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IN PHYLOGENETIC INFERENCE

By STeEVEN N. Evans! anp T. P. SPEED?
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The so-called method of invariants is a technique in the field of
molecular evolution for inferring phylogenetic relations among a number of
species on the basis of nucleotide sequence data. An invariant is a polyno-
mial function of the probability distribution defined by a stochastic model
for the observed nucleotide sequence. This function has the special prop-
erty that it is identically zero for one possible phylogeny and typically
nonzero for another possible phylogeny. Thus it is possible to discriminate
statistically between two competing phylogenies using an estimate of the
invariant. The advantage of this technique is that it enables such infer-
ences to be made without the need for estimating nuisance parameters that
are related to the specific mechanisms by which the molecular evolution
occurs. For a wide class of models found in the literature, we present a
simple algebraic formalism for recognising whether or not a function is an
invariant and for generating all possible invariants. Our work is based on
recognising an underlying group structure and using discrete Fourier
analysis.

1. Introduction. The problem of inferring phylogenetic relations among
a group of species using nucleotide sequence data is one of continuing interest
to researchers in the field of molecular evolution. There are a variety of
approaches to the problem in current use, see Swofford and Olsen (1990) for a
recent review, and our concern is with methods based upon simple probabi-
listic models for nucleotide substitution. Such models have been in use for
some time now, but interest in them heightened following the revelation by
Felsenstein (1978) that the popular parsimony criterion can give rise to serious
biases when the rates of evolutionary change in the true phylogenetic tree
differ greatly from one branch to another.

In our view, the use of statistical models fitted by maximum likelihood is
currently the best method of inferring phylogenies [see, e.g., Felsenstein
(1981), Tavaré (1986), Barry and Hartigan (1987), and Navidi, Churchill and
von Haeseler (1992)]. However, in recent years much interest has focussed on
a simpler approach using functions of the data which permit inferences
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concerning the phylogeny without requiring the estimation of other parame-
ters describing the nucleotide substitution mechanism. This approach has
been called the method of invariants and we may describe it informally as
follows (a full description is given in Section 2).

Suppose that we have aligned DNA sequence data for a number of taxa. For
a given position in the sequence (typically, the third, second or first codon
position of a DNA sequence coding for a common protein such as cytochrome
¢) we have a stochastic model for the observed base. This model is built using
two ingredients. The first ingredient is a dependence structure reflecting the
putative phylogeny. The second ingredient is a collection of stochastic mecha-
nisms describing the occurrence of base substitution events along the branches
of the phylogenetic tree. An invariant is a polynomial function that has as its
argument the probability distribution of the observed bases and that, for a
particular phylogeny, is zero for all choices of the substitution mechanisms. If
it is assumed that the bases at different positions are i.i.d., then it is easy to
estimate such an invariant without estimating the parameters describing the
base substitution mechanism; and, if the invariant is typically nonzero for
another specification of the phylogeny, then it is possible to discriminate
statistically between the two competing phylogenies. Moreover, one of the
hopes for the method of invariants is that the assumption of identical distribu-
tion for different sites can be weakened—a generalisation that does not seem
as feasible with maximum likelihood methods.

Invariants were first defined by Cavender and Felsenstein (1987) and Lake
(1987) for models involving four taxa. These and subsequent attempts at
finding invariants have been, to a certain extent, ad hoc. In order to fully
exploit the potential of the method of invariants it is necessary to have
techniques for generating all possible invariants and for recognising when a
given function is an invariant. The purpose of the present paper is to describe
simple algebraic procedures that achieve these ends.

The outline of the remainder of the paper is as follows. In Section 2 we
formally describe the models we will be dealing with and formally define what
we mean by an invariant. Having developed the relevant nomenclature, we
give a comparison of our work and previous work in the area. We also make
the key observation that there is a group structure inherent in the models we
are considering. With this in mind, we digress in Sections 3 and 4 to give a
brief overview of discrete Fourier theory and random walks on finite groups,
respectively. In Section 5 we give another description of the models in group
language. In Section 6 we present our procedures for constructing and recog-
nising invariants. We discuss examples involving two, three and four taxa in
Section 7. A noteworthy feature of these examples is that the number of
algebraically independent invariants always coincides with the number of
“degrees of freedom’ obtained by an informal parameter counting argument.
(Some care needs to be taken when doing this counting due to issues of
over-parametrisation and parameter identifiability.) We conjecture that the
equality of these two numbers is a general phenomenon, but we do not as yet
have a proof.



INVARIANTS IN PHYLOGENETIC INFERENCE 357

2. Definitions and notation. Suppose that we have aligned DNA se-
quence data for m taxa. We may construct a general class of stochastic models
for the bases observed at a given position in the following manner.

Consider a finite rooted tree T with m leaves. Let V denote the set of
vertices of T. Write p for the root of T and L for the set of leaves of T. For
each vertex v € V\ {p}, there is a unique vertex ¢(v) which is connected to v
by an edge and is closer to p in the usual graph-theoretic distance. Write
(o(v),v) for the unique edge which connects o(v) and v.

Label the taxa with the elements of L and think of the collection of observed
bases as a realisation of a {A, G, C, T'}*-valued random variable (Y}), ., with a
distribution defined as follows. Let = be a probability distribution on
{A,G,C,T}). We will refer to 7 as the root distribution. For each vertex
v e VN{p}, le¢ PV be a stochastic matrix on {A,G,C,T}. We will refer to
P® ag the substitution matrix associated with the edge (o(v), v). Define a
probability distribution u on {A, G, C, T}V by setting

/""((iu)vev) = W(ip) ].—.[ P(U)(itr(v)’iv)'

veV\{p}

Finally, let (Y)), ., have the marginal distribution
P{(Y))1eL = (i0)sen} = )y Zl-"(((iv)veV\L7(il)leL))’

veVAL i,

where each of the dummy variables i,, v € V\L, is summed over the set
{A,G,C,T).

