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CONTRASTS UNDER LONG-RANGE CORRELATIONS

By H. KtinscH, J. BERAN, AND F. HAMPEL
ETH Ziirich, Texas A & M University and ETH Ziirich

The background of the paper is the empirical observation from a
variety of subject areas that long-range correlations appear to be much
more frequent than has been previously assumed. This includes high-qual-
ity measurement series which are commonly treated as prototypes of
“iid.” observations. Evidence is briefly cited in the paper. It has already
been shown elsewhere that long-range dependence leads to results that can
be qualitatively different from those obtained under short-range depen-
dence, and in particular, that long-range dependence has drastic effects on
the naive statistical treatment of absolute constants. The natural question
arising from this, also of relevance for statistical practice, is how the
long-range dependence affects the statistics for contrasts. The main answer
given in this paper is twofold.

() If the experimental conditions are well mixed as provided by ran-
domization, the levels of tests and confidence intervals derived under the
independence assumption are still correct, asymptotically and usually in
good approximation for finite samples.

(ii) Even under randomly mixed designs there are typically large unno-
ticed power and efficiency losses due to the long-range dependence. They
can be greatly reduced without estimating the correlations by a simple
blocking device.

1. Introduction. This paper grew out of an attempt to understand why
some parts of statistical applications are successful (according to folklore in
applications), despite the surprisingly widespread occurrence of long-range
correlations (see below) which are not considered in the analysis. The answer,
but briefly, is that the principal effects of long-range correlations, so disastrous
for absolute constants, cancel out for contrasts if the treatments are applied in
random order. These results provide a partial justification for a major part of
regression and analysis of variance methodology, in which the data normally
are treated as if they were independent. (Intercepts and grand means are
another matter.) On the other hand, it turned out that with the usual methods
for linear models there are efficiency and power losses due to long-range
correlations which can be considerable. These losses can be partly avoided not
only by cumbersome estimation and explicit inclusion of the long-range corre-
lations into the inference process, but also simply by the use of randomized
block designs (again corroborating a good applied practice from another theo-
retical angle).
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Put differently, the levels of tests and so on for effects and regression slopes
are still approximately correct if long-range correlated data are treated as
independent, as is frequently the case. This causes statisticians to make
correct positive claims on effects with the controlled error probability of the
first kind; but there are—partly considerable—unnoticed power and efficiency
losses, causing statisticians to discover too few true effects.

This situation is markedly different from that for absolute constants (grand
means, intercepts) where the effects of long-range correlations are disastrous
already for the level even in moderately small samples. This is probably a
major reason for the disdain many physicists have towards statistics for their
constants [cf. Jeffreys (1939), see pages 301 and 270-271 of the 3rd edition],
and it turns out to be a remarkably wise custom not to include the grand mean
into the analysis of variance table. For confidence and prediction intervals for
the mean, one really has to take the correlations into account [““one-sample
t-test for long-range dependence,”” see Beran (1986), (1989)].

For simplicity we restrict ourselves to serial correlations assuming time
ordered observations, although more general structures can also be of interest.
The standard models for serial dependence are ARMA-processes. They are well
suited for describing an arbitrary behavior of the small lag correlations, but
asymptotically their correlations decay exponentially fast and their spectrum is
bounded and continuous. By standard results this implies that the variance of
the arithmetic mean eventually decays like n~!. Such properties are in strik-
ing contrast to the empirical behavior of a large number of observed time
series from all subject areas including even high quality measurement series.
There the spectrum seems to be unbounded at the origin and the variance of
the arithmetic mean decays like n ™ with some a < 1 even for quite large n’s.
Stationary processes whose correlations decay so slowly that their sum is
infinite can model such a behavior. This is what we mean by long-range
correlations. Since not all readers may be familiar with this topic and some
may doubt its practical importance, we cite in Section 2 some literature which
collects empirical evidence for long-range correlation. In view of this evidence
it seems crucial to us to work with long-range correlated errors although this
imposes some mathematical difficulties, for instance Rosenblatt’s strong mix-
ing property does not hold. For a general survey of statistical methods for
models with long-range correlations see Kiinsch (1987) and Beran (1992).

In some areas of applications, in particular for field experiments, it is
obvious that the assumption of independent errors is not tenable. In order to
avoid such an assumption, Fisher (1925) introduced the techniques of random-
ization and blocking. Our results provide a justification of these techniques
different from the one usually given in the literature. Results on the validity of
randomization [see, e.g., Bailey and Rowley (1987)] take the plot effect to be
fixed and consider the distribution induced by the randomization. Here we
argue conditional on the treatment allocation and consider a standard linear
model with correlated errors. We show that with high probability randomiza-
tion chooses a design matrix for which the usual i.i.d. inference about con-
trasts is approximately correct. Moreover we show that blocking greatly re-
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duces the variance of contrasts even though in our model different blocks are
not independent and the block effect is not constant within a block. We also
compute the efficiency losses due to ignoring correlations: They are large
without blocking, but negligible with blocking.

There is already a considerable amount of mathematical results on design
and analysis of experiments with serially correlated error structures. The
special role played by contrasts has been realized and attention was mostly
restricted to these. The difference between these papers and our work is
two-fold. First the correlation structures in the earlier work allowed only short
term correlations [e.g., Williams (1952), Jenkins and Chanmugan (1962),
Berenblut and Webb (1974), Kiefer and Wynn (1981), (1984), Cheng (1983),
Martin (1986) and Morgan and Chakravarti (1988)]. Second the goal of many
of these papers is to construct in some sense optimal designs for prespecified
correlation structures. By contrast, we consider a broad and realistic class of
correlation structures which are close to a nonstationary behavior, and we
investigate what actually happens to common statistics, tests and confidence
intervals with designs which are in good approximation frequently used. In
other words, no attempt is made in this paper to estimate the long-range
correlations or to fit a specific model with long-range correlations to the data.
This would be impractical or even impossible in many situations.

