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SOME NONASYMPTOTIC BOUNDS FOR L, DENSITY
ESTIMATION USING KERNELS

By SoMNATH DATTA
University of Georgia

In this paper we obtain uniform upper bounds for the L, error of
kernel estimators in estimating monotone densities and densities of bounded
variation. The bounds are nonasymptotic and optimal in 7, the sample size.
For the bounded variation class, it is also optimal wrt an upper bound of
the total variation. The proofs employ a one-sided kernel technique and are
extremely simple.

1. Introduction. Let My be the class of all nonincreasing densities on
[0, 1] which are bounded by B. Note that the class is nonempty if and only if
B > 1. Consider the estimation of a density f € My by an estimator f, based
on ii.d. observations X;, X,,..., X, from the distribution with density f.
This problem has received considerable attention in the past. The key refer-
ences are Grenander (1956), who introduced the MLE for this problem,
Prakasa Rao (1969), who provided a thorough analysis of the pointwise
properties of the MLE, Groeneboom (1985), who obtained the exact conver-
gence of the L, risk of the MLE, Devroye (1987), who had an entire chapter
on the various methods used so far to estimate densities in My, and Birgé
(1987a, b), who established the right lower bound for the L; minimax risk and
obtained a minimax optimal estimator for this class. Also see Birgé (1989),
where he proved, among other things, that the MLE is also minimax optimal
for this class.

For each n, the L; minimax risk over the class M is given by

(1.1) R, p=inf sup E[|f, ~f|.

fo feM B
The exact order of R, 5 is known to be log'/?(1 + B)n=13 if (log(1 + B))/n
remains bounded. See Birgé (1987a) or Devroye (1987) for a proof. Birgé
(1987b) proposed a modified histogram estimator, that is, a histogram with
geometrically increasing interval sizes. He proved that this estimator is mini-
max optimal for this class, that is,

(1.2) sup E/I fu(x) — f(x)[dx <clog??(1 + B)n"1/3,
feMp

whenever the ratio (log(1 + B))/n is bounded. The value of the constant ¢ can
be determined from the upper bound of the above ratio.
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For estimating densities in My one can symmetrize a standard kernel
estimator to obtain a density on [0,). The symmetrized kernel estimator is
defined as

(1.3) (%) = Fux) + (=), x>0,
where fn is the standard kernel estimator with a symmetric kernel K based
on X,,..., X,. The symmetrized kernel estimator satisfies
(1.4) lim sup n'/* sup E[|f,(x) — f(x)|dx < cB'/®
n—w feEMp .

for some constant ¢, if the bandwidth ~ o B~2/3n71/3, See Devroye and
Gyorfi (1985) or Devroye (1987) for a proof of (1.4). It shows that
sup;c u, EfIf, — f| has the right dependency on n but not on B. For this
reason, Devroye called the symmetrized kernel estimator asymptotically mini-
max suboptimal. Note, once again, that the kernel used in the construction of
f,, is assumed to be symmetric.

In this paper we consider first the standard kernel estimator based on a
totally asymmetric kernel. More precisely, let K be a kernel satisfying K (x) =
0 for x > 0, and let f, be the standard kernel estimator based on K and
X,,..., X,. We prove that for h « B~2/3n~1/3, f. satisfies

(1.5) sup E[ | f,(x) = f(x)|dx < cBY*n"1/? forall n,
feMg 0

for some constant c. Moreover, the actual bound on sup;,c , E/ol filx) -
f(x)| dx in terms of n and A in this paper is very similar to the main terms of
the bound in Devroye (1987) toward establishing (1.4). Consequently, the best
possible constants are comparable. The best value of ¢ in (1.4) given by
Devroye (1987) is (2173 + 272/3)(2k k,)/3, whereas the best value of ¢ in (1.5)
given by the present paper is (2'/3 + 272/3)(k,k,)'/?, where k; = [|x|Kdx,
k, = [K? dx. (This is justified because if K is a symmetric kernel and K * =
2K1 ., is the corresponding one-sided kernel then &, is the same for both
but k, for K* is twice the k, for K.) We also obtain a scale invariant upper
bound for individual densities in a larger class, namely, monotone densities on
[0, ).

Next we obtain similar results for estimators based on a symmetric (two-
sided) kernel. The uniform bound for the bias term over the monotone class
using a symmetric kernel turns out to be slightly worse than that using the
corresponding left-sided one. The excess bias due to a two-sided kernel in-
creases with B.

In Section 3 we extend our method of analysis to another interesting class
of densities, namely, densities on [0, 1] which are of bounded variation with
total variation bounded by some given B > 0. The minimax bound for the
bounded variation class turns out to be optimal, that is, it coincides with the
minimax bound in the class of all density estimators.
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All the proofs are short and simple. None is based on the usual Taylor series
arguments. Consequently, we do not need to impose any additional smooth-
ness conditions, such as continuity or differentiability, on the density.

