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BOOTSTRAPPING M-ESTIMATORS OF A MULTIPLE
LINEAR REGRESSION PARAMETER

By SouMENDRA NATH LAHIRI

Iowa State University

Consider a multiple linear regression model Y, = x3 + ¢,, where the
¢,’s are independent random variables with common distribution F and the
x;’s are known design vectors. Let 3, be the M-estimator of 8 correspond-
ing to a score function ¢. Under some conditions on F, ¢ and the x,’s,
two-term Edgeworth expansions for the distributions of standardized and
studentized B, are obtained. Furthermaqre, it is shown that the bootstrap
method is second order correct in the studentized case when the bootstrap
samples are drawn from some suitable weighted empirical distribution or
from the ordinary empirical distribution of the residuals.

1. Introduction. Consider the following multiple linear regression model:
(1.1) Y, =xB + ¢, i=1,...,n,

where ¢,,...,¢, are independent and identically distributed (iid) random
variables with common distribution F, x,...,x, are known, nonrandom
design vectors and B is the p X 1 vector of parameters. In (1.1) and through-
out the paper, A’ denotes the transpose of a matrix A. Let ¢ be a real-valued
function defined on the real line. Then an M-estimator B, of 8 corresponding
to ¢ is defined as a solution of the vector equation
n
(1.2) Y xu(Y, - xit) = 0.
i=1

It is well known [cf. Huber (1980)] that under some conditions on F, ¢y and the
x’s, A, = (X7 ,x,x))"/%(B, — B) has a limiting p-variate normal distribution
with mean 0 and dispersion matrix [ Ey*(e,)/(Ey'(¢,))?]1,, where I, denotes
the identity matrix of order p. However, Edgeworth expansions for these
estimators are not very well studied in the present setup. For normalized,
real-valued linear functions of the least squares estimator g, of B, Navidi
(1989) obtained a two-term Edgeworth expansion. Expansion for the least
squares estimator B itself is recently obtained by Qumsiyeh (1990a). Because
of the spec1al structure of the score function [viz. y(x) =x, x € R”], the
estimator Bn can be expressed as a vector of linear combinations of the iid
random variables ¢, ..., ¢,. The expansion for /3 is then proved by applying
the methods of Bhattacharya and Ranga Rao (1986) and Bhattacharya and
Ghosh (1978). As for general M-estimators of B8, Lahiri (1989b) considers the
regression model (1.1) for the special case p = 1 and obtains Edgeworth
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expansions for general M-estimators under weaker growth conditions on the
design points. Moreover, it allows score functions that are not necessarily
smooth.

This paper considers the standardized and the studentized versions of
M-estimators and derives Edgeworth expansions in both cases. The proofs are
based on the techniques developed by Bhattacharya and Ghosh (1978) and
require a number of modifications to deal with the non-iid structure of the
present model. Using the smoothness of the score function ¢ and the defini-
tion of B, first a sufficiently close stochastic approximation T, (say) is derived
for the standardized statistic A,. The components of the approximating
random vector T, are smooth functions aof normalized sums of certain inde-
pendent random vectors. The derivation of this result suggests a general
method for obtaining stochastic approximations in such contexts and, by itself,
could be of independent interest. The Edgeworth expansion for T, (and hence,
for A ) is then proved by adapting the techniques for Bhattacharya and Ghosh
(1978) and Bhattacharya (1985) to the present setup. In carrying out the
second step, the major difficulties arise from the lack of uniformity in the form
of T, for different n’s. The approximating statistics {T),} are actually obtained
through a sequence of transformations on the row sums of a triangular array
of independent random vectors. Skovgaard (1981) gives some extensions of the
Bhattacharya and Ghosh (1978) result for deriving expansions in such cases.
However, the sequence of transformations defining T, is not amenable to the
analysis of the above papers.