The various elements appearing in these models have the following inter-
pretations. The tree T is a candidate for the true phylogenetic tree describing
the evolution of the observed present-day species corresponding to the leaves
of the tree, insofar as this evolution is indicated by the evolution of the aligned
sequence of nucleotides under study. The root of the tree p corresponds to an
unobserved common ancestor of all of the observed present-day species, whilst
the vertices other than the root and the leaves correspond to unobserved
species intermediate in the evolutionary process, being common ancestors of
pairs, triples, and so on of the observed present-day species. The root distribu-
tion 7 is thought of as the relative frequency of bases in the common
ancestor’s sequence, whilst the substitution matrices P give a tractable and
plausible probability model for the substitution process. We remark that the
distribution u on {A,G,C, T}V satisfies a Markov property which may be
stated as follows: for any two vertices v, and v,, the base at v, and the base at
v, are conditionally u-independent given the base at any vertex v; on the
unique path connecting v, and v,.

The models of this form which appear in the literature usually take each
substitution matrix to be the transition matrix at some point in time of a
continuous time Markov chain on the state space {A, G, C, T} (which particu-
lar point in time is possibly different for each edge, and these variables
constitute ‘“unknown parameters” in the model). Moreover, the Markov chain
is usually taken to be from some subfamily of the possible chains on
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{A,G,C,T}. The subfamilies we will be particularly interested in are described
most easily in terms of the infinitesimal generator matrix of the chain. Kimura
(1981) presents a model in which the infinitesimal generator matrix is of the
form

A G C T
A [—(a+B+Yy) a B Y
G a —(a+B+7) Y B
c B Y —(a+B+Yy) a
T Y B @ —(a+B+y)

where a, 8,y > 0. The value of the triple (a, 8, y) is possibly different for each
edge, and these variables also constitute ‘unknown parameters’ in the model.
We will refer to this model as the Kimura three-parameter model. If we
further restrict the class of allowable infinitesimal generator matrices by
imposing the extra condition that 8 = v, then we obtain the model considered
by Kimura (1980). We will refer to this model as the Kimura two-parameter
model. Finally, if we require that @« = B = y we obtain the model considered
in Jukes and Cantor (1969) and more explicitly in Neyman (1971), which we
will refer to as the Jukes—Cantor model.

As yet we have not said anything about the choice of the root distribution .
We will take 7 to be either the uniform distribution on {A,G,C,T} or
otherwise some arbitrary (and ‘‘unknown’’) probability distribution on
{A,G,C,T}. Note that all the Markov chains described in the previous para-
graph are reversible with the uniform distribution as the symmetrising sta-
tionary measure. We do not make explicit use of reversibility in this paper.

Let F be a polynomial in the dummy variables ¢,, i € {A,G,C,T}". We
say that F is an invariant for one of the models defined above if
F(PY = i});c(a,6,c,mp) = 0 for all choices of parameters in the model. We
described the statistical uses of invariants in Section 1. The concept was
introduced by Cavender and Felsenstein (1987) and Lake (1987). Cavender and
Felsenstein (1987) and later Drolet and Sankoff (1990), Sankoff (1990) and
Felsenstein (1991) derived invariants for Jukes—Cantor models with uniform
root distribution and at most five taxa. Lake (1987) and later Cavender (1989,
1991) obtained linear invariants for a four taxa model based on a parametric
family of substitution matrices that contains the Kimura two-parameter and
Jukes—Cantor families. [We will show in Section 7 that, contrary to a claim
made in Cavender (1991), there can be strictly fewer linear invariants for the
Cavender-Lake model than there are for the Kimura two-parameter model.]

ExampLE. Consider the tree in Figure 1 with the leaves labelled as 1, 2, 3,4
and the root labelled as 0. Suppose that we have a Jukes—Cantor model with
uniform root distribution constructed from this tree. In general there are only
15 distinct probabilities P{Y = (i, i,,13,%,)}, corresponding to the possible
partitions of {1,2, 3,4} defined by the equalities and inequalities amongst
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0

Fic. 1.

i1,19,13,14. Write these 15 values as fig34, f1234 and three similar, f,5, and
two similar, fi53, and five similar, and fjy3, where, for example,
fiosa =PY=(A, A A A} = - =P{Y=(T,T,T,T)}. Lake (1987) shows
that

f13|24 - f13|2|4 - f24|1|3 + f1|2|3|4 =0
and
fia2s = Frazs — Fyaies + Fyzse = 0,

and these observations can be used to construct linear invariants for this
model.

As we stated in Section 1, our aim in this paper is to describe a relatively
simple algebraic formalism for generating /recognising all invariants for any of
the models considered above when there is an arbitrary number of taxa. The
key to our approach is the following observation. Suppose that we think of the
bases {A, G, C, T} as the elements of an Abelian (that is, commutative) group
with the group operation defined by the following addition table:

+ A G C T

A A G C T
G G A T ¢C
C cC T A G

T \T C G A

This group is isomorphic to the Klein four-group Z, ® Z, [i.e., the group
consisting of the elements {(0, 0), (0, 1), (1, 0),(1, 1)} with the group operation
being coordinatewise addition modulo 2]. One possible isomorphism is given by
A< (0,0,G<(0,1),Co(1,0and T < (1, 1). It is straightforward to check
that the infinitesimal generator matrices appearing in the Kimura three-
parameter model have the property that the entry corresponding to the pair of
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bases (i, j) is a function of the base i — j. The same is also true a fortiori for
the Kimura two-parameter model and the Jukes—Cantor model. Thus such a
matrix is nothing other than the infinitesimal generator matrix for a random
walk on the group (see Section 4 for a discussion of continuous time random
walks on finite Abelian groups).

