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NONPARAMETRIC ESTIMATION IN THE COX MODEL!

By FINBARR O’SULLIVAN

University of Washington

Nonparametric estimation of the relative risk in a generalized Cox
model with multivariate time dependent covariates is considered. Estima-
tion is based on a penalized partial likelihood. Using techniques from
Andersen and Gill, and Cox and O’Sullivan, upper bounds on rate of
convergence in a variety of norms are obtained. These upper bounds match
the optimal rates available for linear nonparametric regression and density
estimation. The results are uniform in the smoothing parameter, which is
an important step for the analysis of data dependent rules for the selection
of the smoothing parameter.

1. Introduction. The Cox (1972) proportional hazards model is widely
used in modern survival analysis. In this model the hazard rate or intensity of
failure for the survival time of an individual with covariate vector x, which
may depend on time ¢, is expressed as

(1.1) M5 2(8)) = Ao(D)exp{o(x(2))}, ¢ 0.

0, is the relative risk function and A, is the underlying baseline hazard. Both
0, and A, are unknown, but statistical inference is typically restricted to the
relative risk, see Andersen and Gill (1982) for example. This paper develops
some asymptotic properties for a nonparametric penalized partial likelihood
estimator of the relative risk, proposed in O’Sullivan (1988). These results
complement the work of Zucker and Karr (1990), who have considered an
alternative approach to nonparametric estimation in the Cox model.

The method of analysis here makes use of some rudimentary multivariate
counting process techniques for the Cox model developed by Andersen and Gill
(1982) and Gill (1984). We begin with a brief summary of the counting process
framework for the case of iid observations. We suppose we have n independent
subjects which are continuously monitored over a finite time period, say the
interval [0, 1]. For each subject, there is a process (N;(¢), x,(¢), y;(¢)) for 0 <
t <1. Here N,(¢) is a counting process recording events, such as death,
hospital visits and so on, to occur up to time ¢, x;(¢) is a d-dimensional
covariate process, and y,(¢) is either 1 or 0 depending on whether or not the
subject is under observation immediately prior to time ¢. In survival analysis,
y(t) = 0 for ¢ > ¢ corresponds to right censoring at time c¢. Formally, as in Gill
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(1984), the generalized Cox model specifies that N = (N;, N,,...,N,) is a
multivariate counting process with a random intensity process A™ =
(A4, Ag,y ..., A,) for which

(1.2) A (1) = y:(t) - exp{By(x,(2))} - Ao(2).

The underlying baseline hazard A, and the relative risk 8,: R? - R are fixed
unknown quantities. As discussed in Gill (1984), a family of right continuous
nondecreasing sub o-algebras {F(™: t € [0,1]} are defined on the n-dimen-
sional sample space, with F" representing the history of the n-dimensional
process up to time ¢. All processes are adapted to this family of o-algebras.
y,(+) is a predictable process taking values in {0, 1}. The d-dimensional covari-
ate process x,(-) is predictable and takes values in a fixed bounded subset of
R<?. Specification of A as an intensity process means that the process

(1.3) M(t) = Ny(¢) —[()tAi(T) dr, i=1,2,...,nand¢e [0,1],

is a local martingale with mean zero, EM,(¢) = 0. The predictable covariation
of M™ = (M, M,,..., M,) is given by

(1.4) (M,, M,)(¢t) =[”A,.(T)d7, (M;, M, =0,i #.
0

1.1. Definition of the penalized partial likelihood and some assumptions.
Inferences for the relative risk 6, will be based on the penalized partial
likelihood functional

(1.5) 1,,(0) =1,(0) +ud (), p>0.

Here [,(0) is the analogue of the negative logarithm of the partial likelihood
used by Andersen and Gill (1982):

n n
(16) 1,(0) = [ 1log[l Zyi(v)e"“t“”] dN(r) = ~ 5 [(o(x(r)) dN(7)
0 n.; - ni;_17

with N(t) = (1/n)L?_N«¢). J is a penalty functional designed to incorporate
prior notions about the smoothness of the relative risk. Examples
of commonly used penalty functionals are given in Cox (1984), Cox and
O’Sullivan (1990) and Wahba (1990). The penalized likelihood estimator of the
relative risk 6,, is defined as the minimizer of /,, over a class of functions 0.
O is the nominal parameter space. This method of estimation can be thought
of in the light of Tikhonov’s method of regularization [Tikhonov and Arsenin
(1977) and Cox and O’Sullivan (1990)]. Issues related to the numerical compu-
tation of the penalized partial likelihood estimate along with a proposed data
dependent procedure for selecting the smoothing parameter p are discussed in
O’Sullivan (1988).

1.1.1. Some assumptions. Assumptions on the measurement model and
the nature of the parameter space follow. The assumptions in this paper
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combine the standard kinds of conditions set out in the analysis of the Cox
model and in the analysis of nonparametric regression estimators, see Section
4 of Andersen and Gill (1982) and Assumptions 1-4 of Cox (1984).

AssuMPTION A (Measurement model).

@ (N, y;, %), 1 =1,2,...,n, are iid replicates of a fixed triple of random

processes (N, y, x)) observed on [0, 1].

(i) Let Ao(#) = [§Aro(r)dr. It is assumed that A, is bounded away from
zero and infinity.

(iii) For each ¢ € [0, 1], the random variable x(¢) has density A(-|#). Let

p(x,t) = Ply(¢) = 1|x(¢) =x],

and let q(x,t) = p(x,t)h(x|2). We suppose that there are strictly positive
constants, k; and %, (independent of x and ¢), such that

<k,

a
ki <q(x,t) <k, and 'Eq(x,t)

(iv) {x(¢), t €[0,1]} c X c R where X is a bounded open simply con-
nected set with C* boundary [see Definition 3.2.1.2 of Triebel (1978)].

