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MULTIVARIATE ASPECTS OF SHAPE THEORY

By CoLiN R. GoobpaLL! anp KanT1 V. MARDIA?

Pennsylvania State University and University of Leeds

We place shape theory in the setting of noncentral multivariate analy-
sis, and thus provide a comprehensive view of shape distributions when
landmark coordinates are Gaussian distributed. This work allows the sta-
tistical analysis of shape to be carried out using standard techniques
of multivariate analysis. The paper includes some new results in all
dimensions and a general Gaussian approximation to the size-and-shape
distribution. We also discuss some inference problems and give a numerical
example.

1. Introduction. Let X: N X K be a matrix representing the geometri-
cal figure comprising N landmark, or labeled, points in R, Assume that X
has the isotropic matrix multivariate Gaussian distribution with mean uy,

(1.1) XNN([Lx,O'zIN®IK).

The shape of X is the figure with translation, orientation and scale removed,
and the space of shapes is the quotient of (RX)N by the similarity group
[Kendall (1984)]. Shape coordinates u of X are constructed in several steps
summarized in the expression

(1.2) LX=Y=TH=rWH = rW(u)H,

which we now discuss more fully. (Note that shape coordinates of uy are
defined analogously.) The matrix L is (N — 1) X N with orthonormal rows
orthogonal to 1 = (1,1,...,1). L may be a submatrix of the Helmert matrix.
Let w = Luy. Then Y: (N — 1) X K is invariant to translations of the figure
X,

(1.3) YNN([.L,O'ZIN_1®IK).

Let n = min(N — 1, K) and p = rank u. In (1.2), Y = TH is the @R de-
composition where T: (N — 1) X n is lower triangular with ¢, >0, i =
1,...,min(n, K — 1), and where H: n X K, H €V, ,, the Stiefel manifold.
Typically in shape analysis there are more landmarks than dimensions (N >
K). H acts on the right to transform RX. This is the converse to the usual
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case in multivariate analysis, where the transformation acts on the left. We
may also imagine that each landmark is a variable, and each dimension an
observation, so that X’ or Y’ is a typical multivariate data matrix. However
in shape analysis there are usually more variables than observations, and the
usual setup in multivariate analysis corresponds to simplices or fewer land-
marks, that is, triangles in 2 R3,..., tetrahedra in R3, R4, ... . Our results
will include both situations.

The matrix T is invariant to translations and rotations of X, so is a
size-and-shape matrix, and the elements of T are size-and-shape coordinates
of X. When N — 1> K then H is K X K and we distinguish two cases.

1. H includes reflection, H € O(K), |[H| = +1, txr > 0, and T, written T®
for definiteness, contains reflection size-and-shape coordinates.

2. H excludes reflection, H € SO(K), |H| = +1, ¢y is not restricted, and T
may be written TV® for definiteness.

When n < K, the usual case in multivariate analysis, there is no distinction to
make.

To form the shape matrix W we divide T by its size, the centroid size of X,
r=|T| = Vtr T'T = ||Y|. W may include reflection, W¥ = T%/r  or exclude
reflection, WNE = TNE /1 Since |W|| = 1, the elements of W are a “direction
vector” for shape, and u comprises m = (N — DK —nK + n(n + 1)/2 — 1
generalized polar coordinates.

Statistical inference for shape is complicated by the nuisance parameters for
translation, scale and orientation. These parameters may be estimated explic-
itly, as in the full maximum-likelihood approach using Procrustes methods
[Goodall (1991)]. Alternatively, the nuisance parameters may be integrated
out, and inference is based on the marginal shape distribution, of W¥E; this is
the approach we take here. The shape density has been obtained for planar
figures, K = 2, comprising 3 or more landmarks, N > 3: Small (1981) and
Kendall (1984) show that when u = 0 the shape density is uniform with
respect to the natural Riemannian metric on Kendall’s shape space 3Y [see
also Kendall (1989) and Le and Kendall (1993)]. Mardia (1989a, b) and Mardia
and Dryden (1989a) derive the shape density with K = 2 and u is unrestricted
and give a Gaussian approximation for small o [see also Bookstein (1986)]. Le
(1990) uses a stochastic calculus argument, and Goodall and Mardia (1991a,
1992) the QR decomposition.