3. Some discrete Fourier analysis. For the sake of reference, we
review some elementary facts regarding Fourier analysis on finite Abelian
groups. There seems to be no good reference to Fourier analysis and group
characters which treats the Abelian case in isolation and contains all the
theory we need. However, Chapter 104 of Korner (1988) is a good introduction,
and all of what we have to say here may be deduced fairly easily from the more
general material presented in Chapter 2 of Diaconis (1988). In the same spirit
as our work, Diaconis (1990) investigates how general Fourier theory may be
used to analyse the properties of patterned matrices when the pattern reflects
invariance under the action of some group.

Let G be a finite Abelian group, with the group operation written as +. Let

= {z € C: |z| = 1} denote the unit circle in the complex plane, and regard T
as an Abelian group with the group operation being ordinary complex multipli-
cation. The characters of G are the group homomorphisms mapping G into T.
That is, x: G — T is a character if x(g; + g;) = x(g)x(gy) for all g,, g, € G.
The characters form an Abelian group under the operation of pointwise
multiplication of functions. This group is called the dual group of G and is
denoted by G. The groups G and G are isomorphic. Given g € G and y € G,
write (g, x) for x(g). The dual of the direct sum G™ = &G is isomorphic to
G™ wunder the isomorphism given by <{(gy,...,8.) Xy -5 Xm)) =
T2 (8 X -

ExampPLE. Suppose that G = Z, ® Z,. Then one may write G =
{1, ¢, ¥, ¢}, where the following table gives the value of (g, x) for g € G and
X € G:

(0,0) (0,1) (1,0) (1,1)

1 1 1 1 1
¢ 1 -1 1 -1
¥ 1 1 -1 -1
ol 1 -1 -1 1

Given a function f: G — C, the function f: G — C defined by
fx) = X <& xf(g)

ge€G

is called the Fourier transform of f. If f is a discrete probability mass
function on G and Z is a G-valued random variable with distribution £, then
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f(x) = H{Z, x)1. The Fourier transform has the following properties:

G|, ify=1,
0, otherwise,

in -k
where | A| denotes the cardinality of a set A; and
fi* fo= fA1 fAz,

where

*fo(8)= X f(g—h)fy(h), &gE€G,

heG

is the convolution of the functions f; and f,. Moreover, a function may be
recovered from its Fourier transform by the process of Fourier inversion;
namely, if f has Fourier transform f then f(g)= IGI_IZXe@(g, x>f(x) for
all g € G.

4. Random walks. Suppose that G is a finite Abelian group and X =
(X,,P#) is a continuous time Markov chain on G (here, P2, g € G, is the
probability measure on path-space corresponding to starting the chain off at
the initial point g). Let P, denote the corresponding semigroup of transition
matrices (ie., PJ(i, j) = P{X,=j}) and let @ denote the corresponding in-
finitesimal generator matrix. We say that the process X is a random walk if,
forall t > 0andall i,j € G, P(i, j) = p(j — i) for some probability distribu-
tion p, on G or, equivalently, that Q(i, j) = q(i — j) for some function gq:
G — R such that ¥ q(g) =0

We can describe such a process probabilistically as follows. Let N be a
simple, homogeneous Poisson process with rate —q(0) and let {/,,);_; be an
independent sequence of i.i.d. G-valued random variables with common distri-
bution given by

P(J. = j) = q(J) ggOQ(g) if j # 0,

if j=0.

Then the distribution of {X,: # > 0} under P# is the same as the distribution of
{g + LN dJ,: t > 0}, where we define the empty sum to be 0. More generally,
the distribution of {X,: ¢ > 0} under P*, where v is some arbitrary initial
distribution, is the same as the distribution of {J, + ¢ ,J : ¢t > 0}, where J,
is a G-valued random variable with distribution » and J, is independent of N
and{JgE=1

From this description of X it is easy to see that we have the Lévy-Hincin
formula

Ao —em(t T (gx) - Da(@) = et T (g 0a(s)).

€GN0 g€G
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We are particularly interested in the case when G is the Klein four-group
Zy, ® Z,. Here the matrix @ will be of the form

(0,0) 0,1) (1,0) 1,1
(0,0) —(a+B+7y) a B b
o a ~(@+B+7v) y B ,
1,0 B y —(@+B+7) a
1,1) y 8 « —(@+B+7)

for some parameters «, B,y > 0. If we label the characters of G in the same
way as we did in Section 3, then we see from the Lévy-Hinéin formula that

p,(1) =1,
p(d) = exp(—2t(a +v)),
Pu(¥) = exp(—2t(B + 7))
and
B0 = exp(—2t(a + B)).
Applying Fourier inversion, we see that
P((0,0)) = 1[1 + exp(—2t(a + 7))
+exp(—2t(B + 7)) + exp(—2¢(a + B))],
p:((0,1)) = 1[1 — exp(—2t(a + 7))
+exp(—2¢(B + 7)) — exp(—2t(a + B))],
p:((1,0)) = £[1 + exp(—2t(a + 7))
—exp(—2¢(B + 7)) — exp(—2t(a + B))]
and
p((1,1)) = z[1 — exp(—2¢(a + v))
—exp(—2t(B + 7)) + exp(—2t(a + B))].

Define R, to be the set of all the probability distributions on G which can
occur as the distributions p, if we let @, B, v and ¢ range over all possible
values. Define R, (resp., R;) similarly, but with the restriction that g =y
(resp., @ = B = v). The following lemmas are trivial given the above calcula-

tions, but they will be crucial ingredients in our procedure for constructing all
possible invariants.

LemMMA 4.1. The set {(F(¢), #(y), F(d)): r € R} C R® has a nonempty
interior.

LEmMA 4.2. The equality #(¢p) = F(dy) holds for all r € R, and the set
{(F($), F(Y)): r € Ry} C R? has a nonempty interior.

