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ASYMPTOTIC THEORY FOR NESTED CASE-CONTROL
SAMPLING IN THE COX REGRESSION MODEL

By LARRY GOLDSTEIN' AND BRYAaN LANGHOLZ?

University of Southern California

By providing a probabilistic model for nested case-control sampling in
epidemiologic cohort studies, consistency and asymptotic normality of the
maximum partial likelihood estimator of regression parameters in a Cox
proportional hazards model can be derived using process and martingale
theory as in Andersen and Gill. A general expression for the asymptotic
variance is given and used to calculate asymptotic relative efficiencies
relative to the full cohort variance in some important special cases.

1. Introduction. The Cox model for failure time data [Cox (1972)] speci-
fies that the hazard for failure at time ¢ for an individual with covariate vector
Z(t) € R? is

Ao(t)exp{BoZ (1)},
where A is the baseline hazard rate and S, is an unknown parameter in R%.

With T the time of failure or censoring of the ith individual with covariate
Z;, the partial likelihood for a set of data is given by the product

n e 'Z,(T,
L) - 1 xp{B ( )} ,
i=1 ZjeRi exp{BZj(Tl)}
where §; is the indicator that the failure of individual i was observed and R,
is the set of those at risk at the time of the ith failure [Cox (1972)]. Using a
counting process model and martingale central limit theorems, Andersen and
Gill (1982) show that L, may be treated analogously to a standard likelihood
for inferences on B,. This model is well suited for the analysis of cohort
studies in medical research in which morbidity or mortality is the endpoint of
interest and which involve the follow-up of a large number of subjects. It has
become a standard method of evaluating clinical trials, disease prevention
trials and epidemiologic cohort studies. Often assembling the covariant histo-
ries Z; for each member of the cohort is prohibitively expensive and methods
in which covariate data need only be collected for a small sample of the cohort
are highly desirable.

Nested case-control sampling [Thomas (1977)] is a popular method of
sampling from a cohort and has been employed in many studies [e.g., Liddel,
McDonald and Thomas (1977), Breslow, Lubin, Marek and Langholz (1983),
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1904 L. GOLDSTEIN AND B. LANGHOLZ

Whittemore and MacMillan (1983), Boice, Blettner, Kleinerman, et al. (1987),
Yeh, Yu, Mo, Luo, Tong and Henderson (1989)]. The expression L ¢ is formally
equivalent to the conditional logistic likelihood used for the analysis of matched
case-control studies in which the failure at a given time is considered the case
and the others at risk at that time are considered controls. Unlike matched
case-control studies in which the matched sets are disjoint, in L, controls will
generally appear in more than one risk set. Typically, there are a large number
of controls per failure and it is well known [e.g., Breslow, Lubin, Marek and
Langholz (1983)] that, for matched case-control studies, little added efficiency
is realized with more than six or seven controls per case. Thus under this
paradigm, it is natural to use a sample risk set R ; of size m consisting of the
failure and a random sample of m — 1 controls instead of the R, in L/,
leading to the expression >

L(B) = 1-'1[ exp{B'Z,(T;)} )
i=1| Z;c g, exp{BZ,(T;))

For example, in a study of mortality from esophagus cancer among the
employees of a certain San Diego county aircraft manufacturing firm,
Garabrant, Held, Langholz and Bernstein (1988) defined a cohort of 14,067
workers as all those who worked at the firm four years or more prior to
December 31, 1982, with at least some of this time after January 1, 1958. This
cohort was followed through December 31, 1982. For each subject the re-
searchers needed to collect ““basic information” to define the cohort: date and
age of entry into and exit from the cohort (obtained from company records),
mortality status at the end of the study (obtained through company, California
Department of Motor Vehicles, Social Security or credit company records) and,
if dead, the date and cause of death (obtained from the death certificate).

To explore the relationship between particular exposures and the occur-
rence of esophagus cancer, 4 age and sex matched controls were randomly
selected for each of the 14 esophagus cases, yielding a valid sample from the
cohort with close to full efficiency. For the (1 + 4) X 14 = 70 subjects in this
sample, detailed exposure histories were compiled by collecting job histories
and ascertaining, through company records and interviews with employees at
the plant, the types of substances used in the various manufacturing processes
by an individual with such a job at a given time; an impossible task for the
entire cohort of over 14,000. We return to this example and calculate the
asymptotic relative efficiency of using such a sample relative to the entire
cohort in Section 6.2.

Theoretical justification for the use of L in the estimation of B8 has thus far
been limited to the partial likelihood arguments of Oakes (1981) and Prentice
(1986a). However, conditions for the consistency and asymptotic normality of
the log relative risk parameter based on L have not previously been explored.
- As in Andersen and Gill (1982), we associate with the ith individual a
counting process N, with rate

A(t) = Yi(t)/\o(t)eXP{B'oZi(t)}
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such that M;, with dM; = dN, — A;, is a martingale. The term Y(¢) is the
indicator that the ith individual is at risk at time ¢; in particular, N, can only
jump when Y;(¢) = 1.

Although our overall framework is somewhat less general than is considered
by Andersen and Gill (1982), our conditions are easy to understand, apply to
situations of great practical importance and vastly simplify the exposition;
their relaxation is discussed in Section 7.1. We considers cohorts with a single
stratum, but the results generalize to multiple strata in an obvious way.
Whereas Prentice and Self (1983) allow for general relative risks of the form
r(B'Z), we restrict attention to relative risk of the form exp(8'Z).

In this paper we provide a probabilistic model for nested case-control
sampling which allows for a theoretically rigorous study of this sampling
design. We provide conditions to prove the cons1stency (Theorem 1) and
asymptotic normality (Theorem 3) of B, the maximum partial likelihood
estimator based on L, and show that the inverse information, the second
derivative of log{L(B)} at B =B, is a consistent estimator of the inverse
variance matrix of 8 (Theorem 2). We show that under our assumptions our
formulas reduce to those of Andersen and Gill (1982) as the number of
controls tends to infinity. Furthermore we obtain asymptotic relative efficien-
cies relative to the estimator based on L, for the special cases B, = 0 and of
univariate binary exposure. These last examples generalize the results of
Breslow and Patton (1979) and Breslow, Lubin, Marek and Langholz (1983).