Assumption A() is used by Andersen and Gill, for example. Assumption
A(ii) is stronger than the more typical condition that 0 < A(1) < « used by
Andersen and Gill. The additional strength here is used to obtain a certain
uniformity in the main result. Assumptions A(iii) and A(iv) are more technical.
Assumption A(iii) is used in proving results concerning derivatives of a contin-
uous version of the partial likelihood and (iv) is used is to obtain growth
behavior on eigenvalues which in turn determine the ultimate rates of conver-
gence for the approach. For the assumptions on the parameter space, let
W(X, R) denote the Sobolev space of real valued L, functions defined on X
whose kth order partial derivatives are square integrable; see Adams (1975).
Sobolev spaces may also be defined for noninteger %2 [Adams (1975)] and
throughout this paper the order % can assume any positive real value. Wg(X, R)
is the subspace of W}(X,R) which consists of functions which integrate to
zero, [x0(x)dx = 0, for all § € Wh(X, R).

AssumpTiON B (Parameter space).

(i) O is a Hilbert space of functions 8: X —» R with inner product (-, - )
and norm || - ||. The elements of ® are constrained to integrate to zero.

(ii) For some m > 3d/2, ® = Wj3(X; R) (meaning the spaces are equal as
sets and they have equivalent norms). The true function parameter 6, is in
Wes? for some 3d/2m <p < 1.

(iii)) The penalty functional J(8) = (1/2){0,W8), where W is a bounded
linear operator on ©, which is self-adjoint and nonnegative definite and there
are positive constants %, £, such that for all § € 0,

k4617 < <6, Wo) + lI6ll7, < EolI0l1%.
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The Hilbert space structure is convenient for the spectral analysis of linear
operators which arise. Note that the true parameter is not assumed to be an
element of @. It is only necessary that the true parameter be approximable by
elements of 0. The condition that m and mp be greater than 3d /2 covers the
standard cubic smoothing spline situation in which m = 2, p =1 and d = 1.
The assumption on the penalty functional holds for the standard Laplacian
penalty functionals used to define multivariate smoothing splines [Cox (1984)].

1.2. Asymptotic convergence result. The estimation error is written as the
sum of a systematic and stochastic error

(1.7) 0,,—0o=0,—06,+6,,—0

nu © wo
where 6, is the minimizer of limiting penalized partial likelihood with Z,(8)
replaced by 1(8) = lim,, ,(0); see (2.4) in the next section. The existence of 6,
for u sufficiently small is discussed in Theorem 3.1. For 0 < b < 1, let || - || be
the Sobolev W2™-norm. The object of the paper is to establish the following
asymptotic convergence result.

THEOREM 1. Suppose Assumptions A and B hold.

(i) There is some p, such that for all p € [0, u,l 6, is uniquely defined.
There is a positive constant C, such that for 0 <b < (p — d/2m)/2

19, — 8,ll5 < CLu®PlI8 |2 asp — 0.

(i) Let n, be a sequence satisfying uy > p, = O(n~?) with 6 > 0 and for
some a € (d/2m,(p —d/2m)/2), n~u 2e*td/2m) 0, Let 0 <b < a, and
let wy, be any deterministic sequence in [u,,u,l. For a sufficiently large
positive constant M the event: 6, , exists uniquely and satisfies

2 -1 -
16,.,, — 0., ls <Mn Ly ord/2m)
and
ot [ -1
sup —T —araam | <Mlog(p,?)
#E[#mﬂo]{n 2 m

occurs with probability approaching unity as n — .
Proor. The results follow from Theorems 3.1 and 3.3 of Section 3. O

1.3. Discussion and outline of the paper. The first part of the theorem
gives the order of the systematic error and the second part gives the order of
the stochastic error. From the theorem it follows that if u,, is
O(n—2m/@mp+d)y  then 16,,., — 8,7 is bounded by 0,(n=2mp=b)/@mp+d))
In particular, if 6, € Wy (i.e., p = 1), the integrated square error
16,,, — 0,5 is bounded by 0,(n=?m/Gm*d) Thus in the analogue of the
standard one-dimensional cubic smoothing spline setup (m =2, d =1 and
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p =1 we get the familiar rate of O,(n~*/®). Uniformity in the smoothing
parameter is noteworthy. We expect that this will be most useful in the
analysis of data dependent rules for choosing the smoothing parameter. Theo-
rem 1 yields upper bounds on the rates of convergence. These upper bounds
correspond to the optimal rates of convergence obtained by Stone (1982) for
nonparametric regression and density estimation in Hélder spaces.

The paper represents an application of techniques developed in Cox and
O’Sullivan (1990), hereafter abbreviated CO. The approach is based on Taylor
series expansions of the penalized partial likelihood in function space. The
theoretical framework is elaborated in Section 2, and some bounds on deriva-
tives of the partial likelihood are noted. The main results are proved in Section
3. The uniformity result requires a strengthening of a theorem in CO. This
result is proved in the Appendix along with a more technical lemma used in
obtaining bounds on derivatives.

2. Theoretical framework. The analysis considers solutions to the vari-
ational equation obtained from the penalized partial likelihood and, by analogy
with Cramér’s approach to asymptotics for parametric maximum likelihood
estimators, the main results follow from investigation of one-term Taylor
series expansions for the variational equation. Quantities related to the second
and third order derivative operators play an important role. Several assump-
tions must be verified in order to apply the theory developed in CO. We note
that Assumptions A.1 and A.2 of CO follow directly from our Assumption B.
[The operator U is given in (2.13). The compactness is easily established.] This
section elaborates the theoretical framework and shows that Assumptions A.3
and A.4 of CO also hold. We begin by developing a representation for the
estimator and derivatives of interest. The discussion of derivatives uses Sobolev
spaces W,”*(X;R) with d/2m < a < p (see Theorem 1). The condition that
a > d/2m guarantees by Sobolev’s imbedding theorem [Theorem 5.4 of Adams
(1975)] that pointwise evaluation is a continuous linear functional in
Wy (X;R). We let S(R, a) be the ball of radius R in Wy (X;R) and let
S,(R,a) = {6,} ® S(R, a). Since a < p, 8, € Wi3*(X;R). Let Ny = S,(R, a)
for some R > 0. N, is a neighborhood of 6, in Wg3*(X;R). We use M and
Mg to denote generic finite positive constants in proofs of lemmas and
theorems. Successive appearances of such constants will typically correspond
to larger values.

