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INADMISSIBILITY RESULTS FOR THE SELECTED
SCALE PARAMETERS
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Let X, X,,..., X, be k independent gamma random variables with
different scale parameters but with a common known shape parameter.
Suppose the population corresponding to the largest Xy [or the smallest
X 1)) observation is selected. The problem of estimating the scale parameter
01y lor 6] of the selected population is considered. We derive, using the
method of differential inequalities, explicit estimators that dominate the
natural or the existing estimators. The improved estimators of 0., are
similar to that of DasGupta estimators for the usual simultaneous estima-
tion problem. An implication of this result for the simultaneous estimation
of the selected subset is also considered.

1. Introduction. Estimation of a characteristic of the selected population
arises in various practical situations. Suppose, as an example, a doctor has
experimented % types of drugs for a particular disease and chooses the best
one. He might naturally be interested in obtaining an estimate of the effec-
tiveness of the selected drug for the successful diagnosis of the disease. These
types of problems of estimation after selection have been, of late, studied for
various probability models. Some of the recent references in this area are
Cohen and Sackrowitz (1982, 1989), Sackrowitz and Samuel-Cahn (1984,
1987) and Venter (1988).

Let X, X,,..., X, be k independent random variables, where the density
of the X; is

(1.1) fi(x16;, p) = 6;Pe=/%)xP~1 /T(p).

Assume the scale parameters 6,’s, 0 < 6, < », are unknown and the shape
parameter p is known. Let X;) > X, > -+ > X;, denote the order statistics
of the X,’s. We shall call the population with the largest (or the smallest) scale
parameter the best population.

Suppose we employ the natural rule, to select the best population, according
to which the population corresponding to X, [or X ,,] is selected. Let 01y [or
01, denote the scale parameter associated with the selected population. Ob-
serve that, for example, 6,;, is a random quantity, and is given by

1.2 0, =
(12) ® 0, otherwise.

Received June 1991; revised March 1992.

AMS 1980 subject classifications. Primary 62C15; secondary 62F10, 62F07.

Key words and phrases. Estimation after selection, gamma scale parameters, inadmissible
estimators, differential inequalities, simultaneous estimation after selection.

2183

[

3l
Institute of Mathematical Statistics is collaborating with JSTOR to digitize, preserve, and extend access to [& )z
The Annals of Statistics. BIKOIE ®

8

X o

WWw.jstor.org



2184 P. VELLAISAMY

In this paper we consider the problem of estimating 6;, and 6, under the
squared error loss (unless stated otherwise) defined, for instance, by

(1.3) L(t,04) = (¢t - ‘9(1)‘)2‘

We first consider the problem of estimating Ok A natural estimator of 6,
is X(;,/p. Also a natural competitor of X, /p is X,/(p + 1), the analog of
the best scale invariant estimator (of 6,) X;/(p + 1) of the component prob-
lem (i.e., the case 2 = 1). We have not been able to compare these two
estimators analytically. However, we derive a class of estimators for p >
(k — D~! that dominate the natural estimator X,,/p. For the estimation of
01y, it is known that the estimator X;)/(p + 1) is better than the natural
estimator X ;,/p [Vellaisamy and Sharma (1989)]. In this paper we obtain a
class of estimators that are better than X /( p + 1), and are similar to
DasGupta [(1986) Theorem 4] estimators for the usual simultaneous estima-
tion of gamma scale parameters.

We exploit the technique of constructing improved estimators by solving
certain differential inequalities on the sample space. This technique is well
known and has been successfully employed by many statisticians, prominantly
by Berger (1980), Hwang (1982) and DasGupta (1984, 1986), among others, for
the simultaneous estimation problems where no selection is involved. Our
method of proof is along the lines similar to that of Berger (1980) and that of
DasGupta (1986). We also apply the UV method of Robbins (1988) to obtain
the unbiased estimators of the risk difference.

2, The main results. We first state a lemma which is essentially Corol-
lary 2 of Berger (1980), and is useful in finding unbiased estimators of certain
functions of X = (X,,..., X,) and 0 = (6,,...,0,).

