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ADAPTIVELY LOCAL ONE-DIMENSIONAL SUBPROBLEMS
WITH APPLICATION TO A DECONVOLUTION PROBLEM

By JiaNQING FaN

University of North Carolina

In this paper, a method for finding global minimax lower bounds is
introduced. The idea is to adjust automatically the direction of a local
one-dimensional subproblem at each location to the nearly hardest one, and
to use locally the difficulty of the one-dimensional subproblem. This method
has the advantages of being easily implemented and understood. The lower
bound is then applied to nonparametric deconvolution to obtain the optimal
rates of convergence for estimating a whole function. Other applications
are also addressed.

1. Introduction. Nonparametric techniques provide a useful tool for
investigating the structure of some interesting functions. A mathematical
formulation is to think of estimating some function T o f(x) (e.g., density or
regression function) based on a random sample X,..., X, from a density f
with a (smoothness) constraint f < % under some global losses. The global
loss functions are typically those induced by L ,-norm:

1/p

L(d,T<f) = (ffli“ f(x) - d(x)w(x) dx|

where w(x) is a weight function and d(x) is a decision function estimating
To f(x).

How can one measure the difficulty of estimating the function T o f under
the weighted L ,-loss? How to find a global minimax lower bound? The popular
approach is that:

1. Specify a subproblem—estimating T o f(x) on a specified subset &, of the
parameter space 7, the geometry of %, is typically hyperrectangular.

2. Use the difficulty of the subproblem as a lower bound for the minimax risk
of the full nonparametric problem.

In the second step, we first formulate problems of estimating a functional
T - f(x,) at each location x,, then adjust automatically the direction at the
location x, to the nearly most difficult direction for estimating the functional
T o f(x,), and finally add the difficulties of one-dimensional subproblems at all
locations, according to their weights, to obtain a lower bound. See Section 2 for
details.
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The above approach is related to the illuminating ideas of Donoho and Liu
(1987, 1991a,b) and Stone’s two point testing argument [see Stone (1980)] as
well as other approaches [Farrell (1972) and Has’minskii (1979)] for estimating
a statistical functional. In that setting, Donoho and Liu (1987) shows that the
difficulty of the hardest one-dimensional subproblem is hard enough to capture
the difficulty of a full nonparametric problem. However, the hardest one-
dimensional subproblem is not difficult enough for estimating a whole func-
tion (e.g., the whole density function). To bridge this gap, we use a growing
number of dimensional subproblems, adjusting directions accordingly, to cap-
ture the difficulty of estimating a whole function. The current approach is
inspired by the ideas of Has’minskii (1978), Bretagnolle and Huber (1979) and
Stone (1982), who used a growing number of subproblems to construct lower
bounds, and by the hardest hyperrectangular approach of Donoho, Liu and
MacGibbon (1990), which finds good bounds on global minimax risks (rates
and constants) for Gaussian white noise models.

In comparison with the existing methods of Stone (1982), Has’minskii
(1978) and Birgé (1987), our approach is simpler in the second step above. An
advantage of our approach is that it is easy to use: Finding a lower bound of
minimax integrated risks can typically be reduced to that of a pointwise
problem. Thus, obtaining a lower rate for estimating a function is as easy as
that for estimating the function at a point. See Section 3 for further discus-
sions. For related literature, see Efroimovich and Pinsker (1983), Nussbaum
(1985), Donoho, Liu and MacGibbon (1990), Johnstone and Silverman (1990)
and Low (1993).

The cubical method is especially useful for establishing optimal global rates
for deconvolution problems. We use this to solve an open problem of the
optimal global rates for nonparametric deconvolution. In this context, the
cubical method provides a precise description of the difficulty, depending on
the tail of characteristic functions of error distributions, of deconvolution. The
usefulness of this cubical method is further illustrated by considering prob-
lems in density estimation, nonparametric regression, errors-in-variables re-
gression [Fan and Truong (1993)] and positron emission tomography
[Johnstone and Silverman (1990) and Zhang (1992)].

The paper is organized as follows. Section 2 introduces the cubical lower
bound, which is applied to deconvolution, density estimation and nonparamet-
ric regression in Section 3. Technical arguments are deferred to Section 4.

2. Cubical lower bound of global rates. In this section, we give a
lower bound for estimating a function T o f(x). We discuss the problem for the
one-dimensional case. Higher dimensional results follow naturally.

Let [a,b] be an interval on the line and x, ;=a +j(b —a)/m,, j=
1,...,m,. Denote 0, =(6,,...,6, )and

2.1) fon (D) = Fol0) + ezt L 0H(m, (¢ = ,.,)),
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where f,(¢) is a density function, H(-) is a bounded function whose integral
on the line is 0, and m, and a, are sequences tending to infinity. By suitable
choice of m,, , fo and H, the function f0 will be a density function.
Denote a class of dens1t1es by

(2.2) &= {fe,,, :0,, isasequenceof 0’s and l’s}
and let

0, = (01,-.-,0,1,0,60,,1,...,0,,),
(2.3)

011 = (01, ceey 0j—17 1, 0j+1’ ey an).