The problems considered here belong to the area of regression with corre-
lated errors. In the case of short-range correlations some of our results can be
derived from the classical theorems of Grenander and Rosenblatt [(1957),
Section 7.3]. Still we have not seen these results stated explicitly in the
literature despite their importance for statistical practice. Moreover, for long-
range dependence the theorems of Grenander and Rosenblatt do no longer
apply since the spectrum has a singularity at zero. So far no general theory for
regression with long-range correlated errors has been developed. Yajima
[(1988), (1991)] covers the case of deterministic regressors, but it is an open
problem to verify his conditions in our case. We use here the special structure
of the regressors to construct a martingale and then apply the martingale
convergence theorem.

Our main results are asymptotic, but in a situation where dependence does
not become asymptotically negligible. Moreover, we give also results on the
speed of convergence and on the bias of the estimated variance. Finally, in
Section 7 we give some simulation studies which complement our theoretical
results.

2. Evidence for long-range correlations. We believe that for applied
statisticians it should be vital to know the full range of applicability of a
stochastic model. But due to limitation of space we shall say only a few words
about the occurrence of long-range correlations in real data. This seems the
more defensible as there are already two surveys on this topic [Hampel,
Ronchetti, Rousseeuw and Stahel (1986), Chapter 8.1 and Hampel (1987)] to
which the reader is referred for more details and references. Areas of applica-
tion discussed and cited there include economics, ecology, quality control,
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sample surveys, linguistics and even measurement series in the ‘“‘hard sci-
ences.”’

For geophysical data, Mandelbrot [cf., e.g., Mandelbrot and Wallis (1968),
(1969)] showed the widespread occurrence of long-range dependence and made
the model of self-similar processes [Kolmogorov (1940)] popular before he
integrated it into his treatment of fractals. He stirred up a considerable
controversy in hydrology because many scientists did not want to give up their
traditional models of short-range dependence.

In electrical engineering and, more generally, the frequency analysis of time
series, “1/f noises” and the “infrared catastrophy,” referring to a pole of the
spectrum at the origin, showed up increasingly in a broad variety of examples
[cf., e.g., Voss (1979) and Percival (1985)].

Perhaps most unbelievable to many is the observation that high-quality
measurement series from astronomy, physics and chemistry, generally consid-
ered as prototypes for ““i.i.d.” observations, are not independent but long-range
correlated, as can now be proven by the test of Graf (1983); see Graf, Hampel
and Tacier (1984). This fact was qualitatively known to and stressed by
eminent statisticians such as Newcomb (1895), Pearson (1902), Student (1927)
and Jeffreys (1939), but was apparently ignored or suppressed for various
reasons.

In the light of these observations, there is some interest in understanding
the effects of long-range correlations on level and on power of methods for
contrasts derived under the independence assumption, and on simple improve-
ments for them, as investigated in the following parts of this paper.

3. Notations and definitions.

3.1. Contrasts. We consider in this paper a one-way layout with p treat-
ments. Let B; denote the mean under the jth treatment. A linear combination
of treatment means Y¥_; A;8; with ©2_, A; = 0 is called a contrast. Obviously
the set of all contrasts forms a (p — 1)-dimensional vector space. Multiway
layouts can be reduced to this case in the following way. If we have % factors
on py,..., p, levels, respectively, we put p = IIp; and take each possible level
combination as one treatment. All main effects and interactions in the original
layout become then contrasts in the one-way layout. In our asymptotics the
number of treatments p will be fixed whereas the number of observations
increases to infinity. If we want to include fractional factorials, we have to let
p increase at the same speed as n. This is a problem for further research.

3.2. Randomization. The p treatments are applied sequentially in time or
along a transect in the plane. Denote.the treatment allocation at time ¢ by
a, €{1,2,..., p}. Hence the design matrix X, = (x, ;1 <t<n;1<j<p)is
given by

1, ifea,=j
3.1 = B
(3.1) e {O, otherwise
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and the model becomes

p
(3.2) Y = Z Bjx, ;j + &.

j=1
The treatment allocations @, are supposed to be random. We will consider
three different randomization schemes. The first one is complete randomiza-
tion which means that

(3.3) (a,) isiid. with Pla, =j] = m;, j=1,...,p.
This makes the number of observations with a given treatment, n; =

Xy 1% j J=1,...,p, random. With restricted randomization we fix n; in
advance and use the conditional distribution given the n’s:

(3.4) Alln!/(n,!--- n,!)allocations (ay,...,a,)with¥y ;x, ; =n
Jj=1,...,p, are equally likely.

J?

For large n the difference between (3.3) and (3.4) with n; = nr; will be small.
The first one is somewhat easier to analyze because we can keep the alloca-
tions already chosen as n increases.

The third randomization scheme to be considered is blockwise randomiza-
tion. Here we form blocks B, = {(k — DI + 1,(k — 1)] + 2, ..., kl} of length
l,k=1,...,b=n/l. For simplicity we consider only complete blocks. Thus
we require:

The allocations in different blocks are independent and in
(3.5)  each block B, all allocations with Yiep, % =121,
Jj=1,..., p, are equally likely.

Obviously X¥_, I; = l. The most common caseis / = p, [; = 1 for all j, that is,

each treatment occurs exactly once in each block.