Let p be the Riemannian distance between the shapes of X and uy,

(1.4) cosp = n}lax tr W’'YH' /&7,

where ¢ = ||ull, and the maximum is taken over H' € O(K) or H' € SO(K)
[see Carne (1990)]. The Procrustes distance between the shapes of X and u
is 2sin p/2. Given (1.1), when K = 2 and u = 0, then cot? p is central-F
distributed [Le (1990)], and, more generally, for any K and p < 1, cot?p is
noncentral-F distributed, and conditional on p the shape density is uniform
[Goodall and Mardia (1992)]. However, since 3% is homogeneous [Kendall
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(1984)], the shape density is the same for all u, w # 0, when K = 2 [see
Goodall (1991) and Goodall and Mardia (1991a)], and is a function only of p.
This is not true when K > 3, and the shape density depends on w also. The
noncentral Bartlett decomposition used by Goodall and Mardia (1992) does not
generalize readily to p > 2 [see Kshirsagar (1963)]. This pattern of results
recurs below, where we give a systematic and extended treatment of shape
distributions using noncentral multivariate analysis.

This paper includes new results in all dimensions, a general Gaussian
approximation, and some extensions to multivariate theory. Basic references
are James (1964), Muirhead (1982), and Farrell (1985), on matrix hypergeo-
metric functions. To start, when n = N — 1 < K the cross product matrix
B =YY% n X n has the noncentral Wishart distribution

(1.5) B~ W,/(K,o%;uut)

and is invariant to orientation and reflection. The density is matrix hypergeo-
metric, type ,F; Bessel, and essentially (1.5) is the reflection size-and-shape
distribution of X; a coordinate transformation yields the density in terms of T
(Section 2). However, there are three differences between our work and
standard multivariate theory.

1. The noncentral Wishart density does not exist when N — 1 > K, and we
therefore use the size-and-shape matrix T'.

2. To obtain the density of T™E, we integrate over SO(K). But a zonal
polynomial is an integral over O(K). These integrals are the same when
n <K, and, for n > K and p < K, the integral (of etr(u'TH/c?)) over
O(K) is twice the integral over SO(K) (Subsection 2.1). This leaves the
case p = K.

3. To obtain the shape density we integrate out size. The result is a familiar
special function only when p = 1.

We give the general distribution theory in Section 2, then specialize to
p =0,1and 2 or 3 in Sections 3, 4, and 5. Two variants are briefly considered:

(i) The affine shape distributions (Section 6) are the marginal distribu-
tions modulo affine transformations.

(ii) The singular values of Y and Y/||Y|l are useful lower-dimensional
summaries of size-and-shape and shape; their distributions are given in Sec-
tion 7.

Our results extend easily (Section 8) to the anisotropic case of correlated
landmarks, cov X = 3, ® I. Finally (Section 9) we discuss inference using an
approximation for small o, and give an example in three dimensions.

2. Size-and-shape distributions. The Jacobian J(Y — T, H) is given
by

(2.1) (dY) = ﬁti’f“'(dT)(HdH‘),
i=1
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where (HdH') defines the unnormalized invariant probability measure on
V., k. Muirhead (1982) gives (2.1) for N -1 < K (n = N — 1), but it is also
true when N — 1 > K. The distribution of the reflection size-and-shape coor-
dinates T is as follows.

THEOREM 1. With the setup above, the (reflection) size-and-shape distribu-
tion is type F; (Bessel) hypergeometric, with density

Path ot T'T  wp K
(2:2) S wgaram/, o Eer (K 2) M T 207 T 207 OFI(E;A)’
where M = (N — DK, A = W'TT'uw/40* and
K n-1 (K —1
n(_) - 1/4 T ( )

I,
2 i=0 2

is the usual multivariate gamma function [for this and related definitions, we
use Muirhead (1982)]. The first few coefficients T'x(K/2) are m, w*/?/2 and
w/2 for K = 2, 3 and 4.

Proor. The joint density of T and H is, from (1.3) and (2.1),

(2.3) e ote] — T'T ~ W  W'TH
: O'M(27T)M/2 20_2 20_2 0_2

}(dT)(HdH’).
The following integral [James (1964) or Muirhead (1982)] then gives (2.2):

,LLtTH L 2n,n.nK/2 K
(2.4) fn’Ketr( — )(HdH)—moFl(E,A).

Alternatively, when N — 1 < K, the density of B in (1.5) is

|B|(K—n—1)/2 B ILI.Lt K
2.5 S B
(2.5) oMM/, (K /2) etr{ 257 202}0 1(2’ )

in which we substitute B = TT", (dB) = 2"T1™ t%:*17i(dT) and |B| = 1"¢2.
O

Turning to (reflection) shape, we write J(T — r,u) = r™J(u). .