Suppose that a, and m, are chosen such that we cannot distinguish the pair
of densities f(,J0 and f"n:

2.4 max max 2 <c/n c>0
(24) l<j<m, em"e(o,nmnx (fo, fo,) <c/n. ’

where x2(f,g) = [(f — g)?/f. Then, we have the following lower bound for
estimating T o f(x).

THEOREM 1. Suppose that T  f(x) satisfies
(2.5) |To fo (2) = T fo, ()| 2| B(m,(x - %, )|

for some function B,, depending on n and H. Let w(x) be a nonnegative and
continuous function on [a, b]. If condition (2.4) holds, then for any estimator
T (x) based on n i.i.d. observations from the unknown density f, we have

inf sup Efj |7 (x) = To f(x)[ w(x) dx
T(x) fe &, a

1-vyl-e°
sz—)[ w(x)dx] ‘| B(x) [ dx(1 + 0(1)).

(2.6)

In particular when T o f=f®*X(x), the kth derivative of the unknown
density function, condition (2.5) is satisfied with

|B(2)] =lay ' mb H®(x)].

We have the following lower bound for estimating f*(x).

COROLLARY 1. Under condition (2.4),

inf sup Eff| (x)—f(k)(x)lpw(x)dx
() fe F
Z%I w(x)dxf NH®(x)[ dx( ) (1 +0(1)).



CUBICAL BOUND 603

The key to the applications of Theorem 1 is the choice of %,. The choice
(2.2) is especially suitable for finding lower rates of the Llpschltz class

(2.7) P = {1 FO(x) = FO(9)] < Blx - y1%),

for some 0 < « < 1. This will be illustrated by the examples in Section 3.

REMARK 2.1.  The cubical method attempts only to find sharp lower bound
in terms of rates of convergence. A similar idea has independently been used
by Low (1993) to find a constant factor for a particular Lipschitz constraint
under a global L2-loss. Note that when H(-) has a bounded support on
[0,6 —al, f, (xn ;) =fo{x, ;)—a known constant. Thus in general, this
family cannot be a least favorable subfamily. As a consequence, this approach
may not yield a good lower bound for the constant factor which multiplies the
rate.

ReEMARK 2.2. Condition (2.4) states essentially that any two vertices of a
hypercube cannot be tested consistently. The y2-distance in (2.4) can be
replaced by the Hellinger distance, and Theorem 1 holds with (1 — V1 — e ¢)

replaced by (1 — V1 — e~2°) [see pages 46-47 and 475-477 of Le Cam (1985)].

REMARK 2.3. With a, = m!'* and an appropriate choice of functions H
and f,, the class %, defined by (2.2) will be a subset of smoothness constraint
(2.7). Thus (2.6) is also a minimax lower bound for %, ,

It is not hard to obtain a lower bound for the m1n1max rlsk

» 1/p
(2.8) inf sup E(f | T.x)—T- f(x)l w(x) dx) .
To(x) fe %,

By renormalization of w(x), without loss of generality, assume that the total
weight of w(x) on [a, b] is 1. Thus using the fact that

bl ? 1/p
(122 = 7 7o) w(x)dx)

> [(1T(x) - To f(x)|w(x) dx, p=1,
a lower bound for (2.8) can be obtained via (2.6) with p = 1.

3. Applications. In this section, we apply the lower bound to nonpara-
metric deconvolution problems. We also illustrate that the global problem can
easily be reduced to a local problem via condition (2.4). Thus, knowledge of the
local problem can be used. Other applications of this cubical method are also
discussed.

3.1. Deconvolution. Deconvolution arises when direct observation is not
possible. The basic model is as follows. We wish to estimate the unknown
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density of a random variable X, but the only data available are observations
Y,,...,Y,, which are contaminated with independent additive error &, from
the model Y = X + ¢. In density function terms, we wish to estimate fy using
data Y,,...,Y, from the density

(3.1) Fr(¥) = [fx(y = 2) dF (=),

where F, is the known cumulative distribution function of «.

Now let us use the cubical bound to find optimal global rates under the
smoothness constraint (2.7).