2.1. Derivatives and a representation for the estimate. Following Andersen
and Gill, let s,(0,¢) = (1/n)L"_1y,(£)e?™® 50 the negative logarithm of the
partial likelihood is

1

(21)  1,(0) = [ log[s,(0, 0] dN(2) —

L [o0) aNo).
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Derivatives of {,(8) will involve derivatives of s,(0, ¢). Computing formally, the
first, second and third order Frechet derivatives, of s,(6, t) are given by

Ds,(6,t)$ =

||[\1=

D ()",

~.

(22)  D?,(6,6)6% - Z D)) (2,(8) )y £) "=,

S| = §[H S| =

%s,(0,t)pY¢ = (x () (x,(8))E(x;(2) )y:(t) e,

IM:x

~.

where ¢, §, £ are functions. Since evaluation is a continuous linear functional
in WJ"*(X;R) the above quantities are the Frechet derivatives of s,(6,¢) in
Ws™(X; R). We note that the Frechet derivative is the function space general-
ization of the total derivative used in standard multivariate calculus [Rall
(1969)]. The continuity of the derivatives follows since e%* is continuous in 6
for 8 € S(R, a) because a > d/2m.

Fixing 6 € W3™, by the strong law of large numbers s,(6,¢) — s(6,¢)
almost surely, where s(6,¢) = E[y(t)e®* D] = [e®®q(x, t) dx. In addition un-
der Assumption A and B, sup,|s,(8,¢) — s(0, ¢)| converges to zero in probabil-
ity. This follows as in the justification of Condition B in Theorem 4.1 of
Andersen and Gill. The Frechet derivatives of s(6, t) are given by

Ds(0,6)¢ = [¢(x)e*@q(x,¢) dx,
(2.3) D?s(0,t)pp = [d(x)d(x)e@g(x, ¢) dx,

D3s(0,¢t) ¢ = fd)(x)df(x)f(x)eo(x)q(x, t) dx.
These derivatives are clearly continuous. The following lemma will be useful.

LEmMa 2.1. For any R > 0 and a > d/2m there are constants 0 < mp <
My, < « such that for all 0, 8, € S(R, a) and t € [0, 1] the following hold:

(@) mp <s,(0,8)/5,(04,t) < Mpg.

(b) mR<s(0 t) < Mg and s,(0,t) < Mp.

) If ¢, € 0O, then {Ds(0 DY < Mpllpli, and {D?s(8, )py}* <
MglplZ, Il

Proor. (a) follows from the definition of s,, Assumption A(iv) and the
uniform boundedness of 8 and 6, [they are both elements of S(R,a) and
a > d/2m]. (b) follows from Assumptions A(iii) and A(iv) and the boundedness
of #(x) for x €X and y,(¢). Applications of Hoélder’s inequality gives
(0. O
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Using the uniform convergence of s,(6, t) to s(6, ¢) mentioned above, it may
be shown that /,(8) converges in probability to [(8), where

1(0) = [log[s(6,2)]s(6o,)Aq(2) dt
(2.4)
—ff&(x)e"o(x)q(x,t) dx Ay(2) dt.

By the chain rule the first three derivatives of / and [, are well defined and
continuous on W,"*(X; R) The first and second derivatives of /() are given by

DI(6)¢ = f 0 t;d’s(ao,t))\o(t) dt
(2.5) — [ [#(x)e?™@q(x,¢) dx Ao(t) dt
= j%s(eo,t))\ou) dt — [Ds(8,,8)$Ao(2) dt,
D?s(0,¢t)¢s  Ds(0,t)p Ds(0,t)¢

(2.6) D(6)pu = [ W00 S0 (.0 s(8o,2)Ao(t) dt.

It is clear that 6, satisfies DI(6,) = 0. Some algebra gives
— 12
(2.7)  D(0)pd = [ [[(x) — &] pu(t) dxs(6,,8)20(t) dt,

where p,(t) = e*®q(x,t)/s(8,t) and ¢, = [¢(x)p,(t) dx. From this we have
that () is convex. Using (2.7), Lemma 2.1(b) and Assumptions A(ii) and A(iii)
there are positive constants ¢; and ¢, such that for 6, € Sy (R, a)

e f [[6(x) = 8] dxAo(t) dt < D2(6) o
(2.8)

<cof [[o(x) = ] dx Ao(2) dt.

Letting m, be the Lebesgue measure of X and restricting to ¢’s which
integrate to zero,

(29) [ [[o(x) = &) durg() dt = [#*(x) duAo(1) + m, [[ 8] Ae(t) dt.

Applying the Cauchy—Schwarz inequality to [¢,]?> and using Assumption A(ii),
we have, for some 0 < c¢; < ¢, < o,

(2.10) o, [[6(x)]* dx < D*(6)$b sc2f[¢(x)]2dx

for all 6 € S, (R, @) and all ¢ € Ly(X;R) which integrate to zero. Thus 1(6) is
strictly convex in N,, and since DI(6,) = 0, 6, is the unique minimizer of /()
in N, . Since I(6) is globally convex, 6, is in fact the global minimizer of /()
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over Wiz%(X; R). This result along with existence of continuous derivatives up
to order three guarantees that Assumption A.3 of CO holds.
The first and second order Frechet derivatives of [/, are given by

Ds (60.6)6 _ 1 n
DL - [ 20 aN ) -+ £ Lot o) anco),
@ [ D%,(6,6)60  Ds,(0,6)¢ D, (6,00
Dl"(a)""”:fo s (0,0 a8, s(o,n [N