THEOREM 2. With the setup above, the (reflection) shape density is
[T"wX~%J(u) W\ = 2"RTIr(M/2 + k) _, C (A*)
7MKL (K /) etr{_ 20'2}k'=0 k1 ~(K/2),’
where A* = W!'WW'u /402 = 0®A/r?, C(A*) is the zonal polynomial of A*
corresponding to the partition k = (k,, ..., k) of k, with L'k, = k, and (K/2),

is the generalized hypergeometric coefficient, or product of Pochhammer sym-
bols, [TiZ0((K - 1)/2),, , = T1iZoT(K — 0)/2 + k1) /T(K ~ 1)/2).

(2.6)
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Proor. Expanding ,F; as a sum of zonal polynomials [James (1964)], and
with the change of variables, (2.2) yields the joint density of (v, u),

M T WE - ()
o Mo(M—2n)/2_(M-nK)/2[ (K/2)
(2.7) r2 °° C (r?A*/o?)
X exp{——}etr{ } oy =

27 & = T(K/2) k)
But C(r?A*/a?) = C(A*Xr/a)**, and, collecting powers of r, (2.7) is

nnm{(—iJ(u)2n ,LLl,U, rM+2k——1
7M=L (K /9) etry — 202 kgo oM/2 M+2k
(2.8) " . -
o2 /20° Z C.(A%)
(K/2) k!

With the substitution v = r?/ 20 ,

w pM+2k-1

(2.9) f QM3 Wk €

—r?/20% gp — 2k—1r(¥- + k)
2 )
and the result follows. O

The zonal polynomials C, in (2.6) depend only on the latent roots of A*.
The order ! of any partition k for which C, is nonzero is at most the number
of nonzero roots, which is p = rank u or fewer. We consider the cases p = 0,
1, 2 and 3 in detail in Sections 3-5. Note that when p = 0 or p = 1, but not
otherwise, (2.6) simplifies to a multiple of a hypergeometric function, ,F,
because I'(M /2 + k) is then the appropriate generalized hypergeometric co-
efficient.

2.1. Distributions excluding reflections. When p < K the results (2.2) and
(2.6) extend easily to size-and-shape and shape densities, excluding reflection.
If n < K there is nothing to do. If n = K and p < K, choose H, € SO(K)
such that W'TH, has Kth column 0. For any H € SO(K), write H* = (H*|h),
and define H'* = (H*| — h) where H* is K X (K — 1). Then using unimodu-
larity of SO(K) and of O(K),

[ enturmyamy
SO(K)
= etr(W'TH,H )(HdH")
(2.10) ~SO0F
=3[ etr(uTHH)(HdH') + [ etr(u'TH,H')(H'dH")
SO(K) SO(K)

=1 etr(WTH)(HdH?Y).
ZfO(K) (:“ )( )

We obtain the following corollaries to Theorems 1 and 2.
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CoROLLARY 1. When N — 1 > K and p < K, the size-and-shape density for
T = TNE excluding reflections is (2.2) divided by 2, where t,; > 0 for i =

1,..., K — 1 and tgg is unrestricted. When N — 1 < K (2.2) stands, since tyx
is not present.

CoroLLARY 2. When N — 1> K and p <K, the density for W= WNE
excluding reflections is (2.6) divided by 2, and wgy is unrestricted. When
N — 1 < K the shape density is (2.6), since wyy is not present.

Note that these results also hold when rank u = K and rank T < K, an
event with probability zero.

When p = K, (2.10) is not true and we cannot divide the density with
reflection by 2. For example, suppose p = K =2 and A has eigenvalues
Ay = Ay, and, without loss of generality, u’T /o2 is diagonal with entries \/Z
and /A, . Then by (2.4), and writing H = ( cos 6 smB) and (HdH") = 6, we

—sin®  cos 6
obtain

t

WTH
4 Fy(1;A0, Ay) = fo(z)etr —

= [ exn{2(yA; + /A, Jeos 0) do
+ [*"exp(2(YX; — A3 )eos 0} o
= 2mho(2(yAr + Vha)) + 20L(2(A; - V)
=27 B (L (VA + VA)) + 2m o (L (VA - VL),

The two modified Bessel functions I,(-) are equal only when A, = 0. Each
individually is a term in a size-and-shape density excluding reflection [Goodall
and Mardia (1991a) and Section 4]. One is obtained from the other by
reflecting the figure X (or, equivalently, uy) in any axis. An analogous result
is true when K > 3.