2. Notation and assumptions. Let (Q, %, P) be a probability space
and {#};c( . a right continuous, nondecreasing family of sub-o-algebras
of & with %, containing all P null subsets of .%. Although we normalize our
finite time interval to be [0, 1], we take a > 1 so that right-hand limits at 1
exist. We assume the probability space supports copies of a counting process
N, a covariate process Z, an observation process Y and the sampling functions
1 described in succeeding text. With d a nonnegative integer, Z and Y are
assumed to be predictable mappings from Q X [0,a) into R? and {0, 1},
respectively. The process Y is the indicator that an individual is at risk. The
vector B, € R? will be fixed. Let A(¢) = Y(¢)A()exp(B,Z(¢)), the hazard
function multiplied by the at risk indicator at time ¢ for an individual with
covariate vector Z(¢), and

A(t) = fot/\(s) ds.

The following conditions are assumed to be in force throughout. The
relaxation of these conditions is discussed in Section 7.1.

ConpITION 1. The process

M =N - Aisa{F },cpo, o local martingale.
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ConpiTION 2. The baseline hazard A, is a deterministic measurable func-
tion bounded away from 0 and infinity.

ConbiTiON 3. The covariate process Z(-) is bounded.

Using that N has only unit jumps, the preceding conditions imply that M
is a {#}; (0, 4) local square integrable martingale with quadratic variation A.
Since the conditions imply also that E{A(#)} < x for all #> 0, M is an
{#); <0, a) martingale and has a only a finite number of jumps in any bounded
interval with probability 1 (see also Lemma 2).

It is worth mentioning that in the framework of some authors the intensity
process is introduced under assumptions by the relation

) :
lim ZP(N(t +h) = N() = 117, ) = M2),

from which Condition 1 now follows [see, e.g., Aalen (1978) or Andersen and
Borgan (1985)].

ConDITION 4. The process Y is left continuous and has only finitely many
jumps on any bounded interval. Furthermore, we assume that [0, 1] ¢ U ¥_,T,,
where I,, I,, ..., I, are measurable subsets of [0, 1], and

(1) minP(¥ ¢ € I, Y(¢) = 1) > 0.

In particular (1) implies that for every ¢ € [0, 1],
p(t) =P(Y(¢t)=1)>0
and is implied by

(2) P(Vte[0,1],Y(¢) = 1) > 0.
Let Z,(¢) be a random vector with
(3) P(Zy(t) € B) = P(Z(t) € B|Y(¢) = 1)

for B a Borel subset of R?.
ConprTioN 5. With V(¢) = Cov(Z(2)), the matrix
V= [V(s)ag(s) ds
0
is positive definite.
- We will denote this condition by V > 0. This condition is necessary; see
Lemma 3 in the Appendix.

The positive integer n will denote the number of individuals. Let I =
{1,2,...,n}.
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ConprTioN 6. With respect to the measure P, the processes (Z,,Y)), i € I,
are independent copies of the process (Z, Y), with A;, N; and M, defined in the
obvious analogous way.

Lemma 2 in the Appendix shows that the preceding assumptions imply that
event times of N; and N; have no points in common for i # j.

In order to apply martingale central limit theorems, we need to associate
nested case-control sampling with a predictable process. Informally, immedi-
ately after any failure or change in a subject’s at risk status, a set of controls is
drawn for every subject at risk. Thus, at any failure time a set of controls for
the failed individual will already have been selected. Since the selection may be
done by an adapted random mechanism, the resulting sampling processes
(described in succeeding text) are predictable.

Define R(%), the risk set at time ¢+, by

R(t) = {j: Y;(t+) = 1}.

Let n(¢) = |R(¢)|, the number of individuals at risk at time ¢+ .
Let Ty = 0 and for 2 > 1,

T, = inf{t > T),_,: Y,(t +) # Y;(¢) or Ny(¢) +# N,(t—) for some i};
that is, T, Ty, ... is the ordered collection of event times of the Y, and N,
processes. Event times of {N;} will be called failure times. Let n, = n(T},) and
R, = R(T,).
IfieR,_j,let P, (R,_,) be the set of all subsets of size m of R,_, that

include i; there are "’:n' 1__11 such subsets. Let R ©,; be independently and
uniformly chosen from P, (R,_,);if i € R;,_,, we let Rk’i be the empty set.
The set R, ; lists the individuals that would serve in the risk set should
individual i be the failure at time T',. Setting 7,,(0) = 0 arbitrarily, we note
that the preceding construction makes

n;(t) = ¥ YjeR, JYT,_, <t <T}
k>1

predictable.
The R, and the 7;; are equivalent ways to represent the sampling
process. Our choice in writing one over the other in what follows is a matter of

convenience only.
At the failure time T,, let i, denote the failed individual, that is, the

unique index i, such that
N;(T,) # N;(T\. ).

Setting R, = R ki, for notational convenience, the nested case-control par-
tial likelihood may be written

exp{B'Z;(T,)}
Zj eR, eXP{.B’Zj(Tk)} ’

L(B) = Ik—I
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where the product is taken over all £ such that T, is a failure time less than
or equal to 1. Note that this likelihood accommodates situations where there
may be multiple failure times associated with single individuals and reduces to
the L given previously when censoring occurs after the first failure.

We estimate B, by B, a solution of the likelihood equation

d log L(B)
dp B
Here and in what follows, expressions of the form 0 /0 and ( ) for m <j
will be set to 1. For a € R, |a|® = d'a, a®' = a and a®? = ad’. For a matrix
D € R¥*? et
IID|| = sup |Dal.
lal <1

The symbols = and —, will denote convergence in distribution and in
probability, respectively. Let U = {1,2,...,m} and, for T c I, Y, = I1 jerY;

3. Preliminaries. In this section, fix throughout and suppress an arbi-
trary s € [0, 1]; for this s write Y = Y(s), Z = Z(s) and p = p(s). The follow-
ing lemma is key.