Lemma 2.1 [Berger (1980)]. Suppose X,, X,,..., X, are k independent
random variables with densities defined in (1.1). Let u(x) be any real valued
function defined on R* such that (i) Eyu(X)| < © and (ii) the indefinite
integral

hi(x) = fxiu(xl,...,xi_l,t,xi+1,...,xk)tp'ldt
0
exists for all x; € R'. Then
(2.1) - v(X) = x; Ph(x)

satisfies the condition
Ey(v(X)) = 0,Eo(u(X)) forall 6.

. We are now ready to state and prove the main results of the paper.

THEOREM 2.1. Consider the estimation of 6, under squared error loss. Let
p>(k—1""and ¢: R*™D - R! be any real valued function satisfying the
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following conditions:

D0<e<2kp—p—1/p(p+1)?2=M, say.
(i) ¢ is nonincreasing in each of the (k — 1) arguments.

Then any estimator

X(k) _X
8,(X) = 7[1 +p(p + 1= Xp)e(Xay -, Xp-n)e @]
dominates 6(X) = X ;,/p.

Proor. Let 8,X) = 6(X;), X5y, ..., Xz)) be any estimator of 6, Then
the risk of 8, under squared error loss is

k
R(al’ 0) = Z EQ[S%(X(I)M ce X(k—l)i’ Xi)
(2.2) =t

_261(X(1)i, ceey X(k—l)i’ Xi)oi + eiz]I(Xi < X(k—l)i),

where X, > X, = -+ = X;_,, denote the ordered values of

X, Xoy.o oy X;_1, X401, -+, X;,- Applying Lemma 2.1, an unbiased estimator of
D,(6) = Eo[9i31(X(1)i, ooy X1y X)) I(X; < X(k—l)i)]
can be seen to be

n(X) = Xil_p[gl(X(l)i’ coos Xy X) (X < Xp—1yi)

(2.3)
+81(Xayir- s Xn—yir Xip—1yi) I(Xip— 1y < Xi)]’
where
Xy, B
(2.4) g%y, xgy .05 %) =f0 81(%y, Xgy.. ey Xy, t)EP 1 dE.

Therefore the risk is equal to
k
R(5,,0) = X EO[{B%(X(l)i’ oo Xop—nir Xp)
i=1

_ZXil_pgl(X(l)i’ vy Xiponyir Xp) + aiz}I(Xi <Xp-1yi)
2.5 _
(25) -2X} Pe(Xayis- - Xp—nyir Xp-1y) I(X; > X(k—l)i)]
= E[83( Xy, - Xiy) — 2X(5781( Xetys -+ 5 Xwy)

_2G1(X(1), ceey X(k)) + 0(2k)] Py
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where
G Xay - Xwy) = X781 Xy -+ Xy Xany) 4

k-1
+ Z X(li)_pg1(X(1), cees X(i—l)’ X(i+1)’ cey X(k)’ X(k))'
i=2
Using the fact

g]}.z(l)(xl,"‘yxk) = a—gl(xl,...,xk) = 81(x1,...,xk)x;:_1,
k

we can write

2 -

R(5,,0) = Ee[X(zk()l_p)(gfa)(X(l)’ s X(k)))
(2.6)
2 X558 (X -+ Xpy) = 2G+(Xays- - Xy) + 03|

Let 8,(X) = 8,(Xy, ..., X)) be any other competing estimator of 6, such
that A(x,,...,x;) = gy(xq,...,%,) — &(xy,...,x;) is a nonincreasing function
in each of first (¢ — 1) arguments, and g,(x,,...,x;) be defined as in (2.4)
with 8, replaced by 8,. Then an unbiased estimator of the risk difference
R(8,,0) — R(8,,0) is given by

A(X) = X<%}_p){(g§(1)(X(l)’ e X(k)))2 - (81X -+ X(k)))z}
(2.7) — 2X15Ph( Xy, s Xeay)
- 2{G2(X(1)’ o X)) = Gu( Xy - X(k))}‘
Note that
Go(Xay - Xiy) = Go Xy -+ X

