher order via preferred point theory and note the consequent connections
with string theory as developed by Barndorff-Nielsen (1988) and co-workers.

We consider first the (M, g, V) form of a statistical manifold. A natural way
of extending the definition of a statistical manifold structure beyond third
order is to take the higher order homogeneous structures given by a preferred
point geometry. For each preferred point ¢ consider the higher order covari-
ant derivatives at . We obtain the homogeneous structure by simply calculat-
ing these on the diagonal where 6 is set to ¢. Thus we can propose the
following definition for the generalisation of a statistical manifold.

# DEFINITION. Denote the %kth order covariant derivative induced by the
Levi-Civita connection of the preferred point metric g¢ by

(v") ()
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and the corresponding homogeneous object by
v(0) = (V) ().

DErFINITION. We define a kth order statistical manifold generated by the
preferred point geometry (M, g?) to be the k-tuple

(M,g,v,..., 9% (g)).

One of the most important uses of differential geometry in statistics has
been in its application of methods which are invariant under a change of
coordinates or reparametrisation. This property can be seen as the defining
property of geometry. A particular consequence of using these invariant
methods has been highly developed in Barndorff-Nielsen (1988) with his use of
strings. For example, one use of these new geometric objects is the construc-
tion of invariant Taylor series and the connected problem of choosing coordi-
nates around a point in the manifold. Murray and Rice (1987) and Murray
(1987) give a good account of this application, and demonstrate the importance
of the nonmetric a-connection in this theory. It is therefore clear that the kth
order statistical manifold will contain enough information to calculate the first
k terms of a covariant Taylor expansion around 6 working under the assump-
tion that 0 is the true parameter.

We can also consider extending the alternative (M, g, T') statistical manifold
structure to higher order. We recall that the skewness was defined as the
covariant derivative of the difference between the homogeneous metric and the
preferred point one. Thus the higher order generalisation would include
tensors which give the higher order covariant derivatives of this difference.
Also it would include the covariant derivatives of the difference between all
order homogeneous structures and their corresponding preferred point ver-
sions. We do not give an explicit form for the kth-order version here since we
feel the definition above is more natural. However Barndorff-Nielsen (private
correspondence) has proposed that two tensors are required to extend the
statistical manifold structure to fourth order via (expected) yoke theory. These
tensors do not have a classical interpretation. We now show how to generate
both these tensors from preferred point geometry and how it gives them direct
geometric interpretations and also allows a coordinate free derivation.

In Amari’s statistical manifold the next important correction term will be
the covariant derivative of the difference between the Christoffel symbols of
the homogeneous connection and the preferred point connection. This is
simply twice the covariant derivative of the skewness. Thus this correction
term is

V¢T(0)lg—g = VTIT(0)lo=¢
since on the ¢ = 6 diagonal we have the identification
VAF(8)lo—p =V (8)lo=s.
The right-hand side is one of the tensors which Barndorff-Nielsen identifies,
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see Barndorff-Nielsen, Blasild, Pace and Salvan (1990) or Barndorff-Nielsen
(1989).

We have shown above that the first order correction term for the preferred
point geometry, h‘fj, is zero. Therefore it is natural to look at the second
derivative of the difference between the homogeneous metric and the preferred
point one. We calculate this evaluated at ¢ to be

Ep(x,¢)[6i2j In p(x,$)0% In p(x,d) + 6i2j In p(x,¢)d,In p(x,¢)d, In p(x, q‘))]

- g(blmri;lll-‘r:’}n
and this agrees with the second of Barndorff-Nielsen’s fourth order tensors,
which he denotes by T,;.,, see Barndorff-Nielsen, Blesild, Pace and Salvan
(1990). ’
It will be interesting to develop invariant asymptotic expansions following
the higher order preferred point route and compare these with the work of
Barndorff-Nielsen and others.

10. Conclusion and further work. In this paper we have developed the
theory of preferred point geometry and its application to statistical inference.
In doing so we have extended the existing notions of a statistical manifold and
shown how this may be developed from our preferred point structures. We
have provided a clear theoretical basis for the nonmetric connections used
previously by Amari which may now be seen as particular preferred point
metric connections. In doing so we have provided a formal basis for a statisti-
cal methodology which rests on the need to condition inference on some
particular point in the parameter space. We have explored the duality inherent
in the statistical manifolds structure and shown that in the expected geometry
case it corresponds to a duality between the maximum likelihood estimate and
the score vector.

The statistical interest of preferred point manifolds is by no means limited
to the light they throw on statistical manifolds and Amari’s expected geome-
try. In this final section we briefly indicate further work in progress.

An obvious question to ask is the following. Are there situations in which
natural preferred point manifolds exist which approximate to (ideally, coin-
cide with) Barndorff-Nielsen’s observed geometries? The answer is not en-
tirely straightforward. One approach which we are pursuing is, following
Barndorff-Nielsen, to condition on an ancillary in defining a preferred point
metric but, unlike him, to then take expectations with respect to the corre-
sponding conditional distribution obtained under ¢. See also subsection 7.2.2
of McCullagh (1987).