Lemma 1. Let p €{1,2} and (Y}, Z,), i € I, be independent copies of (Y, Z)
with Z € R4, Y € {0, 1} and
P(Y=1)=p>0.

Let R = {j: Y, =1, P={TcR, |TI =m} and P,={T € P: i € T}. With
T € P, let w(T) be of the form

ierZ exp(BZ;)) "
(4) w(T) = { T, s oxp(BZ,) }

or

| XjerZ exp(B'Z;)
(5) w(T) = { T, or oxp(BZ) }

wzth w(@) =0. Let F=o0(Z;: i €I} and 2 be a sigma algebra containing
alY;; i € I}. Suppose that, gen 7/, R, are mutually independent and uni-
form on P, and that & and o{R,; i €1 } are conditionally independent given
%Y. Let

{:U.

5, -+ Lu(R)%A,

where A; is exp(B,Z;) when p = 2 and may be either exp(B,Z,) or Z; exp(B,Z;)
when p = 1.



NESTED CASE-CONTROL SAMPLING 1909

Then S,, -, q where

1
q =pE{w(U)Z Z Aj
jeU

YU= 1}.

Proor. We consider the case p = 1 and A; = exp(B,Z;). The other cases
are analogous. Let &= Vv 2. With S, , the kth component of S,,
suffices to show that there exists a sequence @, such that:

(a) Var(S, ,|#} -, 0;

(b) E(S, klf}/Qn = L

© @, ~,q

Conditional on ¢, every component of S,, is the average of n independent
random variables. Let Z(T) = max . 7IZ;|. Using that

0 <|w(T)| <Z(T)

we have
1 2 I .
o X E{Yew(2182(R,))2(£,) ).

Var(S, ,|#} <

Taking expectation and using Condition 3 shows (a).
We next compute E{(S,|<}.
First,

w(R,)exp(ByZ:)Y; = Y, w(T)exp(ByZ)Y1(T = R,),
TePp;

SO

}-

E{w(R,)exp(ByZ)Y|#} = T w(T)exp(ByZ)Y,E{1(T - R;)

TeP;

By the conditional independence condition,
-1
5 _ A _[IRI -1 .
E{1(T = R)|l#) = E{1(T - R)|%} = ( N ) Yp1(i eT).
Hence, E{w(R,)exp(B},Z,)Y;|#} equals
-1
Rl -1 /
(21 L vewmessiz),

TeP,

and so

1Rl -1\ &
B9 = (ML) L T viw(mesaz)

© =%('R"1)_1|

m-—1

{Yrw(T) T exp(020)}.

Tl=m ieT
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Let
@ Q= (5) T (T T enenz))
n m m IT|=m T ieT o ‘
Since
R E{S ,|&Z
(8) I——|—>pp we have —{—f’—kl—}—’ 1,

n Qn,k P

and therefore (b).
It remains only to show @, -, g.
First, note

Var(Q,) = c(ﬁz)_2 > Cov(YTw(T) Y efiZ,

ITI=m, |S|=m ieT

Vaw(S) T exp(8:2) |

For T NS = &, the preceding covariance is zero. There are (2';)(2,;") pairs
S,T that do not intersect; hence the preceding sum has

2
n| | n 2m
(m) = () (37
nonzero terms. Since by Condition 3 each of these covariance terms are
bounded,

(9) Var{Q,} - 0

is now implied by

Last,

1
EQ, Ep”'"“E{YUw(U) ¥ exp(B'OZi)}

ieU
PE{Y,w(U)(1/m)L; cy exp(BoZ;)) _
= =q. O
EYy,

COROLLARY 1. In the special case p = 1, B = B, and A; = exp(ByZ;),

1 r ,
E{Snlf} = ; Z Y, Z; exp(BoZ;)-
i=1
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Proor. From (6) we have

1 _ -1
E(S,|#} = ;('Zl_ 11) Y. X Zexp(ByZ;)

TePieT

Z Y, Z; exp(ByZ;). (]

i=1

S| =

1
==Y Z;exp(B,Z;) =
n i€R

REMARK. The conclusion of the lemma and its application, which follows,
involves convergence only for fixed times s € [0, 1]. To emphasize the depen-

dence of ¢ on B and s, we will write ¢(B, s) in succeeding text.

4. Consistency of B. The proof that § is consistent depends on C(B,t),
the logarithm of the nested case-control Cox likelihood at time #:

cn=1 [ ’[B'zi(s) - log{ ﬁlm,,{s)exp(/s'zj(s))”dM(s).
i= j=

THEOREM 1. The estimator é is consistent for B.

Proor. Let

S.8.0) = L, (Desp(8%,(1),

j=

X(B,t) =n"Y(C(B,t) — C(By, 1))
1 x tr , Si(B,S) -
= —’;Elfo -(B —Bo)Z(s) - log{—si(ﬁo’s) }J dN;(s)
and
12 S;(B, ]
A(B,t) = n '21/;) (B - 30)'Zi(s) - 108{%} Ai(s) ds.
i= | t ’ i

Then for each B, X(B, ) — A(B, ) is a square integrable martingale with
quadratic variation at time ¢ given by

1 2 t ’ Si(B’S) ?
‘n—ziglfo (B =Bo)Zi(s) — log{s—i(‘m” Ay(s) ds.

Taking expectation and using Condition 3 we see that the preceding quadratic
variation at time 1 tends to zero as n — oo; therefore, by an inequality of
Lenglart (1977), X(B, 1) converges in probability to the same limit as A(B, 1),
as in the proof of Lemma 3.1 of Andersen and Gill (1982).
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In what follows, interchanges of limiting operations are justified by a
dominated convergence theorem. Hence,

;=1ﬂi,j(3)zj(s)eXP(ﬂ'Zj(s))
Z?=1”7i,j(3)eXP(B'Zj(s))

X Y;(s)exp(BoZi(s))Ao(s) ds,

J 1 2 4 x
A = L [[12(s) -

and, using Lemma 1,
a
lim EEA(B’ 1) = fl[q(BO, s) —q(B,s)]Ay(s) ds in probability,
n—oo 0

where

q(B,s)

EjcvZi(s)exp(BZ;(s)) 1 Y. exp(BoZ;(s))

= E
p(s) ZjeUeXp(B,Zj(s)) m ey

Yy(s) = 1}.