LEmMMA 4.3. The equality #(¢) = F(¢) = F(dy) holds for all r € R, and the
set {f(¢): r € R;} C R has a nonempty interior.
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5. Another description of the models. Identify the four bases
{4, G, C, T} with the elements of the Klein four-group G = Z, & Z, as we did
in Section 2. Each substitution matrix appearing in the description of the
Kimura three-parameter model is thus of the form P®(i, j) = r®(j — i) for
some probability distribution r® € R;. The same is true of the Kimura
two-parameter model and the Jukes—Cantor model if we replace R by R, and
R, respectively.

Construct independent G-valued random variables (Z,),.y such that Z,
has the distribution r® for each v € V\ {p}, and Z, has the root distribution
7. For each vertex v € V, let 6(v) denote the sequence of states along the
unique path through the tree connecting p and v [we include both p and v in
8(v)]. Then it is clear that the probability distribution u from Section 1 is the
distribution of the random variables (X, ¢ 5,yZ,), < v, and hence the random
variables (Y), ., have the same distribution as (X, ¢ 5;,Z,); .- In the future
we will suppose that the random variables (Y}),.; have actually been con-
structed as (X, c5q)Z,);cr- Thus, if we set Y =(Y),cy, and Z =(Z),cv,
then we have an ‘‘additive random effects model” Y = DZ, where D is an
appropriate ‘“design’’ matrix of 0’s and 1’s. Here, of course, we are using the
usual Z-module notation kg = X*_ g for k€7, k> 0 and g € G.

ExamPLE. Suppose that m = 4 and T is the tree in Figure 2 with the
vertices labelled as shown. If we take the vertex 0 as the root then the design
matrix will be

0 1 2 3 4 5 6
1 1 1 0 0 0 0 O
2 1 0 1 0 0 1 O

D= .
3 1 0 0 1 0 1 1
4 1 0 0 0 1 1 1
0
5
6

1 2 3 4

Fic. 2.



364 S.N. EVANS AND T. P. SPEED

6. Constructing and classifying invariants. Let us begin by consider-
ing the Kimura three-parameter model with the uniform root distribution.
Before presenting our general method for constructing invariants, we show
how it works in a simple example. Suppose that m = 3 and T is the tree in
Figure 3 with the vertices labelled as shown.

If we take the vertex 0 as the root then the model is

Yi=2,+Z,
(6.1) Y, =2, + Z,,
Y3 = ZO + Z3’

where (Z,)?_, are independent, Z, has the uniform distribution on G and each
Z;, i €(1,2,3}, has a distribution belonging to R.
Observe that

E[<Yy, $)<Yy, ¢ (Y5, $)]
=E[(Zy + Z1, §)XZy + Zy, Y ) Zo + Z3, D9)]
= E[{Zy, $)XZo, W) Zy, S ) Zy, d)Zg, 4 ) Zg, $1)]
= E[{Zy + Zy, $¥ )X Zy, $)Zy, ¥ ) Z3, p1p)]
= E[{Zy1, $)]E[{Zy, Y] E[<Z5, 9],

where the second and third lines follow from the fact that the characters are
homomorphisms and the last line follows from this fact, the fact that each
element of G is its own inverse and the independence of (Z,)?_,. Similarly,

E[<Yy, p¥ )<Yy, $){Y3, 4] = E[{Z,, pu)]|E[{Zy, $)]E[{Zs, ¢]

and
E[<Yy, )<Yy, d9 (Y3, ¢)] = E[{Zy, ¥)]E[{Zy, d¥)]|E[{Z;, $)].

Also observe, by similar reasoning, that
E[<Y;, 0)<Y,,0)] = E[{Z;, 0)]E[<Z;, 0)]

FiG. 3.
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for1 <i<j<3and 0 € {¢,, ¢y}. Therefore
(E[CYy, @)Yy, ¥ )Yy, pud]E[CYy, pib )Yy, $)( V3, )]
XE[(Yy, § )Yy, dU)(Ys, ¢)])*
- II E[<Y;, 0)<Y;, 0] =

1<i<j<3 06{4> v, oy}

Thus, if we express each of the expectations appearing above in terms of the
variables P{Y = g}, g € G3, we see that we can construct a ninth degree
polynomial F in the dummy variables (¢,), < gs such that F[(P{Y = g}), s3] is
identically zero for all possible choices of parameters in the model and hence
we have found an invariant.

The rationale behind what we did here is to take two expressions of the
form

TT(EKY, x)])* 7,

for j = 1,2, and show that they will be equal for all possible choices of
parameters in the model by showing that they may be reexpressed as a
common product of powers of the quantities {E[{Z;,0)]: 0<i<3, 6 €
{d, ¥, d¢}}. Nowhere in constructing this invariant did we make use of the fact
that , the distribution of Z,, is uniform on G. In fact, no term of the form
(E{Z,, 6>D!, I = 1, appeared in the common product.

Suppose now that if we express some multinomial [T, (E[Y, x)D** as a
product of powers of the quantities {E[{Z;,0)]: 0 <i < 3, § € {¢, &, ¢y}}, then
a term of the form (E[(Z,, 8)]’, I > 1, does appear. We know from Section 3
that E[<Z,, )] = 0 for 6 € {¢, ¥, p¢}. Thus IT (E(Y, X OD*X is identically zero
for all choices of parameters in the model and we have an invariant. For
example, we have

IE[<Y1’ ¢><Y2’ ¢><Y3’ §b>] = [E[<Z0, d’)]IE[(Zl, ¢>]IE[<Z2, ¢>][E[<Z3, ¢>] =0.

We will show below in Theorem 6.1 that these two ways of constructing
invariants lead to all possible invariants for a general Kimura three-parameter
model with uniform root di§tributi0n. First, however, we need some notation.