(HdH")

(2.11)

3. Coincident means. When the landmark means coincide, then p = 0,
the central case.

CoRrOLLARY 3. When p = 0 the reflection size-and-shape density is

5 7'
0_M2(M—2n)/2,n.(M—nK)/2l—vn(K/z) etr{ — 252 [

(3.1)
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This is the central Bartlett decomposition. The elements of T' are independent,

2 2.2 > =
tii ~ o Xk—i+1’ = 1,...,n,

(3.2) . . .
tij~N(O,o'2), 1<i<N-1, l1<j<n, 1>,

for all choices of N — 1 and K. On integrating (3.1) using (2.9), or from (2.6),
we obtain the following:

COROLLARY 4. When u = 0, the reflection shape density is
Mrwk-iJ(u)2"~'T'(M/2)
,n_(M—nK)/2l'*n( K/z)

(3.3)

When u = 0 the size-and-shape density (3.1) factorizes into the shape
density (3.2) and the size density, r2 ~ o2y 2,(¢£2). Size and shape are indepen-
dent. [When u # 0 the noncentral term exp(—¢2/202) (F(K/2; A) does not
factorize.] When K = n = 2, (3.1) and (3.3) become

2,67 /%" 2wy, J(u)(N — 2)!
(3.4) 2 S ~—s and N-2 J
o*(2ma?) ™
respectively. For triangles, N = 3, we substitute w,; = cos p and J(u) = sin p
to get

sin 2p

27
The latter is uniform measure on S2(1/2). For any N, the shape density with
K = 2 is twice Kendall’s (1984) invariant measure on shape space (excluding
reflections) 3 = CPV~%(4). See also Le (1990) and W. S. Kendall’s (1988)
“generalized D. G. Kendall theorem” which gives the shape density for
triangles in K > 3 dimensions when p = 0.

: 3
sin2p r 2 o 2
—e 7 /*" and

(3.5)

2w o

4. Collinear means. We now consider the case of collinear means, so
that p = 1. For general u, let 7,,...,7n, be the singular values of w'T.
Including reflection, the Riemannian, or Procrustes, distance between u and T
is

n
(41) min |lu —THIP=¢2+r2—-2Y n,=£2+r% — 2¢rcosp.
HeO(K) i=1
With probability 1, exactly the first p singular values are nonzero. When
p = 1 we choose p such that u,; = ¢ and u;; = 0 otherwise; then

(4.2) n, = &ty, = Ercosp.

Substituting n%/40* for A, the expression ,Fy(K/2; A) in (2.2) is a scalar
hypergeometric function of #,;, and therefore of r and p. However the
reflection size-and-shape density is a function of r and p only when K < 2,

and not when K > 3 — because terms in ¢;;, i > 2, appear in the Jacobian.
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CoroLLARY 5. When u,; = ¢ and p;; =0, ij # 11, the reflection size-and-
shape density is
M7t

(43) O-MZ(M_Z”)/Zﬂ'(M_"K)/2Fn(K/z)

2
e_(,.2+§2)/20_ FI(K ft )

2° 40%
This is the noncentral Bartlett decomposition, generalizing Muirhead (1982)

and Farrell (1985) to arbitrary N and K. The density factorizes as in (3.2)
with the modification

(4.4) th ~ o?xg(£2/0%).

Goodall and Mardia (1992) show that the shape density follows from (3.2)
and (4.4) using the fact that the marginal distribution of cot? p =
£}, /XY, . 1:t7; is noncentral F. Alternatively, from (2.6), we have the follow-
ing:

COROLLARY 6. When p = 1 and |lull = 1, the reflection shape density has
the | F; confluent hypergeometric form
Mwf-iJ(u)2"~'r(M/2)
,n.(M—nK)/2l'*n( K/z)

1 cos2p} (K—M K cos2p)
141

(4.5)

X __+— R
eXp{ 202 " 202 2 2’ 207

Proor. When p = 1, C,(A*) = (cos p/20)%** when «x = (k) and C (A*) =
otherwise. Thus (2.6) becomes

M wf~J(u)2""'T(M/2) 1)\ & (M/2), (cos®p)’
W(M_nK)/2Fn(K/2) {_ 202}k§0 (K/z)kk‘( 202 ) s

and (4.5) follows from the Kummer relation. O

(4.6)

With p = 1, the shape density is a function solely of p only when K < 2.
The series | F; is finite when (K — M)/2 = K(2 — N)/2 is a negative integer,
in which case either K or N must be even. When K = n = 2, (4.5) divided by 2
simplifies to

wyJ(a)(N — 2)! cos?p — 1 cos® p
1 e R L = |

(4.7) N3

which is the Mardia and Dryden (1989a) shape density. Goodall and. Mardia
(1991a) show the equality of (4.7) and Dryden and Mardia [(1991), equation
(3.3)].