This demonstrates that A(B, 1) converges to a function with first derivative 0
at B = B,.

With T as in (11) in Section 5, the second derivative of the limit of A(B, 1) is
equal to minus a nonnegative definite matrix for every B and at B, to —T,
shown in Lemma 4 of the Appendix to be negative definite. One can now follow
the argument of Andersen and Gill (1982) to demonstrate that since B
maximizes X(B, 1), 8 =, Bo. O

5. Asymptotic normality of . In this section, we derive the asymptotic
distribution of the estimator B and give a consistent estimator for T, the
inverse of the estimators asymptotic covariance matrix.

First we describe the construction of a random variable Z. Suppressing s, a
fixed time and B, let Zy ; = (Zy ,, Zy 5,..., Zy, ), a vector of m independent
copies of the random variable Z, with distribution given in (3). Let

(10) p;= p(PZy,))
7 Eievexp( B’ZY,i)
and set P(Z = Zy’jlzyyu) = Dj.
Let
zZ= piZy,
jeU

Then

®2
Cov(ZlZY,U) = .ZUZ,??’%pj - (Z ZY,jpj) = E (zy,; - Z)®2pj‘
je
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Define

¢ 1 .
[(B,t) = E{fop(s); Y exp(B’OZY’j(s))Cov(Z(s)IZY’U)/\O(s) ds},

jeUu
and
(11) I =T(By,1).
The proof that T' is positive definite and therefore invertible, is given in

Lemma 4 of the Appendix.
We will consider the score process

?=177i,j(3)Zj(S)eXP(B'Zj(s))
Z?=177i,j(3)eXP(ﬁ'Zj(3))

Zy(s) - = ]dNi(S)

n
t
(12) UBn=Yx [
i=1°0
and the information process
+ n
F(B,t) = [ L DB, s) dN(s),
0;=1
where

Li-m;, j(8)Z;(s) ®29XP(B'Z,'(3))
Z?= 1"’1i,j(3)eXP(B'Zj(s))

Z§=1”7i,j(s)zj(s)eXP(3'Zj(s))
Z§=1”1i,j(s)eXP(3'Zj(3))

We now give a consistent estimator of T.

Di(B,s) =

®2

TueoREM 2. For any B* —, B,
n~'A(B*,1) », T asn — .

Proor. Taking the derivative with respect to 8 and using Condition 3, one
may verify that

sup IDi(B,s)vll < e

i,lvl<1

and hence there exists a K such that
“n_lj(ﬁh 1) — n~'A(By, 1)” < K|B;, — Byl-

Therefore, since |8* — Byl —, 0 it suffices to show n~12(B,y, 1) -, I'. Now as
1 .2 1 2
~ [* ¥ Di(Bo, 5) dNi(s) = — [ L Di(Bo, s) dA(s)
n70;-1 701

is a square integrable martingale, an argument as in Theorem 1 using
Lenglart’s (1977) inequality shows the above converges to zero in probability.
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Lemma 1 now shows that
1 2
— [ ¥ Di(Bo, 5) dAy(s) =, T. =
nJo0 ;-1

We now derive the asymptotic distribution of the estimator B.

THEOREM 3.

(B~ Bo) = N(O,TY).

Proor. With U, the kth component of the score U as in (12) and .#, the
kth row of .#, the usual Taylor series argument yields

Un(B,1) = Up(Bo, 1) = —A(BE, 1)(B — By)

for some B} on the line segment between B and B,.
Substituting B for 8, we have

= 2Uy(Bo, 1) = {n ' F(BE, D}n'(B - Bo)-
Hence, using Theorem 2, it suffices to prove
(13) n~Y2U(By,1) = A#(0,T).
Let
Z;?:mi’j(s)ZJ.(s)exp(B’OZj(s))

E(s) = Z;le,j(s)eXp(B’OZj(s))
and
DA )
E(s) = L7 1Y;(s)exp(ByZ;(s))
Then

n

U(Byt) = ¥ [[2i(s) - Ei(s)] dNy(s)
i=1°0

X

a9 = X {[126) - B dN(s) + [E(s) - Es)] dNs)|

~
[y

n

{[12(5) - B(s) M (5) + ['[B(s) = Ei()] (o)

~
[y

(15) t
+ [[EG) - E(s)] dA(s)]
0

- E{[126) - B a() + [EG) - B()] dA(s)).

i=1
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The term

Z f [Z(s) — Ed(s)] dMi(s)

is a stochastic integral of a predlctable process against a martingale and is a
martingale. We apply the martingale central limit theorem of Rebolledo (1980)
as presented in Andersen and Gill (1982). By the independence condition

<Mi, Mj>t = 0;

hence
(A): = /(;% i [Z:(s) - Ei(s)]®2Ai(s)ds'

Expanding the product we obtain an integrand with the four terms Z®% —
Z,E. — E,Z; + E??. Factoring out A, and using the law of large numbers on
the first term we have

n

1
— L Z2*Y, exp(ByZ;) — PE(Z°% exp(By2)|Y = 1} = pE{Z}® exp(ByZy)}

1
=pE{mZ${%p,~—- h EXP(B'OZY,J')}
m jeU

1
—PE{ Z ZY ,PJm Z eXP(ﬂ'oZY,j)}‘
jeU jeU

Using Lemma 1, we see that the remaining three terms all converge to the
same limit. For example, (1/n)L"_,E,Y;Z} exp(B,Z;) converges to

L cvly, J eXP(BoZY ,)
ZjeU eXp(BOZY,J)

=pE{

®2 1
=pE{( Y ZY,jpj) o 'ZU eXp(Bi)ZY,J')}'
je

JjeU

pE — ¥ Zy,j eXP(BoZYJ)}

jeUu

Licvly,;exp(BoZy, ;)
Liev eXp(B’OZY,i)

®% 1
) ;l_jEZUeXP(B’OZY,J')}

Adding the last three terms with appropriate signs, we see that the integrand
is A, multiplied by

% y exp(ﬁozyj)( Y Z¢%p; — (jg,UZy,jpj)@Z)};

jeU

pE

heﬁce
(A) =, T(By,t) asn— .
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Next, we verify the Lindeberg condition [I.4 in Andersen and Gill (1982)].
Letting

Z;;j(s) — E;;(s)
be the jth component of the vector [Z,(s) — E/(s)], we have that

(16) f;% 5 [Z:(5) — Eij(5)]*Mi(5)1{1Z:;(5) — Eyj(s)| > Vne) ds =, 0
i=1

since the expectation of the preceding integral converges to zero by Conditions
3 and 6. Hence, by the theorem of Rebolledo (1980) as in Andersen and Gill
(1982), we have

A, = N(0,T).