J

3.3. Correlations of the errors. The errors ¢, in the model (3.2) are sup-
posed to have expectation zero, constant variance o2 and long-range correla-
tions. We assume that either

(3.6) lp(t,s)l = |Corr(e,,e,)l < const.|t — s> 2 (t+s)with He (3,1)
or in the stationary case p(¢, s) = p(¢ — s) with

5 p(t —s) = j’_:eiw(t—s)f(w) dw, where f:rf(w) do =1,

f(w) = lol' ?"fy(w) with H € (3,1)

and f,(w) continuous, of bounded variation and bounded away from zero.
Condition (3.7) implies (8.6), see Zygmund [(1959), Chapter V.2]. In (3.6),
stationarity is not required. The two most common models with long-range
correlations, fractional noise [Mandelbrot and van Ness (1968)] and fractional
ARIMA (p, d, g)-processes [Hosking (1981)], satisfy (3.7), see Sinai (1976) in
the former and Hosking (1981) in the latter case.
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If the treatments are allocated in space as for instance in agriculture, the
index ¢ becomes multidimensional, that is, the ¢,’s are then a random field. We
expect our results to generalize to this case.

3.4. Estimators. The ordinary least squares estimator (OLSE) in the mod-
els (3.1) and (3.2) is

T
(38) A(m) = (XIX,)(XI3) = (Zoexoa/ma, ., Dot p/my)

Here we are interested in the variance of a contrast XA ;8 j( n) given the design
X, because the design is ancillary. It is sufﬁc1ent to consider the vari-
ances V,(J, kIX,) of Bj(n) — Bu(n) because LA B (n)=XA; (BJ(n) Bi(n)
and Cov(B (n) — Byn), B(n) — Bn) = (1/2)(Var(B,(n) - B/(n) +
Var(B,(n) — B(n)) — Var(§ (n) — B,(n))). From (3.8) it follows immediately
that

(3.9 Vn(j’kIXn) =g Z (xt,j/nj _xt,k/nk)p(t’s)(xs,j/nj _xs,k/nk)'

t,s=1

If the &,’s were uncorrelated, V,(j, k1X,) would be ¢%(n;! + n;'). Hence if
one is not aware of the correlations, one estimates V,(j, k|X,) by 2(n 1y
n; 1), where

= =-p) " X (v - Thm)a,,)
(3.10) = ‘

=(n-p)”

2
et = Ty Ze,) )
t j ¢

In Section 4 we are investigating the difference ¢*(n; ' + n, 1) — V,(j, kIX,)
under the assumptions (3.4) and (3.6). This is relevant for the question of
robustness of the level of tests and confidence intervals (robustness of validity)
under deviations from independence. In Section 5 the same question is investi-
gated under assumptions (3.3) and (3.7).

If we are interested in the robustness of power (robustness of efficiency) we
have to study the efficiency of the ordinary least squares estimator. In Section
5 we will compare V,(j, £|X,) with the conditional variance of the best linear
unbiased estimator (BLUE) under assumptions (3.3) and (3.7). The best linear

unbiased estimator B(n) is given by
(3.11) B(n) = (XT377X,) (XT3 Y),

where 3 is the covariance matrix of (¢, . . ., ,,). The variance of 8 (1) — By(n)
given the design X, is then

(3.12) Vi(j,kIX,) = Var[ ;(n) — Bu(n)IX,] = N(XT3;1X,) "2
with A = (A;,...,4,)" such that A,8; = B; — B,.
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Finally in Section 6 we will compare V,(j, k|X,) under the two different
randomizations (3.3) and (3.5), that is, we will see how much we gain by
changing the randomization instead of changing the method of estimation.
With randomized blocks one will take the estimated block effects d, =
I71%, o gy, — L B %, ;) into account for the estimation of the variance of the
errors. We thus cons1der instead of (3.10)

n 2
Bl =(n-p—b+1) 1 ¥ (yt ~ Y B, - Eﬁkl[,egk])
J k

t=1

(3.13) ~(n-p-b+ 1)‘1(2 ~ ¥n; (zt:etx”)

t J

-1t é:( y st)2 + n"l(Xt:et)z).

teB,
4. Restricted randomization with ordinary least squares.

4.1. Asymptotic behavior of the variance. The variance V,(j, k|X,) of a
contrast depends on the random design matrix X, and is thus a random
variable. Its expectation and variance under the assumption (3.4) is given in
the following:

ProposiTiON 4.1.

® EV,(, kX)) = (07" + 0y Do = n~Hn = D7T'E,, ,p(, ).

G) If n;/n>m e (0 D, j=1,...,p, then Var[V,(j, kX )] ~ (nj* +
n;H% 4(2n"22'p(1.‘ 3)2 4n3Y'p(¢, s)p(s u) + 2n"*Y'p(t, s)p(u, v)), where
Y’ denotes summation over indices which are all different.

The proof is given in the Appendix. From this we can obtain easily the
asymptotic behavior of V,(j, k1X,,).

TreEOREM 4.1. Ifn;/n —> m; €(0,1),j =1,..., p, and p(t, ) satisfies (3.6),
then

E[n(Vn(j, len) — (nfl + n;l)o,z)] _ O(n2H—2),
Var[nV,(j, kIX,)] = O(c,)
where
c,=n"1 H<?2,
=log(n)/n, H=1i,

= pt-4 H>3,
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In particular by Chebyshev’s inequality nV,(j,klX,) —=p (7! + m; Do
The proof is again given in the Appendix. This says that for n large random-
ization will pick with high probability a design such that the variance of a
contrast is almost the same as in the i.i.d. case. The correlations of the errors
do however affect the speed of convergence in this asymptotic result: The
larger H, the slower it is. Moreover for H > 3 /4 the bias is of the same order
as the standard deviation.