2. Bounds for the monotone class. Let, for B> 0, Mg, ={f: fisa
nonincreasing density on [0,%) with f(0) < B} and X, X,,..., X, be iid
observations from the distribution with density f € My ,. Let K be a kernel;
that is, K > 0 and [K(x)dx = 1. Let A = h, be a sequence of positive reals
decreasing to 0. The standard kernel estimator of f based on K and
X, X,,..., X, is defined by

A 1 2 (x-X
(2.1) ) = op £ K25

First we state and prove a lemma which will be used to bound the bias
of f,.

LEmMA 1. Let K> 0, [K(x)dx =1, k; = [|x|K(x)dx < ®, K1, =0.
Let g be a nonnegative, nonincreasing function on [0,®), such that

J68(x)dx < . For h >0, let g,(x)=[° . K(u)g(x — uh)du, x = 0. Then
gn < g and [((g(x) — g,(x))dx < g(0)k,h.

Proor. Clearly, g,(x) < g(x) for all x > 0, because K is a density and g is

nonincreasing. To prove the second assertion, assume, without loss of general-
ity, that [g = 1. Then

fom(g(x) —gn(x))dx =1~ fowf_OwK(u)g(x — uh) dudx

-1- /_OwK(u)f:hg(v) dvdu,

using that K vanishes outside (— =, 0], the Fubini theorem and a change of
variable,

= [° K(u) [ "g(v) dvdu < ~g(0)h [ uK(u) du = g(0)hk,,
— 1] — o
since both K and g integrate out to 1, and g < g(0). O
Let E denote the expectation on X, X,,..., X,. Assume that the kernel K

is left sided, that is, K L1, = = 0, for the next theorem and the two corollaries
following it.

THEOREM 1. Let fn be given by (2.1). Then for all f € Mp .,

E[ 1) = £ < { [772() dx)(fj—h)/ + kyBh,

where k, = [|x|K(x)dx, ky, = [K*x)dx.
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Proor. As always, we split E[| fn — flinto two parts:

B[ Fu(x) = £(x) | dx < B[] Fu() = Bfyo)|dx + [| B (x) = £0)|d

definition

= VARIATION + BIAS.

Now, for fixed x,

N 1 = x—y
var(f(x)) < —5 | K*|——|f(y) dy
(2.2) ( ) nh/o ( h )

- %/fmxé(u)f(x ~ uh) du

by the substitution u = (x —y)/h and the fact that K vanishes outside
(—o, 0]. Therefore

kyf(x)
nh

since f is nonincreasing. Hence, by the Fubini theorem and the
Cauchy-Schwarz inequality,

(2.3) var(f,(x)) <

1/2
% A 1/2 1 ko
VARIATION < fo (var(f,(x))) " dx < ([0 f17%(x) dx)( nh) :
Next note that Ef, = f,. Therefore, by Lemma 1,
BIAS = fo (f(x) — fu(x)) dx < k,Bh
since f(0) < B. This completes the proof of the theorem. O

CoROLLARY 1. For any f € My ., the bound in Theorem 1 is minimized
for b = (ky([f1/?)?/(4nk?B?)'/3 and for this choice of h,

*® 2/3
E[ | 7.(x) = f(x)]dx < (2% + 2-2/3)(k1k2)1/331/3(/f“2) n-1/3,
0

Note that the above bound is secale invariant. This bound is useful if
Jf1/? < . A sufficient condition for this is the finiteness of the second moment
of f [see Devroye (1987), Lemma 7.2].

We will continue to use 2 in place of (21/2 + 272/3) for simplicity. Since
[fY% < 1 for all f € Mg, we get the following uniform bounds over M.

COROLLARY 2. Forall n,

. k 1/2
sup Efol|fn(x) —f(x)ldxs (—;) + k,Bh forallh > 0.

feMp n
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Hence

inf sup Ef |f(x) - (x)|dx < 2(k, k2)1/331/3 ~1/3
h feMg

Next we analyze the performance of a kernel estimator based on a symmet-
ric (two-sided) kernel. The proof is a little more involved and the technique of
bounding the variation term works for densities with compact support only.
Note that the bound on the bias term is tight [attained for B > 1 by f =
uniform (0, B) and K =1,_, /2] and 1.5 times larger than that for the
corresponding left-sided kernel. .

THEOREM 2. Suppose that the kernel K used in fn is symmetric. Then for
all n and h,

su f.(x f(x)|dx < + —k .
feMg 0 ol n 2!
Consequently,

inf sup Ef If(x) —f(x)]dx < 2(1.5k,k )1/331/3 -1/3
h feMp

We need the following lemma to bound the variation term. The result is
valid for any density f/ on R but useful only if f has support on [0, 1].