= X5 h( Xy s Xinys Xiwy)
k-1
+ Z X(li)_ph(X(l), e, X(i_l), X(i+1)’ ceey X(k), X(k))
i=2
2 (k - 1)X(]k;ph(X(1), ceey X(k—2)’ X(k—l)’ X(k))’

since h(xq,...,x,) is nonincreasing in the first (¢ — 1) arguments. Therefore,
- 2 2
A(X) < Az(x) = X(zk()1 p){(gg(l)(xu), cees X(k))) - (gf(l)(X(l)’ ceey X(k))) }
| — 2RXGyPh( Xy - - Xiy)-
Now let 6,(Xy, ..., X)) = X),/p- Then

k) _ k(1 k(1) _ k(1
h()—gz()_g1()—g2()_xf/p
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and
(g2k(1))2 - (g{em)z = (R*®)? 4 2xPh*® /p.
Hence,
2
_ 2 _ _
(2.8) Ay(X) = X755 7P( RFD)” 4 ;ka)l’hk“) - 2kX(1k)Ph.
Therefore, we have to solve the differential inequality
2.9 Ay(x) <0 forx;>x,> -+ >x, >0,
3 1 2 k
where

2
Ag(x) = xlPI(REDY? 4 I—)xkhk“) —.2kh.

Now let
h(xl’ cees xk) = ‘P(xl’ R xk—l)‘l’(xk)’

where ¢ satisfies the assumptions of the theorem and () is positive and is
differentiable at all ¢ € (0, ). Then our problem reduces to that of solving the
inequality

(2.10)  Ay(x,) =xbP(W (%)) + @ (5,) — andh(;) <0,

where a; = 2/pM, a, = 2k/M, ¢'(x) = (d/dx)¢(x) and x, > 0. It can be
shown that y(x,) = xP*'e™** is a solution of the above inequality. Hence

(2.11) B(%p,. .y %) = @(%p,..., %, ()xP le ™

is a solution of the differential inequality given in (2.9).
Let us now take

(2.12) 8og(%y,. .., %) = %x,8(%,...,%,)/D,

where s(x,...,x,) is a suitable function to be determined later. Then, from

(2.11) and (2.12),

R*D(x,, ..., x,) = xP[s(xq,...,x,) — 1] /p.
(2.13) (1 1) = xP[s(x; #) — 1] _
=@(x,--s%_1)(p+ 1 —x,)xPe™™

and hence,
s(x,..,%,) =1+ pe(xy,...,%,_1)(p+1—x,)e .
Therefore,

X(k) -X,
85(X) = 7[1 +p(p+ 1= X4)e(Xays - - Xipop))e ¥®]
improves upon §,(X), which proves the theorem. O

REMARK 2.1. We have been able to find improved estimators when p >
(k — 1), by solving the differential inequality in a rather crude way. Al-
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though our result covers most of the practical cases, it will be interesting to
obtain improved estimators for the case p < (¢ — 1)~ ! also.

We next consider the estimation of 6;,. The following theorem, which is
similar to Theorem 4 of DasGupta (1986), presents improved estimators over
the existing estimator X ;)/(p + 1) [Vellaisamy and Sharma (1989)].

THEOREM 2.2, Let Y = (l‘[f=1X(i))1/ k and for t > 0, s(¢) be a real valued
nondecreasing function such that (i) s(¢)/t is nonincreasing, and (i) 0 <
s(¢)/t < 2k(k — 1)/(p + k)?. Then any estimator of the form

X ! Y) + —vs(Y
+ + —Ys'
p+l (pF ) pf( ) + 7 Ys'(Y)

(2.14) 8,(Xuy---» X)) =
dominates X;,/(p + D.

Proor. We present here only the important steps as most part of the proof
is similar to that of Theorem 2.1.