To complete the proof of (13) it remains to demonstrate that
1 2
B, = — E(s) — E; dA,; 0.
1= 7 L[ TEG) -~ E(9)] dAs) =,

Let
=0{Z,,Y,,N;i=1,...,n};

iy i

that is, « contains all information except that of sampling. With

ax(s) = {E(s) — Ex(5)}Y,(s)exp(BoZi(s))Ao(s),

write
1 n n
BB} = - T E [ Blai(s/a (52)|#) dsy dss.
i=1j=

By Corollary 1 we have, suppressing s,

n

Y Efa,l#} = 0.

k=1

Conditional on ¢, the only random parts of E; and E; are those of sampling;
thus E; and E; are conditionally independent given & when i # j. In particu-
lar,

E{“’i“ﬂf} = E{a'ilf}E{aﬂf} for i +j.

Hence,
1 2 1.
E(| B2} = — ¥ [ [ (El@iai}#) - E(@|£)E{a/)#)) ds ds,.
i=1"0°0

Let T and F, respectively, stand for the collection of event and failure times
less than or equal to 1, with time 1 included in both sets. Us1ng the indepen-
dence of samphng between event times, we have that E{|| B,||%|#} equals

- Zl gf JHijH{E{a'ian} - E(d}|#)E{a,|#}} ds, ds,.
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From this expression we see that the contribution to the double integral
over time representing E{HBlH2lf} comes from the diminishing quadrants
that intersect the diagonal s; = s,.

Using Conditions 2 and 3, E{IlBllI2lf} may be majorized by a random
variable not depending on ¢ or s times:

¥ AT?,
T

where AT, = T;,, — T} is taken over consecutive event times in T.
Hence, to show B, —, 0 as n — = it suffices to demonstrate that

E{ZATJ?}—)O asn — .
T .

Note that since for 0 <a <b one has a? + (b — a)? < b? the preceding
equation will follow from

(17) E{Z A’sz} -0 asn -,
F

where now

(18) AT; = Triiv1y — Trpy

is taken over successive failure times in F, T} ;, being the jth failure time.
Let

A(s) = T Ails)
i=1
and, for ¢ > 0,
A, ={3se[0,1], A(s) <en}.

For every £ = 1,2,..., K, Condition 4 and an elementary large deviation
argument [see, for example, Billingsley (1986), Theorem 9.1] on the n indepen-
dent Bernoulli variables 1{V s € I,, Y;(s) = 1} show that for ¢ sufficiently
small

P(3s el A(s) <en) < Ce ™"
with vy, > 0, and now summing over %, that therefore, with y = min, y, > 0,
P(A,) <Ce ™ withy > 0.

With C not necessarily the same at each occurrence, taking A'T; over failure
times as in (18) we have the bound on the tail probability of A'T;:

P({AT; > ¢} N AS) < Ce™*".
Using
E[AT?| = E[AT? 1(A,)] + E[AT? 1( A)]
and that times are confined to the unit interval, implying AT? < 1, E[AT?]is
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majorized by

Ce™ ¢ (0] :
o — =0 |.
¢ n? (nz)

As the sum in (17) is over O(n) terms, this proves (17), and so the theorem. O

6. Three special cases. We consider three important special cases below.
The first case we consider is the limit of the variance I' as m — «. The second
is the computation of asymptotic relative efficiency (ARE) against using the
full cohort when B, = 0. The third case is that of a univariate binary exposure.

6.1. m — «. Under our hypotheses the inverse .of the full cohort covari-
ance of Andersen and Gill [(1982), condition D, page 1105] may be written

s - [ EEZ0) enpize)]
o|  E[Y(s)exp(ByZ(s))]

(19) _[E[Y(s)Z(s)exp(BoZ(5))] | **
{ E[Y(s)exp(ByZ(s))] }
XE[Y(s)exp(BoZ(s))]Ao(s) ds.

Using E{Y(s)Z(s)®2 exp(B,Z(s))} = p(s)E(Z$?*(s)exp(ByZy(s))} and simi-
lar formulas for all other terms, dropping s, the integrand is seen to be equal
to

P25 etz | Bl etz } pE[exp( 842y

E[exp(BQ,ZY)] E[exp( B’OZY)]

To see that the limit as m — « of T yields the same result, note first that

1 m
— ¥ exp(BoZy,) ~p Elexp(ByZy)] asm -,
i=1

and therefore, using (10) that

y Z®2-b. _ (l/m)z}nﬂzi?,zj eXP(BBZY,j)
jeu (1/m)E7 s exp(BoZy,:)
| E[Z27 exp(ByZy)]
P Elexp(ByZy)]
A similar computation for the other terms of T in (11) yields the equivalence
of 3 and the limiting T

as m — o,
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6.2. Bo=0. When B, =0, exp(BOZY j(8)) =1 so that Cov(Z(s)IZY u) is
the uniform finite sampling covariance matrix

1 m ®2
m g (ZYJ )
and
1 m -
;Jg Xp(BO YJ) =1
Thus
1 m
F=ELp@k;£¥Zh—Zﬁ Ao(s) ds
-1 4 m-—1
= [ p(s)V(5)Aq(s) ds = 3,
m 0

where V(s) = Cov(Zy(s)) and %, is the score variance for the full cohort. Thus,
for 1: m — 1 matching, the asymptotic relative efficiency of nested case-control
sampling relative to the full cohort for d = 1is 3 /T = (m — 1)/m, indepen-
dent of censoring and covariate distributions. Thus, for the Aircraft manufac-
turing employees study of Garabrant, Held, Langholz and Bernstein (1988),
the 1: 4 matching ratio could be expected to have efficiency of about 4 /5 = 80%
relative to the full cohort when B, = 0. Breslow and Patton (1979) derive this
result for binary exposures based on the matched case-control study paradigm.
Our approach provides a formal proof and generalizes their result.