Again, with p,(t) = [(1/n)y(£)e®@®]/s (0,¢) for i =1,2,...,n, and ¢, =
Y 1(x (8)p8),

D?%s,(0,t)p¢d  Ds,(0,t)¢p Ds,(0,t)d
s.(0,8)  s.(0,8) s,(0,¢t)

and it follows that [, and [, are convex. A straightforward argument, along
the lines given in the appendix of O’Sullivan, Yandell and Raynor (1986),
shows that the penalized partial likelihood estimator must lie in the subspace
0, = N(W) + Span{¢(x,(¢;,))}, where £(x) is the Riesz representer of evalua-
tion at x and N(W) is the null space of the linear operator W. Span stands for
the span of the given set, where ¢;; ranges over the event times of the counting
process Ni(¢) for t €[0,1]1and i = 1,2,...,n. If N(W) is finite, then 0, is a
finite dimensional space, although its dimension will in general be larger than
n. When W corresponds to the usual Laplacian penalty functional used to
generate thin plate smoothing splines [Wahba (1990)] the penalized partial
likelihood estimator can be represented as a generalized Laplacian smoothing
spline [O’Sullivan (1988)]. Following the argument in O’Sullivan, Yandell and
Raynor (1986), a sufficient condition for the existence of a unique minimizer of
the penalized partial likelihood in (2.7) is that there exist a unique minimizer
of the negative logarithm of the partial likelihood over N(W). These results
are summarized in the following theorem.

(2.12)

= L ooo(0) - 3]’

THEOREM 2.2. Under Assumptions A and B, 8, is the unique root of DI(6)
in Wgi* for a > d/2m. If the dimension of the null space of W is finite, the
minimizer of the l,, must lie in the finite dimensional subspace 0,. A
sufficient condition for the existence of a unique minimizer of L, is that there
exists a unique minimizer of 1, over N(W).

2.2. Spectral decomposition and convergence norms. Let U be an opera-
tor defined on ® by

(2.13) W, Us) = [$(x)w(x) dx

for i, ¢ € 0. From Assumption B(ii), lloll? = <o, We) + {6,U8) is an equiva-
lent norm on O. It follows from Section 3.3 of Weinberger (1974) and the
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construction in Section 2 of Cox (1988) that there is a sequence of eigenfunc-
tions {¢,: v = 1,2, ...} and corresponding eigenvalues {y,: v = 1,2, ...} satisfy-
ing

(¢,,Ud,>=35,,,
(., Wo,) =v,8,,,

for all pairs v, u of positive integers, where §,, is Kronecker’s delta. If ® were
equivalent to W;*(X;R), Assumption A(iv) and standard results concerning
elliptic differential operators [see, e.g., Cox (1984)] would give that vy, =
O(v2m/9) as v — . The elements of ® are constrained to integrate to zero but
using the interlacing property [Corollary 1 of Theorem 9.1 on page 63 of
Weinberger (1974)], this single linear constraint cannot affect the rate of
growth of the eigenvalues. Thus vy, = O(»2™/9),

(2.14)

For b > 0 let
o 1/2
(2.15) lell, = { Y (1+ %), Us,)
v=1
and let ©®, denote the normed linear space obtained by completing
{0 € ©: 10, < »} in || - [, norm. @, is a Hilbert space with inner product
(2.16) 0,0 ="1 (1+%2)(6,U¢,){{, Ud,).
v=1

It is easily shown using standard interpolation theory that ®, is equivalent to
W& (X;R) for b €[0,1]. We denote W5™(X;R) by ©, from here on. The
operators U and W extend to linear operators on ®, for b € [0, 1] (Lemma 2.1
of CO).

Let U(6) be defined by

(2.17) (¥, U(0)$) = D?L(8)dy.
By definition of the derivative U(8) is a bounded linear operator on ®, since

a>d/2m. From (2.10) we have the next lemma which implies Assumption
A4 of CO.

LEmMMA 2.3. There are constants 0 < ¢; < ¢y < ®, such that for all 6, €
S(R, a),

c€0,U8) <(8,U(8,)6) < cy,(6,U8)
for all 6 € 6.

Replacing U by U(6,) in (2.14) we obtain for each 6, € N, sequences of
eigenvalues {y,,; v =1,2,...} and corresponding eigenfunctions {¢,, ; v =
1,2,...}. This leads to a norm
1/2

0

(2.18) 1611, = { Y [1+9%K6, U(8,) b0

v=1
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and corresponding Hilbert space @,,. These spaces are uniformly equivalent
for 0, Noo- U(6,,) extends to a bounded linear operator on 0,, for b € [0, 1]
and the linear operator

G.(6+) = U(6,) +pW

is bounded and invertible on @,,. From Lemma 2.1 of CO we have the
following lemma.

LEemMMA 24. For R > 0 and 0, € S(R,a),b>0and v =1,2,... we have
the following:

@) g1l = 1+ y? and lldy, 5 = 1 + 4,
G) [U + uW1 U, = A + py,) ¢, and [U@G,) + uW1UWBDP,, =
a+ MY*V)_1¢*V-
(iii) For b > 0 and ¢ = 0 with b + ¢ <2 — d/2m, uniformly in 6, € N, ,

Y(1+75)(+v5) (1 + pyy,) 2= p~Crerd2zm g5y 50,

meaning that the supremum, over 8, € Ny , of the ratio of the quantity on the
left.to that on the right remains bounded away from 0 and « as u — 0.

Proor. The first two results follow directly from the definitions. The last
result comes from the fact that y,, = O(»?™/9) uniformly for 6, € S(R, a)
and then approximation of sums by integrals as on page 479 of Craven and
Wahba (1979). O

Finally note that if { € ©,, then for 6, € Noo»

(2.19) [ Gu(62) ¢ [xs = T (1 +v8)(1 + wys) X4 U(62)64)".

v

2.3. Bounds on derivatives. It will be useful to have bounds on various
quantities related to the first, second and third order derivatives of the partial
likelihood. For 0 < b < a, u > 0, 6,0, € N, and u, v unit elements in 0, (so
llulle = llvll, = 1) let

Ky (1,b) = sup sup |G.(8,) [ D1,(85)u — D?1(8,)u]|

b?