5. Higher rank cases. We now first consider distributions when p = 2.
Subsequently we comment on the cases when p > 2. The zonal polynomial
expansion of ,F; is an infinite series of symmetric functions in the latent roots
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of the matrix argument A. When rank A = 1, this is a single series. When
rank A > 2, the zonal polynomials can be computed using James (1968), but
the summation over partitions, ¥, is nontrivial. We know of no simplification
of £.C(A)/(K/2), that may be used in Theorem 2. One approach is to
substitute explicit formulae for the C (A) when rank A = 2 from James
(1964). An alternative is to use Anderson and Girshick’s (1944) and Anderson’s
(1946) expansion of the multivariate Wishart. Suppose A; and A, are the
latent roots of A [so A, = (1,/202)?], and define a; = A; + Ay, ay = AjA,.
Then comparing their formula to the noncentral Wishart density gives

oFi(K/2; A)
I(K/2)T((K - 1)/2)

(5.1)

© azé)al—wa(lK—2)/42—(K—2)/2
— K—-2)/2
= 2K-2/2 %" wIT((K - 1)/2 + w) I(K—2)/2+2w(2\/a:)‘

w=0

Expanding the Bessel function I.(-) [Watson (1962)] gives the following:

COROLLARY 7. When p = 2 the reflection size-and-shape density is

Patf T'T
0_M2(M—2n)/2,n_(M—nK)/2l"n(K/z) etr{ — 202 952

(5.2)

® ala¥T(K/2)T(K/2 — 1/2)
X EO w§0 wIT(K/2 +w — 1/2)[(K/2 + /+ 2w)

An equivalent expression was obtained by Kshirsagar [(1963), equation
(4.15)]. Anderson and Girshick (1944) also give the Wishart density when rank
A = 1. Analogous calculations confirm (4.3) with the usual (scalar) hypergeo-
metric series expansion. Furthermore, (5.2) simplifies to (4.3) when A, = 0.

To derive the rank 2 shape density we follow the proof of Theorem 2. We
write A% = \;02/r? and A% = A,02/r? for the roots of A*, substitute a} = A%
+ A% and a®% = A% into (5.2), and integrate out r, with 2 = /+ 2w in (2.9).

COROLLARY 8. When p = 2 the reflection shape density is

Mw{~*J (u) i
207 (K/2) *\ T 207

(5.3)
ax{/aaéw2n+/+2w—-ll“( M/2 + /+ 2w)
o CwI((K-1)/2),(K/2)s20

xZi::

=0 w
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As a check (5.3) simplifies to (4.6) when A% = 0.

There are a number of simplifications when K = p = 2, using (2.11) and the
identity

(5.4) __f_coig (\/— \/—;) =a;, + 2y/a,.

Define p to be the Riemannian distance between uy and the reflection of X.
Thus

(5.5) —~———§ L (VA - V) = ay - 2a;.

The hypergeometric term in (2.2) is written, using (2.11),

(56)  oFi(LiA1,Ag) = §oFi(1sa, + 2//ay) + o Fy(1;a, — 2//a,).

Then, with the substitution ,F,(1;x) = T5x*/(k!)? and Legendres’s duplica-
tion formula, both the expressions (2.2) and (5.2) for the reflection size-and-
shape density equal

tn 2 4“afag
(5.7) 2N-2oN-3_N-2¢ em(rtreh/2? Z Z 1
o 28 om0 Z1Cw)I(/+ 2w)!”

Further, each scalar hypergeometric function in (5.6) can be integrated with
respect to r to give the reflection shape density, containing the term

.
1 cos? p cos? p
§expT'2 1F12—N;1;—T‘_2

(5.8)

1 cos? p
+ — —
exp 202

cos?p
B 1Fil2-N;1; — ——-

202

Thus when K = p = 2, the reflection size-and-shape density and the reflection
shape density is each the average of two rank 1 densities, one a function of p,
the other a function of p, given by (4.3) and (4.5), respectively. The correspond-
ing size-and-shape and shape densities excluding reflection involve only the
left-hand terms in (5.6) and (5.8); they are functions of p equal to the rank 1
densities. This illustrates homogeneity of shape spaces with K = 2.

When n = K > 2 and p = 2, the reflection densities are still functions of p
and p, and the densities excluding reflection are half of the reflection density,
by (2.10).

For the case p = 3, we may use a triple-summation expansion of ,F, in
terms of the roots of A, given by James (1955). The details, leading to
corollaries analogous to Corollary 7 and Corollary 8, are not illuminating.
Goodall and Mardia (1992) demonstrate the integration of etr(u!TH /o?2) over
H € SO(3). The details are messy.
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6. Configuration densities. In the rank 1 case, integrating size r out of
the type ,F, size-and-shape density gives the type ,F, shape density. This
follows from the inductive definition of the hypergeometric functions via the
Laplace transform [Herz (1955)]. In the matrix setting, the Laplace transform
involves integration over the positive definite matrices. Thus, the reflection
shape density is not type ;F;. Instead, the multivariate approach leads to
distributions of type ,F, on equivalence classes of figures modulo affine
transformations. [The next step would be to type , F, distributions of canonical
correlations, James (1964).] An affine transformation is specified by the pair
(e: KX 1, E: K X K) where e is the translation and E is nonsingular. Then,
we have the following:

DeriNITION. Two figures X: N X K and X’: N X K have the same con-
figuration, or affine shape, if X' = XE + 1ye’ for some (e, E).