4.2. Asymptotic behavior of &2. First we show that &2 is consistent.

The effect of using the residuals instead of the true errors is by (3.10)
—(n—p) 'Y iny (Eex, j)2. The following lemma shows that this is asymp-
totically negligible.

Lemma 4.1. If (3.6) holds, El(n — p)~'E;n; ' (T,¢,x, ;)*1X,] = O(n*2)
uniformly for all X, .

ProoF. See the Appendix.

By the Chebyshev inequality this implies that (n — p)~'Ln; *(Ze,x, ;)? is
0,(n*"~2) both conditionally on the design X, and unconditionally. As a
direct consequence we have the following:

THEOREM 4.2. If (¢,) is stationary and ergodic, 6% —p o2 both condi-
tionally on the design matrix and unconditionally. Hence n(V,(j, k|X ) —
o-‘z(nj_1 + n, 1) —p 0, that is, asymptotically the correlations of the errors can
be neglected when estimating the variance of a contrast.

Let us look at finite sample sizes. By (3.10) we obtain the conditional
expectation of 62 given the design matrix

(41)  E[¢¥Xx,] = 02(1 -(n-p)" Zp(t,S)Znilxt,jxs,j)'

Hence the correlated errors make ¢*(n;' + n;') a biased estimator of
V.(j,k|1X,). Still on the average we have unbiasedness

(n; +ni)E[E[6%X,]] = E[V,(J, kIX,)].

This follows from validity of randomization [see, e.g., Bailey and Rowley
(1987)] by exchanging the order of the two expectations. The following result
proved in the Appendix shows that the variance of E[62|X ] decays quite fast.

ProposITION 4.2. If (3.6) holds and n;/n - m; €(0,1), j=1,...,p,
Var[ E[62X,,]] = O(c,,n"2) with ¢, defined in Theorem 4.1.
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For a complete discussion we also have to look at the variance of 2. This
depends on the fourth moments of (¢,). The most important case is the one
with Gaussian errors.

ProposiTION 4.3. If (¢,) is Gaussian, (3.6) holds and n;/n — m; € (0, 1),
then Var| ¢2|X,] = O(c,) uniformly in X,, where c, has been deﬁned in
Theorem 4.1.

Proor. See the Appendix.

Hence when using the classical ¢- and F-tests for contrasts derived under
independence the true level is presumably a little larger than we assume
because the effective number of degrees of freedom is smaller. For a conclusive
statement one would have to look also at the correlation between 8 J(n) - B,(n)
and 62 In any case, asymptotically the level is correct.

5. Complete randomization. If (¢,) is stationary, the model (3.2) is a
spec1al case of the general regression model with correlated errors. Moreover
n~'Lx, ;%,,, , converges as. to m;m, for h #0 and to m;8;, for h =0,
respectively. Hence the following theorem is an easy consequence of subsection
7.3 of Grenander and Rosenblatt (1957).

THEOREM 5.1. If the spectrum f(w) of (e,) is piecewise continuous and
0 <c < flw) <C, then nV,(j,klX,) converges a.s. to o*(wj'+ m,!) and
nV.k(j, kIX,) converges a.s. to o*(2m) ?[f(w) ' dw) Mt + mph).

However if (¢,) has long-range correlations, the spectrum is of the form (3.7)
and thus the condition of Theorem 5.1 does not hold. Nevertheless we have the
following:

THEOREM 5.2. If (3.7) holds, then the conclusions of Theorem 5.1 continue
to hold.

The proof which uses a completely different approach and exploits the
independence of the x,’s, is given in the Appendix.

Hence asymptotically V,(j, k|X,,) has the same behavior under complete and
under restricted randomization. We conjecture that this is true also for
Vi, kIX,).

It is well known [see e.g., Rozanov (1967) Formula (10.40), page 104] that

o%(2m)"Yf(w) *dw)~! is the variance of the best linear interpolation of ¢,
based on ¢,, s # ¢. If the dependence is strong, this will be much smaller than
Varle,], that is, ordinary least squares can lose quite some efficiency. Some
numerical values are given in Table 1 for the ARIMA (0, H — 1/2, 0)-model
where the efficiency can be expressed with the gamma-function, see Theorem 1
of Hosking (1981). In practice the correlations of (¢,) are unknown, so one
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TasBLE 1
Asymptotic efficiency of generalized versus ordinary least squares under complete randomization
in the ARIMA(0, H — 1/2, 0)-model

H 0.6 0.7 0.8 0.9

efficiency 1.03 1.16 1.46 2.45

cannot expect to really achieve V*(j, k|X,). Still, it should be possible to
improve on the ordinary least squares estimator if » and H are large.

6. Randomized blocks with ordinary least squares.

6.1. Asymptotic behavior of the variance. First we give the exact value of
the expectation and the order of magnitude of the variance of V,(j, k|X,,).

PROPOSITION 6.1.  Assume that p(t, s) satisfies (3.7). Under (3.5) we have:

M) ELV,(j, kIX)] = (7' + nyDe?(1 — 21 — DTIEZ{p@X1 — t/D) =
(n;' + nyYHo? say.
(11) Var[nV,(j, k|X,)] = O(c,), where c, has been defined in Theorem 4.1.

Proor. See the Appendix.

Proposition 6.1 implies the convergence of nV,(j, k1X,,) in probability. In
fact we have even almost sure convergence.

THEOREM 6.1. If (8.7) and (3.5) hold, nV,(j, k|X,) converges almost surely
to (m; ' + m, Do} where w; = Plx, ; = 11=1;/1.

The proof is given in the Appendix. Hence with blockwise randomization the
variance of a contrast depends on the correlations of the errors. If p(¢) is
positive for all ¢, blocking decreases the variance. Moreover the decrease is
larger for small blocks if the correlations decay monotonically.