Let v(X) =v(X,y,..., X)) be an arbitrary estimator of 0)- Then an
unbiased estimator of

Dy(0) = Eo[aivl(Xi’ Xayir- - X(k—l)i)]
can be seen to be
(2.15) no(X) = X1 7Pq (X, Xayir s X)) I(X; > X1y0),

where
X1 _
G1(%1, Xgy o %5) = [ vi(t, %5, 1) 8P
X2

Let v4(X) = vy(Xyy, ..., X)) be any other estimator of 6, and
qo(xy,...,x;) be the corresponding function associated with »,. Then an
unbiased estimator of the risk difference R(v,,0) — R(v,,0) is,

(2:16) H(Xqy-., Xo) = X 2| (@37) = (ai)] - 2X057(a2 - a0,

where for example
d
qiP(xy, ..., %) = Bx_q(xl"”’xk) =P wi(xg,...,x;).
1

Let now v(Xy, ..., X)) = X,/(p + 1), and

X
€))
(Xay -5 Xwy)»

V2(X(1)’ ceey X(k)) = (p + 1) w

where w is some suitable function.
Following Berger (1980), let

Fxy,oox) = (p+ D(@a(x1,0- 05 %) = q1(21, ..., 1)),
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where now qy(xy,...,x,) = (xP*! — x2%1) /(p + 1)% Then (2.16) reduces to

_ 3 2
H(Xgy s Xgo) = (0 + 1) 7 X P(FO(Xy, ., X))
(2.17) +2XGPF' (X, X))

—2(p + 1) F( Xy r X)) X557

Note here that (2.17) is of the same form as that of (2.7) of Berger (1980).
Therefore, the differential inequality to be solved is

(2.18) H(xy,...,x,) <0 forx;>x,> -+ >x,>0.
As in DasGupta (1986), choose now
F(xl’ .. "xk) = fo(y),
where y = (I1%x,)!/%, and s(-) satisfies the assumptions of the theorem. Using
the facts,
1
(2.19) F'O(xy,...,2) = x{"l[pS(y) + ;yS’(y)},

ys'(y) <y and x; > y, it can be shown [see DasGupta (1986), Theorem 4] that
the above choice of F is a solution of the inequality in (2.18). Also, it is easy to
observe that

1
w(xg,...,%,) =1+ xfl[pS(y) + ZyS’(y)]-
This establishes the theorem. O
REMARK 2.2. Note that one could also take Y as the geometric mean of the
first r order statistics, that is, Y = (IT]_, X;))"/", 2 < r < k. The theorem still
holds although the upper bound for s(t)/¢ is now 2r(r — 1)/(p + r)2

3. Estimation of the selected subset. Suppose a subset of the given &
gamma populations is selected using following rule [Gupta (1963)]:

RULE. Select the population corresponding to X; if and only if
| X; > X,

where ¢, 0 < ¢ < 1, is some suitable number.

It is known [Vellaisamy (1990)] that the estimator

1 *
Xo < X)) + — X XOI(X 4y < Xy < X))

B o
Vi= el 7 5
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is better than the natural estimator

1 k
U=—- Z X(r)I(X(r+1) <ec (1) r))
P,

for the estimation of
k
= L 0PI X iy < Xy < X))

under the squared error loss function defined, for example, by

k r X . 2
)
L(Q,U)= Y [ > ( 2 — o(j)) ]I(X(r+1) <Xy < X)),
r=1|j=1\ P
where X =(X,,..., X)), 67 =(04y,...,0,) and 6, is the parameter
associated with X;), i =1,...,
Let us now define

k
L= Y LOL(X,.p < Xy < X,p)

r=1

and

k
M= Y MOI(X,, <cXy <X,)

r=1
to be two estimators of @, where for 1 < r < &,
L(r)=(L1,L2,... L ) M(r)=(M1,L2,...,Lr)

with L, = X, /(p + 1, M, =58(X,),..., Xy, defined in (2.14), and
L,,..., L, are arbitrary estimators An immediate consequence of Theorem
2.2 is that the estimator M dominates L.

It is now clear that the estimator

1 k
U, =6,(Xays -+ or Xy [( Xy < X)) + ; Y XOI(X, ) <Xy < X,)
r=2
dominates the existing estimator U, of Q.
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