There is a single configuration for figures comprising N < K + 1 land-
marks. We assume N > K + 1. Then, analogous to (1.2), we write

(6.1) LX =Y = UE.

The matrix U: N — 1 X K contains configuration coordinates analogous to the
size-and-shape matrix 7. Let Y = (Y{|Y$)’ be the partition into Y;: K X K
and Y,: ¢ X K, where ¢ = N — K — 1 > 1. With probability 1, Y; is nonsingu-
lar, and we choose E = Y; ! and U* = (I|V?)* with V = Y,Y; %. For complete-
ness, we must also define configuration coordinates when Y; is singular. If
rank Y = m < K, then, if we can choose L, we replace I by a diagonal matrix
with the first m diagonal elements 1 and the rest 0. But in general L is fixed
once and for all, in which case U is ‘““special’”’ lower-triangular, defined by: For
each j, 1 <j <K, let j* = argmin; u;; # 0; then u ;x; =1 and u ;x, = 0 for
k # j. That is, each row of Y is either a linear combination of the previous
rows, or it is transformed to a (new) standard basis vector.

THEOREM 3. With the model (1.1) and the notation above, the configuration
density is

(6.2)

Ie((N - 1)/2) ol - 2 _ Mu F(_g.ﬁ _Q)
ka2 + VIV T (K /2) 202 20211 ’

where Q) = WUWUU) Wi = W Y(YY) Y u, for all Y for which rankY, =
K. For q a positive integer, the expression |F; in (6.2) is a polynomial with
degree Kq/2 in the latent roots of ().

ProoF. Make the substitution Y = UF'/2H where E = F/?2H, H € O(K),
and (F'/2)2 = F > 0. The Jacobian is (dY) = |F|"Y*(dVXdF )X HdH?"). We
integrate out first H as in Theorem 1 and then F. The second integral is the
matrix Laplace transform [Muirhead (1982), Theorem 7.3.4]. O
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The configuration density is more familiar as a noncentral multivariate beta
distribution [Olkin and Rubin (1964)], when q > K — 1 (that is, N > 2K),
with the appropriate change of variables. Also, we define rescaled configura-
tion coordinates by replacing the submatrix I of U by the singular values of
u, and scaling each column of V to match. For small o (Section 9) these
coordinates involve only an orthogonal transformation of Y.

7. Distribution of latent roots. The joint distribution of the latent
roots of Y is of considerable interest in the statistics of size-and-shape, and of
shape. The latent roots are the invariants with respect to the isometries of
size-and-shape space and of shape space [Small (1983), Kendall (1984), Goodall
(1991) and Le and Kendall (1993)] induced by multiplication of Y on the left
by an orthogonal matrix O(N — 1). If reflection is included, then left multipli-
cation by SO(N — 1) suffices, but in any case the latent roots ¢, i = 1,...,n
are (1) ordered ¢, > #, > -+ > ¢, and (2) nonnegative, ¢, > 0, and the roots
have the same distribution in the reflection and nonreflection cases. The
derivation of the joint density of the ¢ in the central case [Muirhead (1982),
Corollary 9.4.2] extends easily to the size-and-shape cone density, or joint
density of the ¢; in the noncentral case. Then, parallel to our development of
Theorem 2 from Theorem 1, we obtain the shape disk density, or joint density
of the £* = Z,/r (L£** = 1). Goodall and Mardia (1991b) give full details. For
example, when u = 0, K = 2, and N > 3, the cone density is

e_(Z12+/§)/202(/1/2)N_3(/12 ~ /22)
o2V 2(N - 3)!

(7.1)

2

This factorizes into the size distribution r? ~ 02y%, and the invariant shape

disk density

2(sin 20) " % cos 26
N-3 ’

(7.2)

where ¢ = cos 6, £, =sin 6,0 < 6 < 7/4. When p = 1, some simplifications
are also possible.

8. General distributions. The results in Sections 2—7 for the isotropic
Gaussian model extend easily to a Gaussian model with covariance 3 ® I.
With this model the errors at each landmark are isotropic, and the errors are
correlated between landmarks. The key step is to write

(8.1) 57V2Y ~ N(27V2u, Iy, ® Iy).