Take fo(x) =C.(1+x%", r> 0.5, and a (k + 1)-time bounded differen-
tiable function H(x) and a, = m’’®. With appropriate choice of r and H(),
&, C G o B Where F, is defined by (2.2). Since data are observed from the
density fy given by (3.1), it follows from Corollary 1 that

3.2 max max X fo F,, fo *F.) <c/n
(8.2) l<j<m, ane{o,l)mnx (f"Jo & f"n ) /

entails

(8.3) liminf inf sup m? ° T(x) - (k)(x)| w(x) dx > 0.

n= f(x) fye€F . p

Thus, it remains to determine m, from (3.2).
We remark that when n is large enough

fojo(') Z%fo('), V(‘)mnE{O,l}mn,
and that there exists a constant C such that

fo()=C , ax py 00 Fni)-

Combining the last two displays, we have

C
fo, * Fo = ifo*F, 2 Efo('_xn,j)*Fs-
This together with a change of variable lead to
+e (H(m,x) * F,(x))*
( fO * Fs)

Therefore, we need only to determine m,, so that (3.4) is of order O(1/n).
If we use a similar argument for estimating fx(0), we also end up with the
same problem: Finding m, from

(34) X2(f E’ fe *F) < —i—'-m—2(l+ )f

+o (H(m * F. 1
(35) X*(foxF., fix F)) =my2*o [ (((fziF)(x)) 0(_),

n
where fi(x) = fo(x) + a,;“**H(m ,x). Thus, we have reduced the global prob-
lem to a local problem. Using the local result from Fan (1991a), the solution to
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(3.5) is given by

cpl/@Urath+D for ordinary smooth (3.6),

n=

y'/B(log n + ¢, loglog n)'/?,  for super smooth (3.8),

where ¢, and c, are constants. Hence condition (3.2) holds, and (3.3) leads to:

THEOREM 2. (a) Suppose that the characteristic function ¢, of & satisfies
(3.6) [tE*ipD(t)| < d;, ast— o, forj=0,1,2,

where d; is a nonnegative constant and &Y is the jth derivative of ¢,. Then
forany 0 <p < o,

liminf inf  sup pPU+a=k)/@U+a+p)+1)
now fx) fre F, g
(3.7)

x By, [*11,(x) - () w(z) dx > 0.

(b) Assume that
(3.8) limsup|¢,(2)|l1I™” exp(ltlﬁ/y) < o with constants B,y > 0 and B,

|t] =00
and that P{le — ul < |ul*} = O(lu|~ "), as |u| - o, for some 0 < a, <1
and a > 1 + ay. Then

lim inf }nf sup (log n)P(l+a—k)/5
n—oo Tn(x) f e % o
(3.9) %< F 0,8

< By ['|T.(x) - () w(x) dx > 0.

The error distributions satisfying (3.6) include gamma and symmetric
gamma, and those satisfying (3.8) include normal, Cauchy and their mixture
distributions. Result (3.7) answers an open question of Zhang (1990) on the
lower rate for the ordinary smooth case. A particular result of (3.9), [ = 2,
a =k = 0, for normal and Cauchy error distribution was obtained by Zhang
(1990).

REMARK 3.1. Combining with upper bound results [Fan (1991b)], we have
demonstrated that the global rates in Theorem 2 are the best attainable ones
for the ordinary smooth error distributions under L,-norm, 1<p <.
Specifically, for estimating f{*(x) under the constraint f e &, « B> We have
the optimal global rates of convergence (q =1 + a) given in Table 1. In
particular, the optimal global rate for estimating f{(x) is O(n~@~#/@2+5)
when error distribution is double exponential.

REMARK 3.2. For deconvolution with a supersmooth distribution (3.8), the
difficulty of estimating a whole density function can actually be captured by a
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TABLE 1
Optimal global rates of convergence

Error distributions
€ ~ Gamma (8) € ~ Symmetric gamma (8)
B # 2j + 1(jinteger) g =2j + 1 (j integer)

Optimal global rates O(n ~(@~#)/[2a+B)+1]) O(n~@—k)/12g+p)+1]) O(n~@—k)/12g+P)+3])

one-dimensional subproblem [Fan (1989) and Zhang (1990)]. Using the cubical
method, without much effort, we easily obtain the same result by reducing the
global problem to a pointwise estimation problem.

3.2. Density estimation and nonparametric regression. In this section, we
illustrate the usefulness of the lower bound by considering problems in density
estimation and nonparametric regression. With a few lines of arguments, we
obtain a sharp rate for the global minimax risk.

For the density estimation problem, we wish to estimate fyx(-) e & , p
from its sample of size n. To find a lower bound, let a, = m’"*. Choose a
density function fy(x) and a function H(x) having a bounded support on

[0,6 — a] such that &, ¢ % , 5. Then, it is easy to see that if m, =
enl/@Ha+D o 5 o

X*(fay fo,) < D7im ;%0 Y H(x — a) P dx = O(1/n),

where D = min,_,_, fo(x) — max,_,_,_,/H(x)l/a,. Thus, condition (2.4)
is satisfied and Corollary 1 assures

liminf inf sup pP¢re-R/@lro+D
n=e T.x) fe ),
(3.10)

x E,[*|T,(x) - f®(x) [ w(x) dx > 0.