Next, consider bootstrapping B,. Let F, denote an estimator of the error
distribution F based on the residuals &; = Y; — x/8,, 1 <i < n.Let &¥,..., &}
be a random sample from F, and define Y* =xB8, +¢&f, 1<i<n. In
accordance with the original model, one may define the bootstrapped estimator
B as a solution of

n
(1.3) Y x (Y - xit) = 0.

i=1
But this does not work in general, as shown in Lahiri (1989b). For p = 1,
F, = the empirical distribution of z,,...,,, it gives an example which shows
that almost surely, (8* — B,) is asymptotically normal with some random
mean, and the random mean itself converges weakly to the standard normal
distribution. Along the same line one can show that the situation hardly
improves if, instead, F, is taken to be the empirical distribution of the
centered residuals. Hence, one has to modify the naive bootstrap procedure as
described above. For the uniparameter case, certain modifications are proposed
and shown to be second order correct in Lahiri (1989b). It follows from the
above paper that one must remove the inherent asymptotic bias of the
bootstrapped M-estimator by requiring F, and ¢ to satisfy

(1’4) En‘l’(fT) = 07

where E, denotes the (bootstrap) expectation under F,. This can be achieved
either by choosing the resampling distribution suitably or, alternatively, by
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modifying (1.3) according to Shorack (1982). In this paper we consider one case
under each type of modification. First, consider the situation where for some
J» 1 <J < p, the jth component of all x,’s are of the same sign (i.e., either all
positive or all negative). For example, this holds if the regression model (1.1)
has an intercept. Choosing F, to be a suitable weighted empirical distribution
with weights depending on the x,;’s, it is shown that the corresponding
bootstrap procedure provides a better approximation than the usual normal
approximation. See Section 2 for details.

In the second modification, F, is taken to be the ordinary empirical distri-
bution of residuals but the bootstrapped estimator g% is defined as a solution
of the modified equation

(15) Y 5 (WY — xit) - Byb(el) = 0.
i=1

Note that, in this case, (1.4) is satisfied with ¢ replaced by (¢ — E,s(¢¥)). This
modification has been originally proposed by Shorack (1982) for bootstrapping
M-estimators of multiple linear regression parameters. The results of Shorack
(1982) show that this version of bootstrap procedure yields valid approxima-
tions, provided the number of parameters p increases with the sample size n
at the rate o(n!/3). In this context, some interesting first-order results have
been proved by Mammen (1989). There it has been shown that the distribu-
tions of linear functions a’A, (a € R?, [lall = 1) can be approximated by the
above procedure even in some cases where the limiting distribution of the
unbootstrapped statistic is not known. Results on bootstrapping least squares
estimators have been obtained by Freedman (1981), Bickel and Freedman
(1983) and Qumsiyeh (1990b).

For fixed p > 1, here it will be shown that both the modifications described
above are second order correct for the studentized M-estimator.

The rest of the paper is organized as follows. Section 2 gives the results on
Edgeworth expansions and bootstrap approximations. Section 3 contains the
proofs.

2. Assumptions and main results. For stating the results of this sec-
tion, we need to develop some notation. All throughout the paper, the depen-
dence on n will be suppressed in the notation, unless it is demanded by clarity.
Le¢ D=D,= (L7 x;x})""? and d,=d;,,=Dx;, 1<i<n. Write q =
p(p + 1)/2. For each d,=(d;y,...,d;,), define a ¢ X 1 vector ¢; (=c¢,,)
by ¢; = (d3,dd;g, ..., djd, 5 d%, dgd g, ... dipd, ;.5 d7,). Note that for
any constants u,,...,u, €R, X7 ju;c; =0« X} ju.d,; d;,, =0 for all
l<jym<pel?  udd,=0eL? axx;=0.Hence{c,...,c,} are lin-
early independent < {x,x;, 1 <i < n} are linearly independent. As a result,
r, = therank of ©7_;c;c, is nondecreasing in n. Let » = max{r,: n > 1}. Then
l1<r<gq and r, =r for all large n. Without loss of generality (w.l.o.g.),
assume that r, = r for all n > q. Note that » may not be equal to ¢. [An
important example, where r < g, is provided by the one-way-lay-out model. In
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this case, x;, =(1,0,...,0), 1 <i<n, x;,=(0,1,...,0), n, <i<n,+
Ng,...,x;=(0,...,0,1), n—n,<i<n for some n, + - +n,=n and
hence, r, = p for all n > p.] For any 1 < r < q, the spectral decomposition of
the real symmetric matrix L?_,c;c; yields a g X ¢ nonsingular matrix B =
B(n) of rank r such that

" I. 0
2.1 B Cc;|B = [T .
=0 (Elc‘cl) [0 0}
Partition B as B’ =[B): B}], where B, is of order r X g. Define the r X 1
vectors b; by

(2.2) b,=Byc, 1l<i<n.