For example, the inner product r¢ cos p = maxy tr W'TH becomes
max  tr u'S "1TH, corresponding to a weighted Procrustes distance. Shape
analysis with general 3, is discussed by Dryden and Mardia (1991) and Goodall
(1991).
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9. Inference. We can perform inference using the densities derived above.
But the procedure will be computationally intensive as seen for K = 2 in
Mardia and Dryden (1989b). One alternative is to use the densities to derive
some useful approximations which we now describe.

9.1. Approximations. For inference we use a small variation result, o — 0.
Recall that the singular values of u'T' are written 7,,...,7 »- From Khatri and
Mardia (1977)

p j—1 p
(9.1) (Fi(K/2;A) = Cexp(zni/0'2)/ 1;12 1:[1\/% +n; E[lngK-p)/Z ’

where C is a constant. Let the singular values of u be ¢B;, where B8, > B8, >

© > Bg>0 and TB? = 1. Since 71, = £282 + O(o) and the denominator
includes only sums and products of the n,, we deduce that, for small o, the
contribution of (F;, to the joint density is a normalization constant and
exp(Ln;/0?) = exp(¢r cos p/a?). But when i is the Procrustes superimposi-
tion of u on T (by rotation only), that is, ‘T is symmetric (Goodall 1991),
then £rcos p = tr i*T and the joint density includes the exponential terms

(9.2) —tr(T - @) (T - i) /202

An explicit expression for i is not known (we cannot write down the SVD of
w'T). However, (9.2) is invariant to orthogonal transformations of Y and u on
both left and right. A suitable choice of isometry is to assume 7 is dlagonal
and let T be the Procrustes superimposition of T on w. Then f;; = i, JB /B;
for j <i < K. Note that T = T when rank pu < 1. The Jacoblan 1s given by

(9.3) (dY)=[l'](tuB/B )+0(a>}(dT>(dHH)

(The exact distribution of T' is more complicated than that seen in Theorems 1
and 2.) Assuming that the B, are distinct and nonzero, the Jacobian can be
shown to be O(1) for small o. We now deduce the asymptotic distribution of T
using (9.2).

THEOREM 4. When u is dzagonal and of rank K, and o is small, the
Procrustes shape coordinates £, 7 i >], follow independent Gaussian distribu-
tions wzth means w,; and variances o2, i =j, o?/(1 + ui/u2), j<i<K,
and o2 i > K.

Mardia and Dryden (1989b) show that size and shape are asymptotically
independent when K = 2. This result is true generally. We separate out a
normalized size variable, v = (r — £¢) /0. Then (9.2) becomes —v%/2 — w/2 +
O(o) where w = (2£2/02)(1 — cos p) is the normalized Procrustes sum of
squares for the difference in shape between u and Y. Sibson (1979) shows by a
perturbation argument that approximately w ~ x2. But w can be partitioned:
Goodall (1991) extends the perturbation argument, while we give here an
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analogous approximation to the exact density. Removing scale imposes a
constraint on the diagonal (noncentral) elements of T.

THEOREM 5. With the setup above, including B; distinct and nonzero, let
r* =Lt u, =@, /r* — B)/o and a,; = (i,-j/o),/l +BZ/B%, j<i<K.
The size-and-shape distribution factorizes, with (a) v standard Gaussian, (b)
the u, (K — 1)-variate standard Gaussian in the tangent space to the positive
orthant of SK=1 at the B;, and (c) the a;; and the t,;/o, i > K, independent
standard Gaussian. Since rank u = K, these distributional results are the
same with and without reflection.

9.2. Example: the geometry of chairs. We consider a hypothetical situation
in manufacturing, but the same methodology applies in other complicated
examples, for example, in morphometrics and in face recognition with given
landmarks. A manufacturer of chairs takes measurements in i3 at 10 posi-
tions on each chair. In the ideal mean chair, u, Figure 1, the edges have length
1 and are at 90° to one another, Figure 1 also includes the principal axes of w
(singular values, ¢B; = 2.449, £B, = 1.581, ¢B; = 1.414), together with an
affine deformed chair with T = u except #3 = 1.5¢B;. Three sets of data are
analyzed, with o = 0.02 in all three. [Note that we have ({33 — £85)/0 = 35 in
Figure 1.]

F1c. 1. Target chair u (bold lines) with each edge length 1 and all angles right angles. Principal
axes of w (arrows) and affine deformation (normal lines) of p multiplying £B3 by 1.5.
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Fic. 2. Sheared chair i with back tilted forward 3°, and 10 simulations with mean K and
o = 0.02.

o

Fi1c. 3. Deformed chair u' with seat rotated 3°, and 10 simulations with mean u' and o = 0.02.
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1. n = 100 and mean pu.