Given a character y € G, we can represent the function z — {(Dz, x),
z2€GY, as z - I, c vz, 0, X)), where the characters n(v, y) € G, v € V,
are defined by (v, x) = I, x?**. Moreover, this is the unique such repre-
sentatlon Let H denote the collection of multinomials in the dummy variables

, x € GU. That is, h € H is of the form h((u,)) = IT,ukx, where k, €
{0 1 2,...}, x € G . Given such a multinomial 4 € H we can uniquely deﬁne
another multlnomlal Szh in the dummy variables w,,, v €V and 6 €

{¢, ¥, 9y}, by
S3h((wv,9)) = I;I(l:[WS(U’ X))kx,
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where we set

wv,n(v,x)’ if TI(U, X) * 1,

W.(v, x) =
() =4 if n(v, x) = 1.

Observe that
h(([E[<Y’ X>])X) = SBh((IE[<Zv’ 0>])v,0)'

We now define an equivalence relation ~; on H as follows. Suppose that
we have two multinomials f, g € H with

S3 f((wv,o)) = I—_!:wv’oa(u,e)

and
S3g(( wv,o)) = l_g wv,ob(v,ﬂ)-

We declare that f ~3 g if either L,a(p,0) + 0 and X,b(p, 0) # 0, or L,a(p, 6)
= Y,b(p,0) = 0 and a(v, ) = b(v, 9) for all v € V\{p} and all 6 € {¢, §, py}.
Write &#; for the family of equivalence classes in H under ~j , and let Hy
denote the equivalence class consisting of multinomials / such that S;2(w, 9))
is divisible by w, , for some ¢ € {¢, ¢, #¢}. Observe that if f,g <€ H with
f~3 & then

f(('EKY’ X>])x) = g((EKY’ X>])X)’

for all choices of parameters in the model, with the common value being
identically zero if f, g € H; ,. Moreover, from Lemma 4.1 we see that the
converse to this statement also holds.

Using this notation, we can describe the structure of the most general
invariant as follows.

THEOREM 6.1. Consider a Kimura three-parameter model with uniform
root distribution. A polynomial F in the dummy variables (t,), g will be
such that F(P{Y = gD, cg) = 0 for all choices of parameters in the model if
and only if F is of the form

F((ty)) = hgﬂchh(( r <g,x>tg) )

gEGL XEG

where only finitely many of the coefficients c; are non-zero and ¥, -xc, =0
for all K € 5\ {H3’p}.

Proor. The sufficiency of the stated condition is already obvious from the
observations we have made above.

Consider the question of necessity. Using Fourier inversion, we can express
each variable ¢, as a linear combination of the terms X, 51.{g, x>t,, X € GY,
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and so we can certainly write

)= Lol £ won) |

geGr

for some coefficients (¢;,), where only finitely many of the ¢, are nonzero. For
each K € #;\{H; )} let kg denote the common value of S3h for h € K.
Recall that w, does not divide 2 x((w, o)) for any ¢ € {¢, ¥, ¢y}; and so, from
Lemma 4.1, the collection of functions on the space of parameters given by
ke((EH(Z,, 0)])), K € #;\{H; )}, is linearly independent. As

F(P{Y=2g})) = L c,h((EKY,X))))

heH

L Z a)kx(Ez,0D),

Ke#3\{H; ,} "h€K

the result follows. O

Given Theorem 6.1, we see that the problem of generating all invariants for
the Kimura three-parameter model with uniform root distribution reduces to
the two problems of:

(i) describing all multinomials # € H; ,, and
(ii) describing all pairs of multinomials % and A’ such that ' ¢ H, ,
R & H; ,and k' ~3 k.

Regarding problem @, observe that & belongs to H; , if and only if 2((u,))
is divisible by some u,«, x* € GY, such that n(p, x *) € {¢, ¥, dy}. Thus
problem (i) reduces to computlng and inspecting 1(p, y) for each y € G

Problem (ii) is a little more involved. Let x®,...,x* be a list of the
characters y € G such that n(p, x) = 1. We can write two multinomials
K ¢H; ,and b ¢ H; , as

K((u,))= l_Iu“Ef?

and
M .
w((w) = TTu

Associate each character y with a vector x® of 0’s and 1’s indexed by
(VX {p) X {¢, ¥, o3} by setting

_ 1, if n(v,,\/(i)) =0,
0, otherwise.

x5y
Equlvalently, x%), = 1if and only if Wy(v, x¥) = w, 5. Then ¥ ~4 A’ if and
only if ¥ la(z)x(‘) =Y¥ b(i)x®. Observe that A’ and A" will be equlvalent
under ~; if and only if the two multinomials obtained by removing common
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factors are also equivalent; so, without loss of generality, it suffices to describe
all pairs of nonnegative integer M-tuples a = (a(i))X, and b = (b(i))X, such
that ¥ a(i)x® = £M 56(i)x® and at most one of the integers a(i) and b(7)
is nonzero for each i € {1 , M}. This latter problem is equivalent to describ-
ing the set

M
Es={e=(e(i)X, ez ¥ e(i)x® = o}.
i=1
It is clear that E; is a lattice in the sense of Section IV.3 in Cohn (1980).
Therefore, by Theorem IV.5.1 of Cohn (1980), there exists a minimal basis for
E, when E, # {0}. That is, there exist vectors e®,...,e™ € E; such that E,
consists of all vectors of the form e = = n(;j)e"’ for some (n(j)L, € Z N
and, moreover, the coefficients appearing in this representation are umque
The number N is intrinsic to Ej, that is, it is the same for all possible minimal
bases. Here N coincides with the dimension of the real vector space

M
f=(fGNL eRM: Y f(i)x® =0},
i=1

Thus, N = M — rank(C), where C is the matrix with ith row x®. Cohn
(1980) describes a procedure for constructing such a minimal basis.