LEmMMA 6.1. If p(t) > p(s) > 0,0 < ¢ < s, then of is strictly increasing for
1> 2. If lim,__ p(t) = 0, o2 converges to o® as I goes to infinity.

Proor. See Cochran (1946), pages 169-170.

Therefore blocking with large block size does not improve much over
complete randomization. However, for small blocks the gain can be substantial
as Table 2 shows. Comparing Tables 1 and 2 we see that ordinary least squares
with small blocks is better than generalized least squares with complete
randomization for the ARIMA(0, H — 1/2, 0)-model. This is however not true
for any model with correlations decaying to zero monotonically. For instance,
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TABLE 2
Asymptotic efficiency of blockwise versus complete randomization with ordinary least squares in
the ARIMA(O, H — 1/2,0)-model. Block size = |

H 0.6 0.7 0.8 0.9

efffor [ = 2 1.12 1.33 1.75 3.00

efffor =4 1.09 1.25 1.59 2.61
TaABLE 3

Asymptotic efficiency of generalized versus ordinary least squares under blockwise randomization
in the ARIMA(0, H — 1/2, 0)-model

H 0.6 0.7 0.8 0.9
efffor I = 2 1.003 1.012 1.027 1.050
efffor I = 4 1.005 1.023 1.053 1.099

for a MA(1)-model with parameter @ and p = I = 2, the efficiency of ordinary
least squares with randomized blocks versus generalized least squares with
complete randomization turns out to be (1 — a?)/(1 + &% — a). For a going to
one, this tends to zero.

One may ask at this point how much more efficiency can be gained by using
generalized least squares (3.11) and/or different designs. With the same
methods as used for Theorems 4.2 and 6.1 we can obtain the efficiency of
generalized versus ordinary least squares for randomized blocks. For the
ARIMA(0, H — 1/2,0)-model the results are given in Table 3. It shows that
ordinary least squares are sufficient for all practical purposes. If p = 2,
n; = ny = n/2 and the spectral density f(w) satisfies the conditions of Theo-
rem 5.1 and takes its minimum at o = 7, one can also show that the most
efficient design alternates the two treatments. Moreover, ordinary and general-
ized least squares are equivalent for this design. However, this design is very
sensitive to the presence of a monotone trend and thus should be avoided. We
do not pursue the search for optimal designs any further.

6.2. Asymptotic behavior of ¢Z,,. Since we have exactly the same behav-
ior as for 6% in Section 4.1, we give only the main results. By generalizing
Lemma 4.1 we obtain first the consistency of ¢32,..

TuEOREM 6.2. If (g,) is stationary and ergodic and (3.7) holds, 63, —p
o/ both conditionally on the design and unconditionally.

Hence also with randomized blocks the correlations of the errors can be
neglected asymptotically when estimating the variance of a contrast because
the inclusion of block effects makes the correct adjustment for the estimated
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TABLE 4
Mean (upper figure), standard deviation (middle figure) and skewness (lower figure) of
Var(8y(n) - Bo(mIX,)/ (a7t + n3Y) forp =2, ny = ny = n/2. The errors are discrete fractional
noise with unit variance. Each value is estimated from a simulation of the design X, under
restricted randomization with 400 replicates

H n=16 n =64
OLSE 0.7 0.857 0.934
0.112 0.094
0.85 0.11
0.9 0.460 0.564
0.142 0.125
1.46 0.95
BLUE 0.7 0.789 0.806
0.081 0.047
1.37 0.54
0.9 0.320 0.315
0.066 0.030
1.46 0.83

variance. Looking at finite n’s we have by (3.13)
E[6ZulX,] =02 —c2(n—-p-b+ 1)}

6.1 -1
(6.1) x|2n/1Y p(t)(A — t/1) + Zp(t—s)(z‘,n;]‘xt’jxs’j—n_l)).
t=1 J

t#s

Again by the validity of randomization E[E[63,./X,]l = 0. In the Appendix
we prove the following:

PRrOPOSITION 6.2. Var[E[62,.,1X,]1 = O(n"%c,).

7. Simulation results. We simulated 400 replicates of the design matrix
X, according to the restricted randomization (3.4) for sample sizes n = 16 and
n = 64, number of treatments p = 2 and p = 8 and number of replicates
n;=n/p. For the random errors &, we took zero mean, variance one and
correlations p(¢,s) = (|t —s + 12F gt —s)? + |t —s — 1|2H)/2, H=0."7
and 0.9. In the Gaussian case this defines standardized fractional Gaussian
noise. We computed the conditional variance of the ordinary least squares
estimator (OLSE) and of the best linear unbiased estimator (BLUE) given the
random design X, according to (3.9) and (3.12). The behavior of these
conditional variances is summarized in Tables 4 to 8.

In the case p = 8 there is a large number of possible contrasts to look at.
Fortunately, by a simple symmetry argument the distributions of V,(j, k|X,)
or V*(j, klX,) are the same for any j # k. Hence we estimated the moments
of V.(j, klX,) or V}(j, klX,) for a fixed j # k by taking averages over all j
and k. Besides these pairwise differences we looked also at orthogonal con-
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TABLE 5

955

Mean, standard deviation and skewness of the variance of treatment differences given the design

X, for p=8, n;=n/p. Besides a fixed pair of treatments also the minimal and maximal

variances among all pairs of treatments are given. Notation: V7(j, k) = Var(8,(j) —
BAR)X,)/(njt + ngh), V" = max ., VS, k) and V™ = min;, , V3(j, k)