2. n = 10 and mean u' obtained by a shear of u parallel to the horizontal
plane rotating the back forwards 3° (Figure 2).

3. n = 10 and mean u’ obtained by rotating only the seat of u by 3° in the
horizontal plane (Figure 3).

The objectives are in 1 to estimate o and assess the approximations in
Theorem 4, and in 2 and 3 to test for and characterize the bias specifically in
shape (not size-and-shape) assuming ' and u' are unknown.

SET 1. The analysis of size and shape is invariant to separate rigid body
motions of the individual figures. Thus to estimate o we use generalized
Procrustes superimposition of the 100 figures, yielding a Procrustes (residual)
sum of squares of 0.92483 on (100 — 1) X (30 — 3 — 3) df. Hence the mle of o
is & = 0.02015, which is very precise, and in computing the standardized

(o]
N_
[0}
>
o © -
7]
#
©
N
wv—
c}‘—‘ 0
o
[0}
® 40
I T I [ 1
-2 1 0 1 2

Quantiles of Standard Normal

Fic. 4. Normal probability plot of scale variable v from 100 simulations with mean u and
o = 0.02.
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variates we substitute the correct o. The normal probability plot of v, Figure
4, helps validate the Gaussian approximation.

SET 2. When K = 3, the affine group has dimension 12 and the Euclidean
group dimension 6. The six additional affine dimensions correspond to the
variables f,;, j <i <3, that is, v, the u; and the a,;. Table 1 shows the
standardized size-and-shape coordinates and u and u/, the mean coordinates &
of the 10 figures, and any P-values less than 10% in using [’ to test that the
mean is . The shear is seen only in u,, u3 and a4;, and the size change v,

with a secondary ‘‘squashing’ of the chair (u, > 0).

TaBLE 1
Analysis of deformed chairs

Target Sheared chair Skewed chair
n w w P-value w w P-value
v 0.0 -0.9 -0.6 5.7 0.0 0.6 6.8
U 0.0 -1.1 -09 0.3 0.0 0.0
172 0.0 0.4 0.0 0.0 -04
7 0.0 1.5 1.5 0.0 0.0 0.4
Tu? 0.0 3.6 5.3 0.0 0.0 1.8
ag 0.0 0.0 0.1 -0.3 -0.5
as 0.0 -2.6 -2.7 0.0 0.0 0.1
agy 0.0 0.0 -0.4 0.3 0.0
La?; 0.0 7.0 10.5 0.0 0.1 2.1
fu 0.0 0.0 0.1 0.0 -0.2
f4s 0.0 0.0 0.1 0.4 0.1
f43 0.0 0.0 0.3 -0.3 -0.1
fs1 0.0 0.0 -0.1 0.1 0.4
fso 0.0 0.0 0.5 8.4 0.0 0.0
t53 0.0 0.0 0.4 -04 1.5 0.0
61 0.0 0.0 0.2 -0.3 0.0
foo 0.0 0.0 -0.1 0.1 1.1 0.0
fes 0.0 0.0 -0.2 1.2 -0.6 7.5
in 0.0 0.0 -0.2 1.4 0.7 2.8
f29 0.0 0.0 0.3 0.0 1.4 0.0
fg 0.0 0.0 02 -0.4 0.0
o1 0.0 0.0 -0.2 -0.1 0.2
Tes 0.0 0.0 0.2 11 0.3
fgs 0.0 0.0 -0.2 -0.9 0.1
{91 0.0 0.0 0.2 0.4 -0.2
tos 0.0 0.0 0.1 0.0 -0.1
Zo3 0.0 0.0 0.1 -12 -13 0.0

Efizj 0.0 0.0 16.3 7.8 20.8 7.3
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SET 3. For these data there is no affine component, and the rotation is
seen primarily in the coordinates fy3, {g,, Zg3, £79, and Zg5. (Table 1). [Note that
because the u,; and a;; are small, the coordinates #;; (i > 3) are almost the
rescaled configuration coordinates of Section 6.] Investigating the effect of
changing the rotation angle, 8 say, in y’, the #; /0, 1> 3, ay/0, and as,/0
are almost constant, and a,; and the u; vary quadratically with 6 (with
u, = ug). Similar constraints are found when y' is varied. In general the
power of our tests is increased when, through a coordinate transformation of
T, the difference in size-and-shape or shape between w(8) and u appears in a
minimal number of coordinates. There is some flexibility because the isometry
is only partly specified by u.
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