For nonparametric regression, we proceed as follows. We wish to estimate
the conditional mean m(-)=T¢° f(-)=E(Y | X = ) based on a bivariate
random sample from f(-, - ). Assume that

FCo) € Fn = {FC0 s ImO(@) = mO(3)| < Bl =1t
var(Y | X =x) <B, n?inb]fx(x) > 1/B}.

Without loss of generality, assume [a, b] = [0, 1]. Let f, and g, be symmet-
ric densities, k, be a function satisfying [x’h,(y)dy =j for j = 0,1 and H(-)
has I + 1 continuous derivatives having support [0,1]. Define a bivariate
subfamily of %2, 5 by

Fo = {fo, (£.9) = Fo(2)&0() + my, (£)ho(9),9,,, € (0,1)™},
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where m, (x) =m,¢*¥L" 0. H(m (x — x, ;). Then, condition (2.5) holds:

(811) [T fy (%) — T fo (x)] > my | H(m,(x —xn,j))|/x1;1[gx1]f0(x).

Note that when n is large, f, (x,y) > fo(x)g,(y)/2. Using this, we have

X (o f,) < 2m %000 [ (m (3 = %, ) /fol%) dx

Xf_+:h%(y)/g0(y) dy=0(n"1Y),

if m, = cn!/@*0*D ¢ > 0, Therefore, (3.11) and Theorem 1 entail

liminf inf sup nP¢To/@+O+D
n >0 ”‘n(x) fe 922 R

(3.12)
XfOlE(rfz(x) — m(x)) w(x) dx > 0.

Remark that the rates (3.10) and (3.12) are optimal [Stone (1982)].

3.3. Summary. It appears that the cubical bound is an easily-implemented
method for finding global minimax rates. Condition (2.4) can usually be
checked based on knowledge of the pointwise estimation problem. This tech-
nique has also been used in finding optimal global rates of convergence for
problems such as positron emission tomography [Zhang (1992)] and errors-in-
variables regression [Fan and Truong (1993)]. Optimal global rates of conver-
gence are found via a few lines of simple arguments.

4. Proofs.

PrOOF OF THEOREM 1. Assign the prior 6,,...,6, to be iid. with
P(6;=0)=P(6;=1)=1/2, forj=1,...,m

n-

Let E,g(0,, ) denote the expectation of g(0,, ) with respect to the prior
distribution of 6,,...,6,, . By Fubini’s theorem,

;nf sup Effb|Tn(x) —To f(x)|pw(x) dx
(4.1) (%) fe F, a

> [ inf B,E,|T,(x) — T f(x)[ w(x) dx.
a T(x)
Let a,;(x) =T fejo(x) —To fe“(x)|/2’ where 0, and 6; are given by (2.3).
Then, it follows that

. A » p
inf E,E,|T.(x) - T~ f(x)]
X

(4.2)

. A 4
= mex nt BB, BT, (x) ~ e £ )
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Let Po and P, denote the probability measures generated by the density
functions fo and fe e respectively. Then the left-hand side of (4.2) is greater
than or equal to

max Eanj(x)l;nf( I, T fo (x)| 2 a,(x)

l<j<m,

(4.3) +P0“{ p

To fo ()] 2 a,,(0)))
o2,

v

E,S, ;(8,.),

l<j<m,
where
S, (8, )= Tir(lf)(P(,jo{R} + P, {R%})
and R = {|T(x) = To fo,(¥) = a, ;(x)}. Note that S, ; can be viewed as the

sum of type I and II errors of a testmg procedure w1th reject region R for the
problem

(4.4) H,: f=fojo o H;: f=fo“-

Since the y2-distance for the pair of densities is no larger than c/n, it follows
that [see, e.g., Lemma 1.3 of Fan (1989), page 14]

(4.5) S, i(0,)=1-Vl-e°=s.

Consequently, by (2.5), (4.1), (4.3) and (4.5), we have

b A 4
inf sup E T (x) = Teo° fio(x)]| w(x)dx
jnf sup o 17u(x) jo(x) [ w(x)

(4.6) > %fb max a" (x)w(x) dx

22,,+1Z f T Ba(ma(x — 2, ) w(x) dx.

Now, we need to calculate the summation in the last expression. By the
uniform continuity of w(x), it follows that for any given e, there exists an n,
such that when n > n,,

inf w(x) =2 (1 -eg)w(x, ;).

X E[%Xp, ;5 %, j41



CUBICAL BOUND 609

Consequently, when n > n, the summation in (4.6) is greater than or equal to

1—¢ ™n

L w(z, ) [[1B,(x — ) v

nJ

1—¢ ™n

b
= b—a E w(xn,j)(xn,j+1 - xn,j)f ’Bn(x - a)lp dx
Jj=1 e
The conclusion follows by letting n — « and then letting ¢ = 0. O
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