V,it(j, k)
for fixed j # k V,oax y,min

H n =16 n =64 n =16 n =64 n =16 n =64
OLSE 0.7 0.865 0.931 1.06 1.09 0.696 0.801
0.100 0.079 0.072 0.069 0.030 0.027

0.52 0.67 -0.22 0.70 0.38 -0.18
0.9 0.455 0.572 0.702 0.844 0.276 0.393
0.117 0.125 0.087 0.140 0.028 0.029

0.79 1.11 -0.38 0.85 0.56 0.10.
BLUE 0.7 0.819 0.811 0.971 0.899 0.676 0.729
0.087 0.046 0.080 0.036 0.022 0.017

0.57 0.43 0.39 0.43 0.41 -0.23
0.9 0.359 0.326 0.498 0.389 0.243 0.271
0.079 0.033 0.084 0.030 0.015 0.012

0.89 0.68 0.29 0.76 0.39 0.07

TABLE 6

Mean, standard deviation and skewness of the variance and covariance of orthogonal contrasts
given the design X,, withp = 8, nj=n/p,j=1,...,p

Var(3,(j)IX,)p /n; Cov(3,(j),3,(R)IX,)p / (n;n,)/?
for j fixed for j + k fixed
H n =16 n =64 n =16 n =64
OLSE 0.7 0.863 0.933 0.000 0.001
0.110 0.083 0.076 0.057
0.80 0.72 -0.02 0.04
0.9 0.453 0.574 0.001 0.001
0.126 0.127 0.090 0.091
1.05 1.02 0.02 0.00
BLUE 0.7 0.816 0.813 0.000 0.001
0.093 0.049 0.064 0.034
0.86 0.56 -0.04 0.06
0.9 0.358 0.326 0.001 - 0.000
0.082 0.033 0.056 0.023
1.18 0.58 0.05 -0.04
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TABLE 7
Mean, standard deviation and skewness of Var(ﬁ,,(j) - ,é,,(k)IX,,)/ [(nj_1 + nyHEWG?X,)] for
Jj#kfixed,n;=n/p, j=1,...,p. The estimator used is OLSE

p=2 p=28

n =16 n = 64 n =16 n =64

H=10.7 1.01 1.01 1.00 1.00
0.143 0.098 0.067 0.034

0.97 0.89 0.51 0.28

H=09 1.00 1.02 1.01 1.00
0.313 0.231 0.150 0.091

1.45 1.15 0.58 0.57

trasts y; = XP_1A;B; Jj=1,...,7, where the vectors (A,...,A;s)7 are
orthogonal and have elements +1. This corresponds to main effects and
interactions in a 23 factorial. Again the distribution of Var(7,(n)IX,) and
Cov(9,(n), 9,(n)IX,) are the same for all j and j # &, respectively.

The asymptotic values of nV;*(j, klX,)/(1/n; + 1/n,), given in Theorem
5.1, are equal to 0.810 for H = 0.7 and 0.317 for H = 0.9. Tables 4, 5 and 6
illustrate that already for short series the expected value of the variance for
the BLUE is very close to the asymptotic limit. Also the standard deviation of
nV*(j, k|X,) decreases fast, probably with the rate n~1/2. On the other hand,
E(nV,(j, kIX,)/(1/n; + 1/n,) is quite far from the asymptotic value of 1, as
predicted by Proposition 4.1(i). In particular for H = 0.9 the bias is large. Also
the standard deviation decreases very slowly. Note furthermore that the
skewness of the BLUE is decreasing with increasing sample size. Less clear is
the behavior of the simulated skewness for the variance of the OLSE. The s.d.
of the empirical skewness of 400 Gaussian random variables is 0.123, that is,
most skewness values in Tables 4-8 are significant. It is an open problem if
V.(J, k1X,), normalized by a factor of the order c./? given by Theorem 4.1, is
asymptotically normal or if it has another limit distribution. In principle,

TaABLE 8
Mean, standard deviation and skewness of Var(n~'L}_,y)/n"'E(6%X,) for n;=n/p, j=
1,..., p. The estimator used is OLSE

p=2 p=8
n =16 n =64 n =16 n =64
H=0.7 3.51 5.66 3.51 5.66
0.033 0.009 0.109 0.021
0.99 0.94 0.51 0.30
H=109 20.2 48.6 20.4 485
0.423 0.178 1.42 0.494
1.45 1.19 0.59 0.58
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V.(J, kX, belongs to the class of randomly associated arrays considered by
Barbour and Eagleson (1986), but we were unable to verify any of their
conditions for asymptotic distributions.

The smaller variability of the conditional variance for the BLUE can also
be seen by comparing A% = max;,, V*(j, kX,) — min;_, V*(j, klX,) with
A, =max;,, V,(j,klX,) — min;_,, V.(j, klX,) (Table 5). For the BLUE, in-
creasing the sample size from n = 16 to n = 64 leads to a decrease of the
mean of this difference by an approximate factor of 1 /2. This suggests a decay
of the order n~1/2, On the other hand, for the OLSE and H = 0.7 the decay is
much slower. For H = 0.9 the mean of A, is even approximately the same for
n = 16 and n = 64. This means that for relatively small samples the condi-
tional variance of the OLSE of a contrast varies considerably, depending on
which design matrix we obtained from the randomization. For the BLUE the
variance is less sensitive to the (randomized) choice of the treatment assign-
ments. In order to obtain design matrices for which the conditional
LS-variance V,(j, k) is more stable when n is not very large, one might use
constrained randomization; see Bailey (1985).