LEMMA 2. The kernel estimator given by (2.1) satisfies

- X k, 1/2
E[ | 7.(x) = Bl (x)|dx < (E)
for any density fon R.

Proor. Asin (2.2),

var(£,(0)) = = [k 52 £y

for any x € R. Integrating the above pointwise bound over all of R and using
Fubini’s theorem, one gets

(2.4) /var( fn(x))dx < :—;

Another source of (2.4) is Bretagnolle and Huber (1979); see (4.14) of that
paper. Now note that the Lebesgue measure restricted to [0, 1] is a probability.
Therefore, by two applications of the Cauchy—Schwarz inequality and (2.4), we
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have
1/2

Efoll f(x) = Ef (x)]dx < (folvar £.(x) dx)

< (fvar( fAn(x))alx)l/2 < (:—2)1/2. o

Proor oF THEOREM 2. The bound on the variation term is obtained in
Lemma 2.
Next, to bound the bias term, realize that

f(x) = +
B () = 5B + o JK 22 1),
where f , is the density estimator based on K, = 2K1 _,, . Therefore

(2.5) BIAS < —BIAS dx.

/K( =) ) ay = 1)

The first term is no more than (Bklh) /2 by the result for a left-sided kernel.
Next note that

fir e () o)y

(2.6) .
= [Ky(u) f(x + uh) du > f(x)fﬁ/hKl(u) du

for all x > 0. Also, /%, ,, K\(u)du < 1 since K, is a density. Therefore

folif;‘k(x) —f(x)|dx < ,/;)l(f;‘k(x) —f(x)/‘0 hKl(u) du) dx
(2.7) =

+f01f(x)(1 - /j)x/hKl(u)du)dx.

By similar arguments as used before (e.g., in the proof of Lemma 1) both
terms on the right-hand side of (2.7) can be shown to be bounded by %,Bh.
The uniform bound now follows by combining this with (2.5) and Lemma 2.

The minimax bound can be obtained by minimizing the uniform bound
wrt h. O

We end this section with a few remarks.

REMARK 1. Symmetry of a kernel is a traditional requirement in kernel
density estimation. Recently Cline (1988) gave some theoretical justification
for this in the context of L, estimation.

Generally speaking, a one-sided (asymmetric) kernel gives rise to higher
variation than the corresponding symmetric kernel. (It is also reflected by the
fact that %, for a one-sided kernel is twice the k, for the corresponding
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symmetric kernel.) On the other hand, for nonincreasing densities on [0, «),
the (integrated) bias of an estimator based on a symmetric (two-sided) kernel
will be worse than that based on a left-sided kernel because of the nature of
the density near the origin. When rn is large and £ is not too small, the bias
term is the dominating factor and hence the L; error using a left-sided kernel
will be smaller. The opposite happens when A is sufficiently small. Also note
that for a given & (and n), the uniform L; bound using a symmetric kernel
will exceed that for a left-sided kernel if B is large.

REMARK 2. What happens for optimal (or near optimal) values of A in
terms of uniform performance can be seen by comparing the minimax bounds
given by Corollary 2 and Theorem 2. In spite of the presence of the factor 1.5,
the minimax bound using a symmetric kernel happens to be sharper than the
minimax bound using the corresponding left-sided one [or the symmetrization
trick of Devroye and Gyorfi (1985)] because k., for a one-sided kernel is twice
the &, for the associated symmetric kernel.

REMARK 3. For our results so far (including the above remarks) we have
taken the range of integration to be the support of the density to be estimated,
that is, either [0, 1] or [0, ). If instead, one considers the usual L, risk, then
one needs to integrate the pointwise error over the entire real line. This will
only cause an additional amount e, = 1 — E[}f,(x) dx, which is no more than
kyBh, for f € My (and also for f € My ., if K is left sided). More generally,
e, < (sup f)k,h, for any density f on [0, 1]. These can be verified by simple
Fubini arguments.

REMARK 4. For estimating densities on [0, 1], it may sometimes be desir-
able to have a density estimator with the same support. One may then
consider the restricted (and normalized) kernel estimator f* =
fAnl[O, w/ o fn(x)dx)A This estimator will have L; error bound of the same

order (as f,) because

1| & 1| A 1a
@8) [ = r)ldx < [0 = ) de+ (1= [ a)
0 0 0
for all densities f on [0, 1]. Alternatively, one may simply use
1 A ‘ 1| A
(2.9) [ 178 = f(x)]dx < 2[ | F.(x) = F(x)] dx
0 0
for all densities f on [0, 1]. The inequality (2.8) follows from Lemma 4 in
Chapter 7 of Devroye and Gyorfi (1985) or Theorem 1.5 in Devroye (1987). The
second inequality follows from the proof of Theorem 1.5 in Devroye (1987).