Turning to more general applications of preferred point geometry, consider
first the fundamental asymmetry between null and alternative hypotheses.
This asymmetry finds no expression in homogeneous geometries, whereas
preferred point geometries are ideally suited for this purpose. This aspect is
developed in another paper on asymmetry and the differential geometry of
parameter spaces, Critchley, Marriott and Salmon (1991a). In this paper we
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also examine the role of divergence functions such as the Kullback Leibler
distance which can be shown to be compatible in a certain natural sense with
particular preferred point metrics. There are understandably clear strong links
here with Barndorff-Nielsen’s yoke theory. There is the possibility of develop-
ing a preferred point geometry for nonparametric or ‘‘distribution free”
statistics when the particular manifold is embedded in a higher dimensional
function space.

A major feature of preferred point geometries is their Riemannian nature.
This allows us to speak of geodesic distances and not just projections along
geodesics curves. Indeed, given that we can establish a preferred point mani-
fold in a way that is statistically natural, there are grounds to believe that the
geometrically natural quantity of geodesic distance will serve as a useful test
statistic, see Critchley, Marriott and Salmon (1991b).

REFERENCES

AwmaRr, S.-I. (1985). Differential Geometrical Methods in Statistics. Lecture Notes in Statist. 28.
Springer, Berlin.

Amary, S.-I. (1987). Differential geometrical theory of statistics. In Differential Geometry in
Statistical Inference 19-94. IMS, Hayward, CA.

BARNDORFF-NIELSEN, O. (1986). Strings, tensorial combinants and Bartlett adjustments. Proc.
Roy. Soc. London Ser. A 406 127-137.

BARNDORFF-NIELSEN, O. (1987). Differential geometry and statistics. Some mathematical aspects.
Indian J. Math. 29 335-350.

BARNDORFF-NIELSEN, O. (1988). Parametric Statistical Models and Likelihood. Springer, London.

BaRNDORFF-NIELSEN, O. (1989). Invited contribution to the discussion of R. E. Kass: The geometry
of asymptotic inference. Statist. Sci. 4 222-227. [Corrigendum: Statist. Sci. 5 (1990)
370.]

BARNDORFF-NIELSEN, O., BLaesiLD P., Pacg, L. and SaLvan, A. (1990). Formulas for asymptotic
statistical calculations. Preprint, Univ. Arhus.

BarNDORFF-NIELSEN, O., Cox, D. R. and Reip, N. (1986). The role of differential geometry in
statistical theory. Internat. Statist. Rev. 54 1 83-96.

Cuentsov, N. N. (1972). Statistical Decision Rules and Optimal Inference. Nuaka, Moscow. [In
Russian; English translation (1978) Amer. Math. Soc., Providence, RIL]

Cox, D. R. (1961). Tests of separate families of hypotheses. Proc. Fourth Berkeley Symp. Math.
Statist. Probab. 105-123. Univ. California Press, Berkeley.

Cox, D. R. and HINKLEY, D. V. (1974). Theoretical Statistics. Chapman and Hall, London.

CRITCHLEY, F., MARRIOTT, P. K. and SaLMoN, M. (1991a). Preferred point geometry and the local
differential geometry of the Kullback-Leibler divergence. Preprint. Univ. Warwick.

CriTCHLEY, F., MarriOTT, P. K. and SaLmoN, M. (1991b). The geometry of the maximum likeli-
hood estimate. Preprint, Univ. Warwick.

ErrON, B. (1975). Defining the curvature of a statistical problem. Ann. Statist. 3 1189-1242.

EcucHi, S. (1983). Second order efficiency of minimum contrast estimators in a curved exponen-
tial family. Ann. Inst. Statist. Math. 36A 199-206.

GouriEroUX, C., MONFORT, A. and TROGNON, A. (1984). Pseudo-maximum likelihood methods:
Theory. Econometrica 52 681-700.

Kass, R. E. (1989). The geometry of asymptotic inference (with discussion). Statist. Sci. 4
188-234.

LauRITZEN, S. L. (1987). Statistical manifolds. In Differential Geometry in Statistical Inference
163-216. IMS, Hayward, CA.

McCuLLAGH, P. (1987). Tensor Methods in Statistics. Chapman and Hall, London.

McCuLLacH, P. and Cox, D. R. (1986). Invariants and likelihood ratio statistics. Ann. Statist. 14
1419-1430.



1224 F. CRITCHLEY, P. MARRIOTT AND M. SALMON

Mugray, M. K. (1988). Coordinate systems and Taylor series in statistics. Proc. Roy. Soc. London
Ser. A 415 445-452.

Mugrray, M. K. and Ricg, J. W. (1987). On differential geometry in statistics. Research report,
School Maths. Sci., Flinders Univ., South Australia. .

Sprvak, M. (1970). A Comprehensive Introduction to Differential Geometry. Publish or Perish,
Berkeley, CA.

Whrre, H. (1982). Maximum likelihood estimation in misspecified models. Econometrica 50 1-26.

FraNK CRITCHLEY PAUL MARRIOTT

DEPARTMENT OF STATISTICS DEPARTMENT OF MATHEMATICAL
UNIVERSITY OF WARWICK AND COMPUTING SCIENCES
CoveNTRY CV4 TAL UNIVERSITY OF SURREY

Unitep KINGDOM GuiLprorp GU2 5XH

UnNITED KINGDOM
MARK SALMON
DEPARTMENT OF ECONOMICS R
EUROPEAN UNIVERSITY INSTITUTE
BaDpIA FIESOLANA
1-50100, FIRENZE
ITAaLy