Table 7 illustrates how the biases of V,(j, k|X,) and of E[#?|X,] compen-
sate each other, compare Propositions 4.1 and 4.2. The mean of the ratio of the
two quantities is practically equal to one even for n = 16. The value of H or
the number of treatments does not seem to play any role here. Table 8 shows
that the situation is completely different for the arithmetic mean. There the
increase in the variance due to the dependence of the errors and the bias of
E[6|X,] reinforce each other. Hence the ratio of the two quantities is huge
even for n = 16 and H = 0.7. This emphasizes once more the fundamental
difference between contrasts and absolute constants.

APPENDIX
Proofs. Without loss of generality we assume o2 = 1 throughout.

ProoF oF ProposiTiON 4.1. Weput &, =x, ;/n; — x, ,/n,. Because L =
(n;' + nih, it follows from (3.9) that V,(j, klX,) = (nj' + n;") +
L, . 08, 8)¢,&,. The randomization (3.4) implies that for ¢ # s,

E[&é]1=n"Yn - 1)—1{n;2nj(nj - 1) +ny2%n,(n, - 1) - 2nj'1n,;1njnk}
=-n"Yn- 1)“1(nj_1 +nzt).
This proves (i). For (ii) we observe that'
Var[V,(j, kIX,)] = 25 p(t, 5)" Var[£¢,]
+ 4T 06, 5)p(s, 1) CovlE4,, 6,1

+ Z,p(t’ s)p( u’ v)COV[gtgs’ éugv]'
Now a lengthy but straightforward calculation shows that for ¢,s,u,v all
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different
Var[¢,¢,] = n2(n;' + n,;l)2 + 0(n~%),
Covléig,, .6, = —n73(n; " + ni) + 0(n°),

Cov[£,,£,6,] = 2n~(nj' + ng)’ + O(n).
Together this proves (ii). O

Proor or THEOREM 4.1. By (3.6) [L'p(¢ s)| < const. nXr 1#2H-2 <
const. n2¥ and

n—1
Y p(t,s)° < const.n Y t*H-% < const.n if H < 2,
t=1

<const.nlogn if H=3,
<const.n*?"%2 if H> 3,

Similarly

n—1
12 p(t,8)p(s,u)l <const. Y. |p(t,s) Y u2H-2
u=1

2

1

n—1
< const.n( Y, u?H-2) < const.n*-1,
u=1

Finally [Z'p(¢, s)p(u, v)| < const.(nX7-'t2#~2)2 < const. ntH.
Hence Theorem 4.1 follows from Proposition 4.1. O

Proor or LEMMA 4.1. Because x, ;€1{0,1},
2
E[(n -p) 7 Enj ! Zeww,, m] < (n=p) " Ty Tha(t, 5)
J t J t,s

< const. n?#~1 Y nit = O(n?"72%). O
J

PrOOF OF PrOPOSITION 4.2. We put n, , = (n —p)~'Ln;'x, ;x, ;. Then
Eln, = -p) 'n"Yn - D7'Enitnn; - 1D =n"Yn-1)"Y"¢t+#s, and
by a lengthy but straightforward calculation we find for ¢, s, u, v all different

Var[n,,] = n~4(p — 1) + O(n"%),
Covl[n,, ,,m5,u] = —n"5(p — 1) + O(n"%),
Cov[n, ¢,m,.,] =2(p — D=8+ O(n77).

The proof is then completed with the arguments used above for Proposition
4.1 and Theorem 4.1. O
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Proor or ProrosiTioN 4.3. By the well-known formula for the fourth
moment of a Gaussian random variable we have

m[;g] - 2£p(t,3)2,

2

2 2
Var[( Zetx,’j) IXn] = 2Var[28txt’jIXn] = 2( Yx, %, p(t, s))
t t t,s

<2(Zlo(t, )l

2
COV[ Zetz’ ( thxt,j) IXn]
t t

2 Z xt,jxs,jp(t>u)p(s’u)‘

t,s,u

<2 ) lo(t,u)llo(s, u)l.

t,s,u

Now we apply again the arguments of the proof of Theorem 4.1. O

The proof of Theorem 5.2 is more difficult than the previous ones. We break
it up into several parts.

LeMMA A1, lim nV,(j, kIX,) = (7' + 7, D).
Proor. As above we introduce
£ =% j/Nj— X /Ty
Because 7 ; is random, it is much easier if we can replace ¢, by
0, = n_l(xt,j/'"'j — Xy 1/ Th)-
Because the 6,’s are independent with expectation zero and variance
n”2 w4 g,
n
M,=n%Y 0,0(t-s)6,— n(’n'j_1 + 77',;1)
t,s=1

is a martingale with respect to %, = o(6,,...,0,). Moreover

n—1
E[(Mn - Mn_l)z] = Var[n%2] + 4E[n203]2 Y p(n - t)? < const. nc,,.
‘ -1

t

Therefore by monotone integration,
E[Ln E[(M, - M, )1%,_\] = Tn E[(M, - M, ,)*] <=.

The strong law of large numbers for martingales [see, e.g., Stout (1974),
Theorem 3.3.1] implies therefore that n~'M, = nX} _.6,p(t — s)8, —
(m; ' + m, 1) converges to zero a.s.
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Finally we have to show that

Vi(J, kX)) — Y 6,0(t—s)0,=¢73,6— 073,06 =0(n"") as.
t,s=1

Observe that
€75, — 673,00 < (£ - 0)7S,( - 0)) ((675,6)" + (673,0)")
<2((¢ - 0)7S,(¢ - 0)) (673,6)"

+(£-0)"3,(£-0).

By the argument above 873,60 = O(n~1) a.s. By (3.6) the largest eigenvalue of
3, is bounded by const. n27~1, Hence

(£ -0)"S,(£ - 0) < const. n2H-1(£ — 0)7 (¢ - 0)

sConst.nzH((w_ - (nm) " ) (ni' - (nwk)_l)z)’

which is O(n?7~3(loglog(n))?) = o(n~!) by the law of the iterated logarithm.
This completes the proof of Lemma A.1. O

Lemma A.2. limsup nV,*(j, kIX,) = (@m) " ¥f(w) "' dw) m ! + m; D).