REMARK 5. Since the symmetrized kernel estimator given by (1.3) satisfies

J1f=fl< [I7, ~ ]
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for all densities f on [0, 1], our Theorem 2 proves (1.4) [which is Theorem 8.5
of Devroye (1987)] via Remark 3. In fact, it holds nonasymptotically.

3. Bounds for the bounded variation class. Next we study the perfor-
mance of kernel estimators for estimating densities of bounded variation. The
minimax bound in this case turns out to be optimal in the class of all density
estimators. For the bounded variation class, the same uniform bound holds for
all kernels. Therefore a symmetric kernel will be preferable in this case for
optimal performance (in order to minimize &,).

Let V, stand for the class of all densities on [0,1] which are of
bounded variation on [0, 1] with the total variation not exceeding B > 0.
Clearly, Mz c V. The following result establishes bounds on the bias term
JUEF (x) — f(x)| dx, where f. is the standard kernel estimator of f defined
by (2.1) and f e Vj.

LemMmA 3. Forany fe Vg and h > 0,
[1Ef(x) = f(x)|dx < (B + f(1))ksh if K vanishes outside ( —,0],
0

< (B +f(0))kh if Kvanishes outside [0, x).
Thus, for any kernel K,

sup [ Ef,(x) - f(x)|dx < (2B + 1)k;h.
fevg 0

Proor. First consider the case when K vanishes outside (—«, 0]. Let n(x)
and p(x) denote the negative and positive variations, respectively, of f on
[0,x] for 0 <x < 1. Then f can be expressed as [see Apostol (1974), page 138]
(3.1) f=w—r+f(1),
where w(x) = N — n(x), r(x) = P — p(x), and N = n(1), P = p(1) denote the
total negative and positive variations, respectively. Extend w and r to all of
[0, ) by defining them as 0 on (1, ). Also, let 1* be the function 1*(x) = 1 if
0 <x<1,and 1*(x) = 0 if x > 1. Then w, r and 1* are nonnegative, nonin-
creasing functions on [0, ») satisfying w < N, r < P and 1* < 1. Moreover,
N + P =V is the total variation of f which is no more than B if f e Vj.

For any x € [0, 1], (3.1) yields

Ef(x) = wy(x) = r(x) + (1) T(x).

By Lemma 1, w, < w, r, <r and 1% < 1*. Hence

BIAS < f:(w(x) — wy(x))dx + f:(r(x) — ry(x)) dx

+f(1>[0°°(1* — 1(x)) dx

<(N+P+f(1)kth=(V+f(1))kih < (B+f(1))k,h
by Lemma 1.
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For the case, when K = 0 outside [0, »), represent f as

(3.2) f=p—n+7£(0).
Using the facts that 0 <p <P, 0 <n <N and p and n are nondecreasing,
and a corresponding version of Lemma 1, the proof follows by similar argu-
ments as above.

Finally, for a general kernel K, express it as K = aK; + (1 — a)K,, where
K, and K, are kernels vanishing outside (—, 0] and [0, ), respectively. Then
the result for K follows from that for K, and K,. O

Combining Lemmas 2 and 3, we get the following theorem.

THEOREM 3. For any kernel K, the estimator given by (2.1) satisfies

R k 1/2
sup /l| f.(x) —f(x)‘dx < (2B + L)k,h + (—3) forall nand h.
feVy 0 nh

Consequently,

inf sup fll f(x) = f(x)|dx < 2(kyky)?(2B + 1)°n=1%  foralln.
fevg”0

Proor. The first inequality obtains directly from Lemmas 2 and 3. To get
the nonasymptotic minimax bound, minimize the first bound over A. O

REMARK 6. Let Wy be the class of all Lipschitz densities on [0, 1] with
Lipschitz constant not exceeding B. It is not hard to check that Wy is
nonempty if and only if B > 4. Suppose that B is bounded away from 4, say
B > 5. Then Theorem 5.4 in Devroye (1987) says that

inf sup E(f| fu— fl) > (c+o0(1))BY3n~1/3
fu fewy

for some constant ¢ (not depending on B). Since Wy C Vj, the same minimax
lower bound holds for V5 also. Thus the minimax upper bound for Vy using
kernel estimators given by Theorem 3 comes to within a constant multiple of
the minimax lower bound for V. In particular, it shows that kernel estimators
(and their restrictions) with proper choice of bandwidth are minimax optimal
for V. '

Recently Engel (1990) obtained an O(n~'/3) L, rate result for an orthogo-
nal series estimator based on the system of Haar functions when fe& Vj.
However, his result is for individual densities and is truly asymptotic. In
another result he obtained a bound on the main term under additional
smoothness condition on the density.
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