6.3. Univariate binary exposure.

(A) General expression. Let Z,, Z,,...,Z, be processes indicating ‘‘ex-
posure” or ‘“nonexposure’ by taking on the value 1 or 0, respectively. We
suppose that the conditions in Section 2 are satisfied, implying that B is
consistent and has an asymptotic normal distribution. With T(s) =
Z;en=1ZY,k(s)’

T(s)ePo(m — T(s))
(m — T(s) + T(s)e)"

ar(z(s)le,U) =

Since T}, exp(Zy ,B,) = (m — T(s) + T(s)eP0), we have

T(s)ePo(m — T(s))
= B PO = s) 7 ey ) )
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Let P(Zy(s) = 1) = 7(s). Noting that T(s) has a binomial(m, 7(s)) distribu-
tion and suppressing s,

1 £ TePo(m — T)

m \m—T+ TePo

m
z % (m)wt(l - Tr)m_t{_—teﬁ"(m — 9 }
t

m /= m — t+ tePo

(1- W)Tg(m N 1)7#(1 - w)'"“‘l{—teﬁo—}.

m — t+ tePo
Thus

I = ['p(s)(1 = 7(5))
0
(20)

m-—1

“h (m ¢ I)W(SV(I - w(s))""t_l{

The full cohort asymptotic information may be calculated using (19), yield-
ing

tePo

}Ao(s) ds.

m — t+ tePo

m(s)ePo(1l — m(s))
1 —7(s) + m(s)ePo

1
(21) 3= [Op(s) Ao(s) ds,
from which the asymptotic relative efficiency may be computed.

(B) Constant probability of exposure. Breslow, Lubin, Marek and Langholz
(1983) consider the situation where 7(s) = m, and, again using the matched
case-control study paradigm, derive expressions for the nested case-control
sample and full cohort expected information. The nested case-control expres-
sion is
m—1

I R CE S

1 - 770 + Troeﬁo t=0

tePo
m —t+ tePo’

1_770

(22)

When 7(s) =m, in (20) and (21), each of these expressions differ from
Breslow, Lubin, Marek and Langholz by a factor

(23) —[1 -+ ‘n'oeﬁ°]f01p(s))t0(s) ds.

This is because their expressions give expected information per failure,
whereas (20) and (21) are per subject. Expression (23) is the conversion factor,
which gives the expected failures per subject. Of course this factor makes no
difference in the AREs so that the curves of Breslow, Lubin, Marek and
Langholz (1983) apply.

The condition that 7(s) is constant over time may be approximately true for
rare diseases when censoring does not depend on exposure status and covari-
ates are fixed over time as in the intervention trial design described in the next
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section. For many cohorts, even when studying a rare disease, m(s) may
change drastically over time because of differential censoring patterns for
exposed and unexposed individuals or because exposure status may change
over time. A simple multiple event situation with constant m(s) is when the N;,
are homogeneous Poisson processes with intensities A, exp(ByZ;), Z; constant
in time (corresponding to exposure either occurring at time zero or not at all)
and no censoring [Y,(s) = 1].

(C) Idealized intervention trial with fixed binary exposure. In interven-
tion trials with a disease outcome, individuals are randomly assigned to
“treated” or ‘“untreated’’ groups and are followed for a fixed period of time to
assess the differential disease rate between the two groups. Prentice (1986)
and Self and Prentice (1988) discuss the great potential cost savings of efficient
sampling schemes for such cohorts. Although in practice there may be some
“loss to follow up,” a convenient approximation to this type of cohort is the
“idealized intervention trial” in which individuals enter the study of time 0
and (1) are censored after the getting the disease of interest or (2) are on study
over the entire study period.

Letting P(Z(0) = 1) = my and A(2) = [{Aq(s)ds,

p(s) = (1 — my)exp{—Ay(s)} + m, exp{—AO(s)eBO}
and
m(s) =, exp{—Ao(s)eBO}/p(s),

AREs may be calculated by substituting these values into (19) and (20).
The AREs for the idealized intervention trial were calculated for various m,
"m and ePo; representative results are given in Table 1. The AREs with
constant (s), as described in Section 6.3(b), are given for comparison. IMSL-
PC FORTRAN routine DBINPR was used to calculate the binomial probabili-
ties in (20) and (22) and routine DBDAG was used to evaluate the integrals in
(20) and (21). The constant 7(s) asymptotic relative efficiencies serve as a
reasonable approximation to those of the intervention trial for relative risks
close to 1 or 7, small. However, for 7, > 0.5 for which all constant =(s)
AREs are nondecreasing in relative risk, the intervention trial AREs peak and
decrease so that, for large relative risks, there is a significant disparity between
the two.

7. Discussion.

7.1. Conditions. The conditions of Section 2 allow for easy interpretation.
Indeed, because of our simplified framework, we have been able to provide a
necessary condition for the consistent estimation of the parameter vector in
Lemma 3.