(2.20) Ks(n,b) = sup sup|G,(6,) [ D*L(85)uv] |,

6,,0, u,v

Ky, (1, b) = sup sup|G,(6,) [ D3,(8,)uv]|,.

6,,09 u,v

The next lemma provides bounds on the behavior of these quantities.
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LEMMA 2.5. There are a constant 0 < M <« and a random variable
A, = 0,(1) such that for b < 2 — a — d/2m we have the following:

(l) K3(,u,,b)2 SM,u_(b+d/2m).
(ll) K2n('u,b)2 SAnMn_l,lL_(b+d/2m),l.L_a.
(i) Kj,(u,b)? <A, My ~@+d/2mY1 4 p=1y =},

Both M and A,, are independent of u and b.

Proor. The results follow from Lemma A.1 in the Appendix because
N,, © S(R, a) for some R. We consider part (iii), which illustrates the techni-
calities. Let 68, = 6, and 0 = 0,:

l6,0.) D%, oy,
(2.21) < M||G,(6.4) ' D1, (8) uv| 4o
- 2

=M Y [1+ v, 111 + wya, ] (D3 (0) wds,);

v=1
but, from Lemma A.1(iii),
<A, Mlull - oI% - X (1 + 75, 1°[1 + pys, ]
v=1
X {”d’*,,”g + n‘1||¢>*,,||§,},
and from Lemma 2.4(i) and (iii) (the condition that b < 2 — d/2m — a is used
here)
(2.22) <A, M-|ul-lvl2- pCrd2m 4+ p= iy},

This proves part (iii). The arguments for parts (i) and (ii) are very similar, just
replace the application of Lemma A.1(ii) by Lemma A.1(i) and (ii), respec-
tively. O

3. Error analysis. Second order Taylor series expansions of the penal-
ized partial likelihood (and its limiting version) yield linear approximations to
the systematic (bias) and stochastic (variance) components of the estimation
error. The linear approximations are defined by the following:

(i) Continuous linearization:

(3.1) 8, — 8o = —G,(8,) 'DI,(6,).
(ii) Discrete linearization:
- -1
(3.2) 8,, —0,=—G,0,) [Dln(B”) - Dl(eﬂ)].

We will show that 6, — 6, and 6,, — 6, may be used to approximate 5# -6,
and 6,, — 0,, respectively. Here 6, is defined as the minimizer of the limiting
penalized partial likelihood /,(8); see (1.7). Recall 6, € ©®, = W3?(X;R). For
the systematic error we have the following result.
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THEOREM 3.1 (Systematic error bound). There is some w, > 0 such that for
any p € [0, o, 0, exists and is uniquely defined. Also for a <(p — d/2m)/2
there is a constant C,, such that for 0 <b < a as u — 0,

(33) ”0” - 00“% < Cp,""(p_b)llo()”?;-

Proor. We apply Theorem 3.1 of CO which requires d(u,a) — 0 and
r(u,a) > 0 as u — 0, where d(u,bd) =16, — 6yll, and r(u,bd) =
Ky(u, b)d(u, @). Since DI, (6,) = DI(6,) + uWé, = uW6, we have the repre-
sentation
(3.4) B, — 8o = [U(8o) + uW] "U(80)8, — 6.

"
Thus using Theorem 2.3(c) of Cox (1988) d(u, b)*> < C,u?~? - [|6,|l5. Combin-
ing this with Lemma 2.5(ii) gives r(u, b)? < CPIIBOIIf, s @Fds2my . pe Since
a<p, d(u,a) > 0, and since 2a <p —d/2m, r(u,a) > 0 as u — 0. Thus
Assumption A.5 of CO holds and from Theorem 3.1 of CO, the conclusion of
the theorem follows. O

Before considering the stochastic component of the error we analyze

I — Byllb for b < a.

nu

LEmmA 3.2. Let w, be any sequence tending to zero such that for some a
satisfying d/2m < a <(p —d/2m)/2, n~lu 2@+d/2m) (0, Let 0 <b<a
and let w, be a deterministic sequence in [w,, uol (uo as in Theorem 3.1). We
have

2 - -
”0 _ Oﬂ*nllb — OP(n llu*n (b+d/2m))

nu*n

and
16, — 6,13 }
sup  { —7-—grasam | = Op(log(k,"))-
#G[nn»#o]{n pGrassm ?
Proor. By first order Taylor series expansion about 6, [see Rall (1969)]

8,, — 6, = G,(6,) '[Dl,(8,) — Di(6,)]

.5
(3.5) + [16(6,) [ D21, (6%) = DI(6)] (6, - 60)s s,
0

where 6 = 6, + s(6, — 6,). Thus
- _ 2
18,, — 6,12 < G.(6,) (D1,(6,) — DL(8,)}|,

+3K,,(1, 0) - 18, — 6,12

Note, since o < (p —d/2m)/2 and p <1, a <2 —a —d/2m. Thus using
Theorem 3.1 and Lemma 2.5(iii) the second term is bounded above by
A, Mn~ly=®rd/2zmy oy p=e where A, = 0,(1). Since a <(p —d/2m)/2

(3.6)
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and b < a, this is less than A Mn ™1 ~(®*+4/2™ To prove the theorem we
need to develop bounds for the first term. Let R, = G,(8,)~'[U(6,) — U(6,)]
and x,(u) = G,(0,)"'[DL,(6,) — DI(6,)] so

(3.7) G,(8,) [ DL,(6y) — DI(8p)] = [1+R,] "x,(1).
R, is clearly a bounded linear operator on @,. Let
(3.8) |R,la,5 = sup [R,6ll5.

ll6lla=1

By Taylor series expansion, R, = [¢G(6,)"'D’l(6°X0, — 6,)sds, where
0 =6, + s(8, — 6,). Thus from the definition of K,