The analogues of all of the above for the Kimura two-parameter model with
uniform root distribution and the Jukes-Cantor model with uniform root
distribution follow along similar lines, with Lemma 4.1 replaced by Lemma 4.2
and Lemma 4.3, respectively. We give a brief sketch of the main ideas and
leave the details to the reader.

Given a multinomial » € H of the form hA((x,)) =IT,u X, where %k €
{0,1,2...}, we can uniquely define another multinomial Szh (resp., S;h) in
the dummy variables w, 5, v € V and 6 € {¢, §}, (resp., in the dummy vari-
ables w,, veV) by S,h((w,,) =TI LLWo(v, x)ex (resp., S;h(w,)) =
IT,(I1,Wy(v, x))*x), where we set

wv,d)’ if T’(U’X) € {qﬁ,(i)l[/},
Wa(v, x) ={w,y, ifn(v,x)=4¢

1, if (v, x) =1
(resp.,
wv’ if n(U,X) * 17
1, ifn(v,x) =1).
Observe that for the Kimura two-parameter model

h((E[CY, x21)x) = SoR((E[<Z,,6)]),,,)

and that for the Jukes—Cantor model

R((EKY, )] x) = S1h((E[<Z,, $)]),)-

Wi(v, x) =
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We define equivalence relations ~, and ~; on H in the same manner as
we defined ~; , but with S replaced by S, and S;, respectively.

Write #, (resp., ##,) for the family of equivalence classes in H under ~,
(resp., ~;). Let H, , denote the equivalence class in &, consisting of
multinomials & such that Syh((w, ) is divisible by w, , for some ¢ € {4, ¢/}
and let H, , denote the equivalence class in #, consisting of multinomials 2
such that S 1h((w,)) is divisible by w,. Observe for the Kimura two-parameter
model with unlform root dlstrlbutlon that if f, g € H with f~, g then

FI(EICY, x0D) x) = g ((EKY, x2D x)s

for all choices of parameters in the model, with the common value being
identically zero if f, g € H, ,. Similarly, for the Jukes—Cantor model with
uniform root distribution observe that if f, g € H with f ~, g then

FICEKY, 00D x) = g((EKY, x0]) x)

for all choices of parameters in the model, with the common value being
identically zero if f, g € H; ,. Moreover, from Lemma 4.2 and Lemma 4.3 we
see that the converses to the last two statements also hold.

For example, consider the Jukes—Cantor model with uniform root distribu-
tion which has the design specified by (6.1). It is easy to check that

(E[<Yy, $){ Yy, ¥ )(¥5, d90)])* — T e[, exT,¢)] =0
<i<j<
for all choices of parameters in the model.
The analogues of Theorem 6.1 for the Kimura two-parameter model and the
Jukes—Cantor model are combined in the following result.

THEOREM 6.2. Consider a Kimura two-parameter model (resp., a
Jukes—Cantor model) with uniform root distribution. A polynomial F in the
dummy variables (¢,), cgr will be such that F(P{Y = g}, cgr) = 0 for all
choices of parameters in the model if and only if F is of the form

F((ts)) = EHchh(( > <g,x>tg) AL),

geGl

where only finitely many of the coefficients ¢, are non-zero and ¥, .gc; = 0
for all K € #,\{H, } (respectively, for all K € #;\{H, D).

The analogues of the discussion following Theorem 6.1 about how to
generate equivalent multinomials are straightforward and are left to the
reader.

Finally, we remark that the results for models which have an arbitrary root
distribution are very similar to those above. The only difference is that the
root is treated like a typical vertex in a Kimura three-parameter model. That
is, instead of imposing the constraints E[(Z, 6)] = 0, 6 € {¢, ¢, oy}, we use
the fact (which follows a fortiori from Lemma 4.1) that the image of
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(E{Z,, $)),EH(Z,, y ), E(Z,, $4)]D as the distribution of Z, varies over all
possible distributions has a nonempty interior. We once again leave the details
to the reader. As an exercise, we invite the reader to show that there are no
linear invariants for any Kimura three-parameter model with arbitrary root
distribution.

7. Examples. In this section we present some explicit results for rooted
trees with 2, 3 and 4 leaves, respectively, describing invariants under both the
Kimura three-parameter and two-parameter models, with either a uniform or
an arbitrary root distribution.

Two taxa. We begin with the simple two-leaf tree of Figure 4. Suppose (cf.
Section 4) that Z,, Z, and Z, are mutually independent G-valued random
variables (where, as before, G = {A, G, C, T'}) with distributions =, r; and ry,
respectively. Suppose that r; and r, are elements of R, with parameters
(ay, By, vy) and (ay, By, v5) and a common value of ¢. Set (Y,,Y,) = (Z, + Z,,
Zy + Z,), so that we have a Kimura three-parameter model. The distribution
f = (fg,g,) of (Y}, Y,) has Fourier transform

f(Xsz) = 7(x1x2) Fi(x1) Fa( X2),

where x;, x; € G. Expressions for 7, and 7, can be found in Section 4. When
7 is uniform, it follows that f(x1, x2) = 0 unless x; = x,, and the values of
f(x, x) are just those of the Fourier transform of the convolution r; * ry. It is
easy to check that in this case only the parameters #(a; + a,), t(B; + B,) and
t(y, + v,) are identifiable and so these, together with the requirement that the
four distinct values of f, ., must sum to 1/4, account for all the degrees of
freedom in this simple case. In what follows we will repeatedly use this
informal counting of degrees of freedom, because in all cases we describe, the
numbers match.