The restriction to bounded covariates may be weakened to the moment
condition (4.2) of Andersen and Gill (1982) at the expense of some technicality
such as that of Andersen and Gill (1982) Appendix III.
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TABLE 1
Asymptotic relative efficiencies of nested case-control sampling relative to the full cohort
for the idealized intervention trial cohort with exponential failure rates [Section 6.3(c)]
and for cohorts with constant probability of exposure over time, and Ay = 1 [Breslow,
Lubin, Marek and Langholz (1983) or Section 6.3(b)]

Intervention trial 7o(s) Constant
Relative
risk me = 0.01 0.5 0.9 we = 0.1 0.5 0.9
1:1 Matching
1 0.50 0.50 0.50 0.50 0.50 0.50
2 0.36 0.47 0.62 0.37 0.50 0.63
4 0.24 0.38 0.63 . 0.26 0.50 0.74
8 0.15 0.30 0.53 0.19 0.50 0.81
1:8 Matching
1 0.89 0.89 0.89 0.89 0.89 0.89
2 0.82 0.88 0.93 0.83 0.90 0.93
4 0.72 0.85 0.94 0.76 0.92 0.96
8 0.61 0.80 0.90 0.69 0.94 0.98

The restriction imposed by (1) in Condition 4 on the censoring process Y is
a weakened version of (2) adopted by Andersen and Gill [(1982), equation 4.3,
page 1111] for the independent identically distributed case. We have weakened
this condition in order to accommodate examples such as a 5 year follow up of
a 50-60 year age cohort; in such a study, no single individual can span
the entire interval [50, 60]. However, weakening the condition still further to
inf, P(Y(¢) = 1) > 0 may not suffice. For consider the intervals I, = {1}, I, =
[0,1/2), I,=1[1/2,3/4),.... Let X,, X;,... be independent Bernoulli(p),
0<p<1, p+gq =1, and suppose

Y(s) = i 1{se,}X, and Y(s) = in(s).
k=0 i=1

ThenP(V s € [0,1], Y(s) # 0) = [15_,P(V s € I, Y(s) # 0) = 0, so that
P(3k:Y(s)=0Vsel,)=1

(this will be true for infinitely many k%, in fact) and the argument in Theorem 3
breaks down despite that inf, P(Y(¢) = 1) =p > 0.

Our results apply in more generality than the independent case alone. For
example, if the covariate processes are dependent due to a “common effect”
X, conditioning will obtain independence. For example, if the covariates are of
« the form Z, = f(X,, X,) where X, X;,..., X, areindependent and X;,..., X,
are equal in distribution under a measure @, our results apply with respect to
the conditioned measure P(A) = Q(A|X,). For a randomization at time ¢ = 0
of the members of a cohort into two groups of equal size according to a vector
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of indicators X, with the different groups receiving different exposure levels
or treatments, conditioning on X, will again leave Z, independent but, in this
instance, no longer indentically distributed. We now outline a set of conditions
that may be applied in the independent but nonidentically distributed case.

With (Z,,Y)),(Z,,Y,),...,(Z,,Y,) independent, we adopt Condition 2 on
the baseline hazard, and the natural extensions of Conditions 1, and 3; that
the processes M; = N, — A, are {¥), (o ,, local martingales, and that the
covariate processes are bounded Condition 4 on the censoring may be relaxed
to the existence of a constant C > 0 such that V i min, P(V ¢t € ,Y,(:) = 1) >
C. Let p,(s) = P(Y(s) = 1).

To extend Lemma 1 to the nonidentically distributed case, “‘asymptotic
stability”” conditions need be imposed. All that is required is control on sums of
the form

S, 5 Lu(R)ra,

for w(T) as in (4) or (5) with p €{0,1,2} and A, either exp(By,Z;) or
Z;exp(ByZ;) as in Lemma 1.

Since (6) [and other versions of (6) for other choices of p and A,]is obtained
by conditioning on the covariates, (6) holds as in Lemma 1 w1th no change.
Insisting that the limit of S, exists for all s in the case p = 0, B, = 0 (and as
usual suppressing s in the notation) is equivalent to the condition

1
(24) lim — Z p, =

noell iy

It follows that |[R|/n —, p, hence (8) holds with @, as in (7) unchanged. With
no additional assumptlons one has (9), that is, that Var{@,} — 0. Hence, all
that is further required for asymptotic stability is the appropriate convergence
of the means EQ, for the various choices of p and A,.

Some of these conditions on the convergence of the EQ, are related (in
mean) to the Andersen and Gill (1982) conditions on the convergence of
asymptotic sums at B = B,. To see the parallel, for m <n let A = {k:
k=(ky,ky,...,k,), [kl =m, k; €{0,1}}, where |k| = ©7_,%,. Using the iden-
tity

m

12 1 m) o
(n ; n™ ITIZm Jle__[ij n™ Iklzm(k iljlpl ’
keA
one can show that (24) implies
(25) o — ¥ ]_[pJ — Y. P(Ypy=1)>p™ asn — .

ITI=m JET ITI m
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Now computing EQ, at B = B, with w(T') as in (5) and A, = exp(B,Z,),
say, yields

-1
p_mﬂ(r’rlz) Y. Y E{y,Zfr eXP(BIoZi)}P{YT—(i) =1}
|T|=m i€T

3|~

EQ, =

S|+

n n -1
) E{Yizi@p eXp(B()Zi)}{;P_mH(,’,IL) > P(YT—(i) =1);.
i=1 TeP,

Using (25) with m replaced by m — 1 shows the second factor converges to 1;
hence assuming the convergence of EQ, at B = B, in this case is equivalent to
assuming that the averages of means of the form

1 n N
w Z E{Yizi@p eXP(B’oZi)}
i=1

converges as n — ®, as in Section 3 of Andersen and Gill (1982).

Using the extension of boundedness Condition 3 and the convergence of the
sums S,, the Lindeberg condition (16) follows easily. All that remains is to
guarantee that the inverse asymptotic covariance matrix is positive definite.
Using the hypothesis that the EQ, converge, letting

5, e 1. Z(s)exp(ByZi(s)) | °°
Ejefe, exp(ﬂ’OZj(s))

v(s) = 113:0% fE{ Z,(s)®? - {

i=1

X Y,.(S)eXp(BbZi(s))} ,
we require

I = ["o(s)Ao(s) ds
0
be positive definite.