(3-9) IRMIa,b < %K3(/J’a b)lleu - 00”0[ < M : /-L_(b+d/2m)/2 ‘ /J'(p—a)/Z,

where M is a positive constant. Since a + b < 2a <p — d/2m we can choose
Ko such that for all u < g, |R,la,« < 1/2. Since

IR®0lly < IR, las - IR, IEMI6N,

we have by expansion in a Neumann series [I + R,]7! = T;_o(— D*R} (which
is valid for elements in ©,)

i+ R 2wl < T IR,

3.10 i
(3.10) <)l + 1 Rulers | 2() ]l - X 27
k=0
<|lx () lly + 21R la,s - %, (1) |-
Thus
[ A EX O]
n—-lu——(b+d/2m) - n——lu——(b+d/2m)
loea( ) |2
(3.11) MRy + AR M
W EX OO A X0 -
= n—lﬂ—(b+d/2m) n—lu—(a+d/2m) n|*

To prove the results we will now show that for b < a,

[EXOOI

1 —@idem =

MO,(1) and
n=lp

(3.12)

[EXEH]h

~1_ —(b+d/2m)
wElp,,me) B M

< MO,(log(u, ") + 1).
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From the mapping principle in Weinberger (1974), Assumption A.4 and
Proposition 2.1 of CO we have, for 6, € N, and b < [0, 1], 16ll, < M6l for
all 6 € ®,. Also for all v greater than some vy, 0 < m < (y4,/v2™/4) < M < .
Thus

|G.(80) H{DL,(86) — DL(8,)} [, < M| Gi(80) ~H{DL,(85) — Di(80)}s,

(3.13) =M ¥ [1+%,]°[L +pyo,] *B™

v=1
<MY [1+7]°[1+ny] *BM,
v=1

where 3, = v2™/4 and B(™ = {DI,(0,)¢,, — Di(8,)d,,}2. But

Ds,(6y,t)p,, Ds(6y,t)dy, | —
DL,(6)do. — DI(6,)0, = | s((;’o t)) o _ S(( go t)) o | ancey
Ds(8,,1) b,
+[ S(HOst)

[dN(t) — s(8y,t)Ao(2) dt]
(3.14)

1 n
- .§1 f¢0u(xi(t)) dM,(t)

— [[Ds,(80, )0, = Ds(8, )b, ] Ao(£) dt.

The expected values of the squares of the last three terms are easily computed
and shown to be bounded by Mn“lll(bo,,llﬁo. For the first term,

Ds,(00,)b0,  Ds(80,8)¢0,| — \°
{f[ 5(608) | 5(60,0) JdN(”}

Ds (89, t)bo, — Ds(89, )b, ] — \°
< {[[ 0D }dN(t)}

2
+ {f[DS(BO»t)d’oV $,(00,t) — s(0o,1) ] dN(t)} .

s(6o,1t) $,(0o,1t)

Applying arguments used in Lemma A.1(i)) in the Appendix gives bounds of
O(n_1||d>0,,||%) for the expectations of both terms on the right-hand side of the
latter expression. Thus

(3.15) EB(™ < Mn~ o, I3,
where M does not depend on n or v. The first part of (3.12) now follows
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directly by Markov’s inequality because

Elx,(wlE < T [1+7][1 + u7,] *EBY
(3.16) vt
<Mn-! Z [1+%]°[1+uy,] % < Mn~u-®+d/2m
as u — 0. The last inequality comes from Lemma 2.4(ii). For the second part
of (3.12) consider

o[l +%]°[1 + py,] *BP

(3.17) h(un) = 7Ly - @rd/2m)
Clearly
Mo ,
(3.18) sup | A (p)| <lha(ra) |+ [ W) |dp.
wElp,, ol Kn

The condition on «a and the previous argument implies |A,(u,)l <M O,(1).
For the second term by direct computation |A, ()l < ™A ()l so

Tooa[1+7,]°[1 +wy,] "
(3.19) E|W,(n)]| <cu™! -G+ /am)

The term in brackets is bounded (uniformly in u € [0, u,]) by Lemma 2.4(ii).
Thus there is a constant M such that

" "
(3.20) E[ |W(w)|dp < M[ wldu < Mlog(p;Y).
123 123
From (3.18) sup, <, ol ()l < M O,(1 + log(u, 1). O
The final result follows by applying Theorem A.2 of the Appendix.

THEOREM 3.3 (Stochastic error bound). Let u, = O(n~?) for some 6 > 0
and suppose for some «a satisfying d/2m < a <(p —d/2m)/2,

n- M—Z(a+d/2m) - 0.

Let 0 <b<a and py, be a deterministic sequence in [u,,u,l. There is
1o > 0 and some constant 0 < M < » independent of u and n such that the
event: 0, , exists for all u € [u,, ,u,o] satisfying

”0 ”b < Mn~ 1 —(b+d/2m)

Npxn

and

16,,,, — 6,13 i
sup —n araam | <M log(p.n ),
wEp,, mol [

occurs with probability approaching unity as n — .
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Proor. Let d,(u,b) = 18,, — 6,1, and r(u, b) = Ky (u, b) +
K, (1, b)d,(u, a). By definition of Lo n_l,u,_z("“”d/zm) O(n~¢) for some
g > 0. Thus n~'u,2**4/2m) Jog(u 1) > 0. From Theorem 3.1, by choice of
o, 6, — 00|| <R/2 for all p €[0,u,]l. Thus with r=R/2, Sy(r,a)C
S(R, a) = N,,, for all u € [0, 1y]. From Lemma 3.2, p1, can be chosen so that

(3.21) sup d, (u,a)’ < 0,(n " log(p; ), @rd/2m).

MG[;L,,, I“O]

This tends to zero in probability. Using Lemma 2.5,

2
sup r,(u,a)
(3.22)  mElkamol

< Op(n—llu’;(2a+d/2m)+10g( )#nZ(a+d/2m)) _) 0.