We turn now to the case where the initial distribution is arbitrary. The class
of all such f is described by nine parameters: three for the root distribution,
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and three each for the two edges. Given that L f, , =1, we need to find a
further six constraints and in this case they are all nonlinear. Following the
construction outlined after the proof of Theorem 6.1, we can calculate the
relevant 15 X 9 matrix of 0’s and 1’s, and it is easily checked that this matrix
has row rank 9, that is, there are six linearly independent relationships
defining invariants. There are many ways to describe six independent invari-
ants, although, as explained in the proof, a minimal basis of the lattice could
be constructed. We content ourselves here with presenting a typical cubic
invariant:

IE<Y1’ ¢>[E<Y2’ ‘//>IE[<Y1’ ¢><Y2a d)>] = IE<Y1’ ¢>IE<Y2’ ¢>IE[<Y1: ¢><Y2’ l/l>]

and there are two others like this one.

Turning to the Kimura two-parameter model for this tree (still with an
arbitrary root distribution), suppose that B, = y; and B, = y,, that is, that r,
and r, are elements of R,. Recall that #(¢) = #,(0), i = 1,2, where we write 6
for ¢y € G. We can then see that

f(d,¢) =F(6,6)
and
f(6,0) =F(0,9),

and these identities define two linear invariants. A simple counting argument
would suggest that there are 16 — 1 — (8 + 2 X 2) = 8 independent invariants
in all, leaving six nonlinear invariants to be found, and this can be verified by
following the construction given in the proof of Theorem 6.2 and computing
the row rank of the appropriate 15 X 7 matrix of 0’s and 1’s. In constructing a
collection of six independent nonlinear invariants we find that some may be
taken to be the same as those described earlier, whilst others result from the
fact that 7,(¢) = 7,(0), i = 1,2. This latter class includes the quadratic invari-
ant

Y, 0)KY,, ¢) = KY,, ¢)EY,, 0).

Before closing this discussion of the invariants of the Kimura two-parame-
ter model for the two-leaf tree, it is both of independent interest and conve-
nient for later examples to relate our notation and results to those of Cavender
(1989, 1991). Following Cavender, we let A (resp. G,C,T) double as the
function on G = {A, G, C, T} which takes the value 1 on A (resp., G,C,T) and
0 elsewhere. We then seethat A — G =(1/2)X¢ + ) and C — T = (1/2)¢ —
9); and, letting ® denote the tensor product of functions on G, we see that

(A-G)®(C-T)=13(¢+0)® (¢ 0)
=H(Pp®P—0®0+0®d—0®0)
and
(C-T)®(A-G)=3(s—-0)®(¢+9)
=H(¢®p—-00d+d®0—000).
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Letting f;;, i,j € {A,C, G, T}, denote the probability of observing base i in
the first species and base j in the second species [cf. Cavender (1991)], we have

fac —fac—Far +for= X (A=G)® (C—T)g,e.14, 0,
81,82

L (¢ +0)® (- 0)(81,8) faa,

81,82

= 1[7(¢.8) — F(8,0) + F(0,8) — F(0,0)].

Il

Similarly,
foa = Fra — foc + fra = X[ F(b,0) — F(6,6) +F($,6) — (6,0)].

Three taxa. We now discuss the rooted tree with 3 leaves, see Figure 5.
Again we will consider the Kimura three-parameter model first. Let
Z,,...,Z, be mutually independent G-valued random variables with Z, hav-
ing distribution 7, and Z; having distribution r;, € R3, 1 <i < 4. If we set
Y,=2Z,+Z,Y,=2y+Z,+Z, and Yy = Z, + Z, + Z3, then the distribu-
tion f=(f, g o) Of (Y1,Y5,Y;) has Fourier transform
3
‘l_I1 fi(x:)

f(X15 X25 X3) = F(X1X2X3) Fo(X2X3)>

where x;, X2, X3 € G.

Suppose that 7 is uniform. Then the only nonzero values of the Fourier
transform occur when x;x,x3; = 1, that is, when x; = x;x,. There are 16
distinct probabilities with a single sum constraint, depending upon six parame-
ters, and so we might expect to find nine independent invariants. Calculation
of the rank of the appropriate matrix reveals this to be the case. All of these
invariants are nonlinear, a typical one being

IE[<Y1’0><Y2’ ¢><Y3’ ¢>][E<Y1 + Y2’ ¢>IE<Y1 + Y3’ d)>
= E[<Yy, 0)XY,, ¢ (Y5, ¢ XY} + Yo, §OECY; + Y, 4).
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Now let us suppose 7 to be arbitrary. Then we have 64 probabilities with a
single sum constraint, given in terms of 15 parameters: three for the root
distribution and three for each of the four edges of the tree. We note at this
point a difference between the situation where = is uniform and = is arbi-
trary. In the former, the edge between the root and vertex 4 does not count in
the parametrisation; the tree is effectively unrooted or, equivalently, a star
phylogeny. This is because the result of convolving the uniform distribution
with any distribution on G is again the uniform distribution, and hence the
distribution r, gets ‘““lost,” that is, its parameters are unidentifiable. When =
is general, however, we do need to count the parameters of r,. Doing so would
suggest that there are 64 — 1 — 15 = 48 independent invariants, and again a
check of the appropriate matrix rank shows this to be the case. An example of
an invariant in this case is

E[(Yl,x><Y2 + Y3,X'>] = E[(Yl,x>]|E[<Y2 + Y3,X'>]

for all y, x' € G, expressing the obvious independence of Y, and Y, + Y.

Turning to the Kimura two-parameter for this tree (still with an arbitrary
root distribution), we impose the constraints 8, = y;,, i = 1,...,4. We now find
that there are 18 linear invariants, arising from equalities of the form
f(Xl’ X2s X3) = f(X’l’ X/Z’ Xé)a where for i = 1’ 2: 3’ either Xi = Xg’ (Xi’ X;) = (d)a 0)
or (x;, xi) = (0, ). In essentially the same notation as Cavender
(1989, 1991) these invariants may be writtenas X ® (A - @ (C-T), X ®
(C—-T)® (A - G), where X € G is arbitrary, and two similar sets of pairs,
with X occupying the second and third position in the triple. This identifica-
tion is easily obtained using the relations given at the end of the discussion of
the two taxa case.