Proor. Let (g,) be the sequence of spectral densities g, (w) =
min( f(w), m). By X, , we denote the corresponding covariance matrix of n
consecutive observations. Now g,, <[ implies %, , <3, the last inequal-
ity being in the positive definite sense. By standard arguments it follows
that (XT3, ! X, )7' < (XT3,'X,)"! whence lim inf nV*(j, k|X,) >
lim nAT(X 2 X )~ Thls limit exists a.s. by Theorem 5.1 and equals
@m)~ 2fgm(w)‘1 d w) (w7t + 7, 1), Letting m tend to infinity completes the
proof. O

Lemma A3, limsup nV,*(j, k1X,) < (Cm)~?f(0) " dw) Hmjt + m; .

Proor. This is the hard part because we cannot approximate f from
above. We are going to approximate the best linear unbiased estimator g(n) by
B¥(n) =(XTW,X,)"(XTW,y), where W, = {w(t —s); 1<ts<n} with
w(t) = w(— t) w(t) =0 (Itl > q), Wlw) = (277) 13, w(t)e’™ > 0. This way we
avoid approximating 3! which is very delicate, compare Bleher (1981).

Because B(n) is optimal, we have

nVi(j, kIX,) < nVar(6¥(n) - fF(n)IX,)

1

= nAT(XTW, X)) XTW,3, W, X,(XTW,X,) "A.

Using Lemma A.4 and approximating f(w)™! by a sequence of positive
trigonometric polynomials #(w) completes the proof. O
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Lemmas A.1-A.3 imply Theorem 5.2. Finally we show the following:

Lemma A4, nA(XTW, X)) 'XTW,5 W, X (XTW,X,) A converges a.s.
to w(0) " 22m)*(w)?*f(w) dw(m; ! + m; 1. (W, w and W as defined above.)

Proor. This is basically the same proof as the convergence of nV,(j, k1X,,).
Let vy, be defined by

v = (X(XTW,X,)"A) w(0)

and let 6, be as above. Again M, = n?0"W,3,W,0 — tr(W, 2, W, Xm; ' + 7, )
is a martingale. Because

2
(W, 2, W,), < (le(u)l) max lo(¢ — s +j)| < const.|t — s/*72,
u q

—2q9<j<

n~'M, converges a.s. to zero. Moreover for ¢ <t <n — ¢

(W,2,W,),.. = Lw(s)w(u)p(s - u) = (27)* [@(w)* f() do.
Hence n~! tr(W,3,W,) converges to (27)%t(w)*f(w) dw.
Finally we note that the largest eigenvalue of W, 3, W, is of the same order
as the one of 3. Hence we only need to show that ¥ (y, — 6,) = o(n~2¥#) ass.
But

n q n—s
(XnTWan)jk =w(0) X, i % p T Y ow(s) X (%, %5,k T Xt 1 %p4s, )
t=1 s=1 t=1

= n{w(O)éjkw'j +2Y w(s)mm,} + O(n'/?loglog(n))
=nAj, + O(n'/?loglog(n)) say.
It is straightforward to check that (A~'A), = w(0)~(5;;7; ! — 8,7, 1. To-

L

gether this implies |y, — 6, = O(n~3/2 loglog(n)) a.s. (uniformly in ) which
completes the proof of Lemma A.4. O

PROOF OF PROPOSITION 6.1 AND THEOREM 6.1. Again let ¢ =x, ;/n; —
X, p/np =b""x, ;/l; — %, ,/1,) and
Z(il’i2) = Z Z p(t—S)ftfs, 1 —<—i1’i25b'

teB; s€B,, ‘

By the independence of different blocks E[Z(i,,i,)] =0 for i, # i, If ¢t #s
are in the same block

E[&£,]= —n"' (1= 1) (nj* + n). |
Hence E[Z(i,1)] = (nj' + ny b1 — 2( — D'ELZ1p(tX1 — ¢/1)). Because
V.(j, kX, =X, ;. Z(i,,1,), this proves (i) of Proposition 6.1.

iyl
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Again by the independence of different blocks Var[V,(j, k1X,)] =
Y., Var(Z(i,, i,)). Because |¢,| < const. b~ !, we have by (3.6)
Var(Z(iy,i,)) < const. b™%[i; — i /*"~*.
From this (i) of Proposition 6.1 follows easily. Finally, for Theorem 6.1 we
note that

b b ,
My =8 Y ¥ Z(iyig) = L 0P(mt + i)
ip=1i,=1

is a martingale with respect to %, = o(xy,...,x;,). The condition for the
strong law of large numbers is easily checked. Details are left to the reader. O

Proor or ProprosIiTION 6.2. Denote 7, ,=X;n; 1xt,j %, ;- n-l t#s,
1:. = 0, and introduce

Z(iyniz)= Y X p(t—s)n,,.

teB, s€B;,

For t and s in different blocks, we have Eln, |x]=1Xx, ;/n—n""'=0.
Similarly E[Z(i,iy)lx,,t & B; ] = 0 for i; # i,. Hence by (6.1)

Var| E[62,qX,|] ~n~2 Var

b b
Y X Z(il’iz))

i1=1liy=1

b b
=n72 ), ) Var(Z(iy,i,)).

i1=1iy=1

Because |n, ,| < const.n~! we can complete the proof with the same argument
as for Proposition 6.1. O

Acknowledgment. We wish to thank two referees for their careful and
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