Thus Assumption C in the Appendix is satisfied and so by Theorem A.2 the
event that 6,, uniquely exists for all u € [u,,, u,] with

16, — é,mllb <r,(um,b)d, (u,a)
occurs with probability approaching unity as n — «. On this event,
16,, — 8,115 < 18, — 8,115 + 16,,, — By, Il

< d (1, b) + o, 8)d (1, ).

(3.23)

Using Lemma 3.2,
wup ra(, 8)°d, (1, @)
b+d/2m
(8.24) nefu, p| P wTCTIE™

< Op(n—llog(ﬂ;l){“;(2a+d/2m) + “;2(a+d/2m)}) _)p 0.

Thus the convergence rate of IIOIL - BMIII, is determined by the convergence of
d,(u, b). From here the results follow by Lemma 3.2. O

APPENDIX

The first result in this Appendix concerns bounds on the derivatives of the
partial likelihood and its limiting form (see Section 2). Assumptions A and B
are in force throughout. Spectral decomposition of U and W (see Section 2) in
Wy (X;R) leads to a representation for the W ™-norm:

(A.1) lulf = Y [1 +v,]1%42

where u, = [¢,(x)u(x)dx and vy, (= v?/2™) and ¢, are the eigenvalues and
eigenfunctions arising from the spectral decomposition.
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LEmMA A.1 (Bounds on derivatives). Let @ > d/2m and R > 0 be given.
There is a constant 0 < My < » and a random variable A, = O,(1) such that
for all 6, € S(R, a) we have the following:

@ {D%(8, )uvw)? < MgllulZllvlZllwll3.
(i) {D%,(6,)uv — D29, )uv)? < A, Mpn~=ullv]2.
(ii) {D31,(0 )uvw}? < A, Mellul2lvlHlwll§ + n~ w2}

Proor. The constant My is used generically in the proof, successive
appearances will typically involve larger values. The technicalities are illus-
trated by parts (i) and (ii). For part (i), computing directly
D3s(0,,¢t)uvw

D31(6,) uvw =[ 0.0

D?s(6y,t)vw Ds(84,t)u
5(04,1) s(04,1)
D?%s(0,,t)uv Ds(6y,t)w
s(04,1) §(04,1t)
D?%s(0,,t)uw Ds(0,,¢t)v
s(04,1) s(04,1)
Ds(0y,t)u Ds(04,t)v Ds(0y,t)w
§(04,t)  s(04,8)  s(04,2)

(A.2)

ls(@o,t)Ao(t) dt.

Each term in this expression is analyzed separately. Fortunately the analysis is
very similar for the different terms. For the first term, direct application of the
Cauchy-Schwarz inequality and Lemma 2.2 gives

D3s(0,,t)uvw

{f‘ws(eo, t))to(t) dt}

(A.3) sMRj{[u(x)v(x)w(x)e9*<x> dx} Ao(t) dt
< MRsupIu(x)Izsup lu(x) |2|| wl L2||2
xeX xeX

2 2 2
< Mgllullallvlgllwllo.

The last inequality follows from Sobolev’s imbedding theorem because a >
d/2m. Similar analysis of the other terms leads to the bound in (i).
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For part (ii),
D?1,(0,)uv — D?1(0,)uv
f D?s,(04,t)uv  Ds,(04,t)u Ds,(04,¢)v
(A.4) (0, 1) $.(0x,8)  8,(04,%)
D%s(04,t)uv  Ds(04,¢)u Ds(0,,¢t)v
f §(04,1) s(04,t)  s(04,1)
We analyze a representative term,
D?%s,(04,t)uv _ D?%s(0,,t)uv
——————dN(t) — | ——————5(0,t)Ao(2) dt
/ T ORN| s (o DA(®)
D% ,(0,,t)uv  D3?s(04,t)uv
Sa(0x,2) s(04,1)
D3?s(0,,t)uv
+[ (8,1)
3(0*’t)

J dN(t)

Js(()o,t))to(t) dt.

dN(t)

(A.5) -/

[dN(t) — s(0y,t)A0(2) dt].

Here write
D?%s,(04,t)uv  D?s(0,,t)uv
'[ $p(0x,2) s(04,1)
D?%s,(0,t)uv — D?s(04,¢t)uv
Sn(e*’t)
N D?s(04,t)uv [s,(04,t) — s(04,8)]
j. 8(0*7t) sn(0*7t)
Let ¢(x) = e*@u(x)v(x). Now |¢ll, = lle®uvlly < lle®lallullallvll, for o>
d/2m (see Appendix of CO) and by series representation of the exponential
lle®ly < Mgel®le, Thus ¢ € Wj**. Let ¢(x) = L, ¢,¢,(x), where ¢, =
Jp(x)p, (x) dx. Also r,(8)¢, = 1/n)T:_ 1y, (x,(¢)) and r()¢, =

[, (x)q(x,t) dx. Substituting for ¢ and applying the Cauchy-Schwarz in-
equality to the summation over v gives

{/[ D?%s (0, t)su;)e;?)zs(f)*, t)uv ] dN(t)}

dN(t)

dN(t)

(A.6) =/

dN(t).

- {‘5[1 b1, 1+ n]‘“{ f [r”(t)s‘f(”@;"t()t)"’"] dZV(t)} }

rt)¢, —r(t)e,
Sn(0*7t)

<llgl2Y[1 + y,]_a{f[ ]dﬁ(t)} .
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Above we have used the fact that ©,[1 + v,]*¢2 < MR [1 + y2Jp?2 = Mpllyll2.
Using the Cauchy-Schwarz inequality and Lemma 2.1(3),

r(t)$, - r(t),] — \”
{f[ n(00r D) ]dN(t)}

(A7) < {/ [r.(t)d, —r(t)e,]

— 1 —

r.(t)o, —r(t)e, 2 1 —
<M, {f[ ( )i(eo,t())¢ ] dN(t)} : {f—sn(t‘)o,t) dN(t)}.