Let us note here a difference between our analysis and a result stated by
Cavender (1991). In that paper it is asserted that the space of linear invariants
of the six-parameter Cavender-Lake model coincides with that of the Kimura
two-parameter model. However, we can only find 12 linearly independent
linear invariants for the Cavender-Lake model, compared with the 18 ob-
tained above for the Kimura two-parameter model. Indeed it is not hard to
check that the linear function with coefficients (¢ + 0) ® (¢ — 0) ® ¢ is si-
multaneously an invariant for the Kimura model, and an element of the
“expected spectrum” for the Cavender-Lake model (i.e., a linear combination
of joint probabilities under the model).

To confirm this last assertion, set

D=3(¢+0)®(s-06)0y
(A-G)®(C-T)®((A+G) - (C+T)) =E - 2F,

where

E=(A-G)®(C+T)® ((A+G) +(C+T))
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and
F=(A-G)®C®(C+T)+(A-G)®T® (A+0C).

It is easy to check that D is an invariant for the two-parameter Kimura model,
and we now show that E and F both belong to the expected spectrum of the
Cavender-Lake model.

Firstly, consider A ® (C + T) ® (A + G). Put 7 = §,, the unit point mass
at A. In the notation of Section 2, put P = P® =], the identity matrix.
Recalling the basis {p;} given in Cavender (1989), put P® = p, and P® = p,,
We find that up to a scalar the result is A ® (C + T) ® (A + C). Similarly,
we can get A®(C+T)(C+T), GRI(C+T)®(A+G) and G ®
(C+T)®(C + T), which implies that E is indeed in the expected spectrum
of the Cavender-Lake model.

On the other hand, putting 7 = §,, P¥ = P® = [, P® = p, and P® = p,,
shows that A® G®(C+T)+A®T®(A+ C) belongs to the expected
spectrum. Similarly, replacing p; by p, shows that G C® (C+ T) + G ®
T ® (A + G) belongs to the expected spectrum. Thus F belongs to the ex-
pected spectrum and the assertion follows.

Four taxa. Our final example concerns the four-leaf tree given in Figure 6.
Yet again we consider the Kimura three-parameter model for this tree first.
Let (Z,)¢_, be mutually independent G-valued random variables, with Z,
having distribution 7= and Z; having distribution r; € R3, 1 <i < 6. Writing

Y, =2Z,+ Z; + Z,,
Y,=2,+Z; + Z,,
Y, =2, +Zg5 + Zs,
Y,=Z,+Zs+ Z,,
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we readily check that the Fourier transform of the distribution f = ( fey g0 23 g4)
of (Y,)?_, factorises as follows:

4

I_Ifi(Xi)
i=1

fs(X1X2)f6(X3X4),

f(X15 X25 X35 Xa) = T(X1X2X3X4)

where x1, x2x3, X4 € G.

When 7 is uniform, there are only 64 distinct probabilities in the 4* array
f, corresponding to the 64 nonzero values of f which arise from quadruples
(X15 X25 X35 X4) Such that x;x,x3xs = 1. These quadruples are readily enumer-
ated and it is easy to check that in this case there are 48 nonlinear indepen-
dent invariants. We can write some of the invariants for this case in the
following intuitively appealing forms:

(a) independence statements such as
IE[<Y1 +Y,, X><Y3 + Y4,X’>] = |E[<Y1 + Y, X>][E[<Y3 + Y4,X’>]

for each of the ordered pair of nontrivial characters (y, x’) (there are nine
such equalities corresponding to the nine degrees of freedom in the usual
chi-squared test of independence for a 4 X 4 contingency table);

(b) independence-like statements such as

4 4
|E< Z YiaX>[E< Z Yi»/\/> = IE[<Y1 + Y27X><Y3 + Y4’X’>]
i=1 i=1

XE[<Yy + Yo, X' XY3 + Y, 0]

for each of the unordered pair of distinct nontrivial characters y # x’;
(c) equalities reminiscent of the determinantal identities on page 62 of
Cavender and Felsenstein (1987) such as

E[KY; + Yy, x XYy + Y, XD]E[(Y; + Y5, ¥’ XY, + Yy, x)]
= E[<Y; + Yy, x (Y, + Y3, xD]E[KY, + Yy, X N Y, + Yy, x)]

for each of the unordered pairs of distinct characters y # x’ with not both x
and x' trivial;

(d) cubic invariants obtained by considering three leaves at a time and using
the invariants found in the three taxa case.

Once more the simple counting rules described earlier apply. There are
48 = 64 — 1 — 3 X 5 independent invariants, and we note as before that the
uniform root distribution renders one of the distributions r, or r; superfluous.

Next we suppose 7 to be arbitrary. Then all six of the edge distributions
contribute three parameters, as does the root distribution, and so there should
be 256 — 1 — 3 — 6 X 3 = 234 independent invariants. The row rank of the
appropriate 255 X 21 matrix is indeed 21 and so the counting rules continue to

apply.
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Finally, suppose that we have the Kimura two-parameter model (still with
an arbitrary root distribution) obtained by fixing B; = ¥;, 1 < i < 6. There are
92 linearly independent linear invariants, in contrast with the 68 found by
Cavender (1989) for the six-parameter Cavender-Lake model. These 92 linear
invariants all arise from equalities of the form f(xy,..., x4 =7F(X% - -, X4
that occur when (xi, ..., x3) is obtained from (y;, ..., x,) by switching ¢ and
0, and such equalities are readily enumerated. Similarly, it is easy to check
from the appropriate matrix that there are a total of 240 = 256 — 1 — 3 —
6 X 2 independent invariants, as expected.
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