7.2. Matched case-conirol studies. Our results have implications for the
analysis of matched case-control studies. After the introduction of Cox’s
partial likelihood approach to estimation in the proportional hazards model,
Prentice and Breslow (1978) and Prentice (1986a) (essentially) showed that the
“inversion” of the prospective conditional logistic model used for age matched
case-control studies yields the nested case-control partial likelihood L, indicat- -
ing that B in the proportional hazards model is the parameter being estimated
in time matched case-control studies. Qur work gives conditions under which
this is true and shows that nested case-control sampling is an appropriate way
to.view matched case-control studies. It is worthwhile to compare this ap-
proach with that often used when developing theory related to the analysis of
matched case-control data. Data are viewed as *prospective,” treating the
covariates as fixed and the disease status as random. The consistency and
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asymptotic normality of this estimator is based on standard likelihood theory
under the assumption that the matched sets are independent. This is not
completely satisfactory when cases and controls are age (or, more generally,
time) matched since this situation admits the possibility that individuals may
be eligible to serve as controls in multiple matched sets and /or controls in a
given matched set and may go on to become cases later on. In that framework,
the rare disease assumption must be invoked to circumvent these difficulties.

7.3. Comparison with case-cohort asymptotics. It is interesting to compare
our approach to assessing the asymptotic behavior of nested case-control
sampling to that of Self and Prentice (1988) for case-cohort asymptotics. Let ¢
be the set of indices of those in the sampled subcohort, a random sample from
{1,2,..., n}. The case-cohort score function as given irr Prentice (1986) may be
written as our (14) with

zjedu{i)y}(s)zj(s) exp(ﬂQ)Zj(S))
Ejeéu(i)y}(s)exl)(ﬂsz(s))

E(s) =

Since |C| is assumed to be stochastically proportional to n, the number
sampled in each risk set will increase proportionally to n. To show consistency,
the law of large numbers is used to show the convergence of E,(s) and E(s) to
the same limit so that the case-cohort analog to the second term in (15)
converges to zero in probability. This is in contrast to nested case-control
sampling for which the size of the sampled risk set is fixed at m and a finite
sampling result, Lemma 1, is used to account for the dependence on :.
Further, the case-cohort analog to the third term in (15) yields the sampling
induced covariance A in the Self and Prentice (1988) expression for the
variance of the score (their Theorem 3) whereas in nested case-control sam-
pling this term vanishes.

Considering the simplicity of the case-cohort sampling technique, the ARE
formulas given by Self and Prentice [(1988), Section 5] are surprisingly com-
plex compared to the nested case-control formulas derived here. Especially
noteworthy is the B, = 0 situation. Unlike the very simple nested case-control
expression derived in Section 5.2, which depends only on matching ratio, the
case-cohort expression depends on covariate, failure and censoring distribu-
tions as well as the proportion of the cohort sampled.

7.4. Cost-efficiency considerations. Often, efficiency calculations are used
to determine the sampling design which will give the best efficiency for a fixed
cost. If the main component of cost is per individual in the sample, care must
be taken that the various designs yield the same expected sample size
[Langholz and Thomas (1990)].

In nested case-control sampling individuals may be sampled repeatedly and
failures can be picked as controls so that the proportion of the cohort sampled
is less than m times the proportion of failures. The proportion used in the
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special case of the idealized intervention trial of Section 6.2(c) can be shown to
be 1 — (1 — p;)™ where p; is the overall probability of failure.

7.5. Further directions. In this work we have focused on the estimation of
B, mostly for the sake of making efficiency calculations for nested case-control
sampling. It would also be of interest to consider estimation of the underlying
cumulative hazard function as well.

APPENDIX

Lemmas 2 and 3 may be used to verify the claims made in Section 2; Lemma
4 demonstrates that the matrix I' as defined in (11) is positive definite.

LEmMMA 2. Let T = AQQ). For 0 <t < T, define
o, = inf{s: A(s) > t}.
Then the process N, defined by
N(¢) = N(a,),

is a Poisson process with rate 1 for t € [0, T]. Consequently, with T;,T,, ...
the event times of N, A(T,), A(Ty),... have the same joint distribution as
T,,T,,...,the event times of a Poisson process of rate 1.

We omit the proof, as it follows easily by a stopping time argument using
Theorem 6.2 in Chapter 2 of Ikeda and Watanabe (1981).

We now demonstrate that the condition V' > 0 is necessary to prove consis-
tency of B.

LEmMA 3. If V is not positive definite, then B, is unidentifiable.

Proor. If V is not positive definite, then there exists a € R¢, a # 0, such
that a'Va = 0, that is

fola’ Cov(Zy(s))ary(s)ds=0.

Hence, with c(s) = EZy(s) we have
P(dZy(s) =dc(s)) =1

for almost all s. Hence, on the event Y(s) = 1, for almost all s and all scalars
a € R,

A(s) = Y(s)Ao(s)exp(BoZ(s))
= Y(s)[Ao(s)exp(—aa’c(s))]exp((aa + By) Z(s))

with probability 1. Of course, the preceding holds trivially on the event
Y(s) = 0. Since modifying A on a set of measure zero does not change the
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distribution of failure times, the models (A, exp(—ad'c), B, + aa), @ € R, are
indistinguishable; hence B, is not identifiable. O

We remark that by using the absolute continuity of the distribution of
failure times with respect to Lebesgue measure, Lemma 2 may be used to
show, for the Cox model specifically, the nonidentifiability of B, is exhibited in
the Cox full and nested case-control likelihoods by L(B) = L(B + aa); hence if
B maximizes L(B), then so does 8 + aa for any a € R.

Recall the definition of T in (11). The next lemma combined with the
previous shows that the condition V > 0 is both necessary and, in terms of T,
sufficient for the Cox nested case-control likelihood procedure to succeed.

LEMMA 4. The matrix T is positive definite whenever V is positive definite.

ProoF. Suppose that I' is not positive definite. Then there exists an
a € R% a # 0, such that a’'Ta = 0. Hence, for almost every s,

1 ’ ’ 7112
p— Z eXP(BoZY,j) Z [a(ZY,i _Z)] p;|=0

m ey ieU

E

and so

P[ Y (a(2y,; - Z))’p; = 0] = 1.

ieU
Since the preceding is a sum of positive terms,
Pla(2y,-Z) = 0=-d(2y,-Z)] = 1.
Hence,
PldZy ;=dZy;] =1 foralmostall s,

contradicting the positive definiteness of V. O
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