Now E{[[1/s,(8, t)] dN@®)) = E{J(1/5,(04, t))s,(04, DAo(t) dt} = Ay(1) < 0.
Also

i), —r(0)e,]"
E{f[ ( )s (Oo’rt()w ] dN(t)}
(A8) = [E[r(0), = r()8,]°Ao(2) dt

< MRn_lfVar é,(x(t)) dt < Mpn=,l3.
Hence by Markov’s inequality

D2s n(0y,t)uv _D2s(0* Huv 2
A. n ) ) Nt VoA b s 1
(&9 {f $,(04,¢) dN(t)} <MgpA,lullvlen™",

where A, (independent of u, v and 6,) is O,(1). Also

D?s(04,t)uv [s,(04,t) — s(04,2)]
{f (0., 7) 5.(00,7)

dJ\_/'(t)}

[sn(o*’ t) — 3(0*’t)]2

$u(60,t) 4N ()

2
(A.10) < MR{ supDzs(O*,t)uv} f
t
LN
| t).
f sn( 00’ t) ( )
Here Assumption A(iii) and the Cauchy—Schwarz inequality gives
supD?%s(0,,t)uv < Mgllullollvllo,
t

so by repeating the previous argument leading to (A.9) we obtain an upper
bound of ||ullZllvl2n~MzA, for (A.10).
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To deal with the remaining term in (A.5) let g(¢t) = [D?s(8.,, t)uv/s(8,, t)].
From Assumption A(iii),

2
2 11,112
< Mgllullz,llvllz,.

2

dg
A1l 2 +“-—
( ) lgllz, 7.

Therefore g € W,[0, 1]. Thus g has the representation g(¢) = *,g,b,(t), where
b, are L,[0, 1]-orthonormal functions and IIgII%Vzl = ¥,[1 + v]?g2. Substituting
the series expansion for g and applying the Cauchy-Schwarz inequality to the
sum over v [as in the argument before (A.7)] gives

D500 D0 [ i7(6) — s(00, 02000 ]
3(0*7t)

(A.12) < {2[1 + u]2g3}
YL+ v]—2{fby(t)[dﬁ(t) — 5(0, ) Aq(t) dt]}z.

But

E{fb,,(t)[dZV(t) — s(8,, t)AO(t)dt]}

(A.13) < E{fbv(t) dM(t)}z + E{fbv(t)[sn(Bo,t) — (6, )] Ao(t) dt}z

— 2 —
<Mn~ bz, = Mn~t.

Combining results gives the required bound for (A.5). Similar arguments are
applied for the other part of (A.4) and this gives the bound in part (ii). The
proof of part (iii) uses techniques already encountered in the analysis of parts
(i) and Gi). O

Uniform linearization result. A generalization of a linearization result in
CO for penalized likelihood estimators is now proved. Consider a penalized
likelihood functional [, defined on a real Hilbert space ® by

(A.14) 1,,(8) = 1,(6) + %<0,W0>

for u > 0. The limiting version of {,(68) is denoted /(6). We assume that 7, [,
W and O satisfy Assumptions A.1-A.4 of CO. From Assumption A.3 of CO
there is a bounded linear compact operator U on ® such that D21(0,)¢¢ is
equivalent to (¢, U¢) for ¢ € O. Considering the spectral decomposition of W
relative to U (as in Section 2 or Section 2 of CO) leads to a set of spaces 0,
with norms || - || for & € [0, 1]. The true parameter is in N(,0 c O, for some a.
Let Z, (6) = DI,(6) + uW#0, where D is the Frechet derivative operator with
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respect to 6. Define U(6) by <¢,U(0)¢) = D*(0)p¢ for § € N, and for
6, € Ny, let

8,,— 0, =[U(6,) +uW] 'Z,6,
(a15) " [U(6,) +n ]_1 (6.)
= [U(6,) + uW] {DL,(6,) - Di(6,)}.

The existence of these quantities is justified in Section 2 of CO. Let
d,(u,b) = Hénu - ou”b and r,(u,b) = Ky,(u, b) + Ks, (1, b)d, (1, a),

where K,, and Kj;, are norms of the second and third order derivative
operators defined as in Section 2 of this paper, see also Section 2 of CO. We
make the following assumption.

AssumpTiON C. For some 7 > 0, S,,#(a, 7) C N,, for u € [, u,), and

(A.16) sup d,(u,a) —, 0 and sup 71,(p,a) -, 0.

wE[p,, mol HE[1y, 1ol

THEOREM A.2 (Uniform existence of 6,, and linearization). Let « and
b €[0,a] be given and suppose n, and un, satisfy Assumption C. With
probability tending to unity as n — », for all p €[u,,pn, we have the
following:

() There is a unique root 0, of Z, (6) = 0 in S,,“(2d Au, @), @), and
@ lle,, — 0,y <2 r(u,d) - d,(u,a)

Proor. For 7> 0,let E be the event that
(A.17) sup d,(u,a) <m/2 and sup r,(p,a) <t1/2.

K Elpy, 1ol wEp,, 1ol
The probability of E can be made arbitrarily large for all n > n,. Let
t,, = 2d,(u,a) and choose m <1 so that Assumption C holds. Now we
restrict to the event E”. Here S,(z,, a)cN, for al n>n, and
SUP,, e, o) Tn(K> @) < 1/2. Let F, (¢) = ¢ — [U6,) + uW]1'Z, (6, + ¢) for
¢ € 0,. Repeating the computations in Theorem 3.2 of CO gives

(A.18) [Fuu( D), < [ralre, @) + 32, <[5+ 3]t = tas
and
(A.19) | Fr(#1) = F,(b5) |, < [3]lld1 — &5,

which hold for all u € [u,, uol Thus F,, is a contraction on S,,”(tn u» @) for all
u € [p,, ol From here the argument of Theorem 3.2 in CO is repeated to
obtain parts (i) and (ii) of the theorem. O
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