Note that Y7 .60} = B(X? ,c;c:)B) =1, and T7_,d;d,= I, Let v, =
(T2 DY + (T2 15,192, n > 1. For & > 0, define the set A,(8) by
A (&) ={i: 1 <ix<n, (djt)?+ (bit,)? > 8y2 for all ¢, € R?, t, € R" with
017 + ll£,)I* = 1}. Let K,(8) = |A,(8)], where for any set A, |A| denotes the
size of A. For any positive definite (p.d.) A, let ®, denote the normal
distribution with mean 0 and dispersion matrix A. Write ¢, for the Lebesgue
density of ®,. For notational simplicity, set ®, = ® and ¢, = ¢,if A =1 » For
any real-valued function h: R* > R, £ > 1, let ||kl denote its supremum
norm and let &', K’, K" respectively denote the first, the second and the third
derivatives of h, when % = 1. Unless otherwise specified, all the limits are
taken as n — «,

Next, we state the assumptions needed for deriving the Edgeworth expan-
sion of A ,. These assumptions are made on three different quantities, viz. the
score function ¢, the error distribution F and the design vectors (x,,..., x,).
Here we shall list them down in the same order.

Conditions on :

(C.1) ¢ is twice differentiable and the second derivative " satisfies a
Lipschitz condition of order a for some 0 < 2a < 1.

Conditions on F:

(C.2) Ely(e)l® + Ely'(e)I® + Elp"()I* < w.

(C.3) Ey(e;) = 0, and % = EY?(e,) /(E'(e)))? € (0, o).

(C.4) A maximal linearly independent [as elements of the vector space
L*(F)] subset of the random variables {1, yi(¢,), ¥'(¢,)} satisfies the Cramér
condition. Recall that a R*-valued random vector Y with characteristic func-
tion f(t) satisfies the Cramér condition if lim sup”,”ﬁmlf(t)l < 1, where ||¢]|
denotes the usual Euclidean norm of a vector ¢t € R, & > 1.

Conditions on the x,’s:

(C.5) (X7_;x;x}) is invertible for some n > p.
(C.6) v, = (E7_lId, I + (T 7_,115,1)/2 = o(D).
(C.7) There exists a 8 > 0 such that (—logy,)/K,(8) = o(1).
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Some of the above conditions are fairly standard in the literature while
some others are not. For proving the asymptotic normality of B,,, one typically
assumes conditions (C.3) and (C.5). For this, another necessary condition
on the design points (x,...,x,) is that max{|ld,|: i=1,...,n} = o(1).
Using the fact X7 ,d.d; =1, it is easy to show that this is equivalent to
(Z7_,lld,I*)*/* = o(1). Similarly, the relation Y7 b5, = I, implies that
max{||b;: 1 <i < n} = o(1) if and only if (T?_,15,|*)/? = o(1). The restriction
2a < 1in(C.1) is imposed only for notational simplicity. The conclusions of all
the theorems remain valid without this restriction. The Cramér condition on
the joint distribution of (y(¢;), ¥/'(¢,)) in (C.4) can be relaxed in some cases.
See Remark 2.3. Condition (C.7) is relatively uncommon in the literature and
possibly needs some clarification. It requires only a very small fraction [e.g.,
O((log n)'**/n) for some a > 0 if y, = O(n"'/2)] of the n design vectors not
to cluster in some lower-dimensional hyperplane. A somewhat similar condi-
tion has been used in Lahiri (1989b) for the uniparameter case. See the
proposition following Remark 2.4 for a sufficient condition.

We are now ready to state the first theorem.

THEOREM 2.1. Let conditions (C.1), (C.2), (C.3), (C.5) and (C.6) hold.
(@) Then there exists a sequence of statistics {B,} and constants C, >0 and
C, > 0 such that

n 1/4
P(B, solves (1.2) and ||A,|l < Cw,)>1- Can3( X “di“6)
i=1

for all n > C,, where v, = —log(Z"_,lId,||°). _
(b) If, in addition, (C.4) and (C.7) hold, then for the sequence {B,.} of part
(a), there exist polynomials a ,(F, + ), n > 1, such that

sup |P((0D) (B, ~ B) € B) - [ (1 + a,(F,))é(x) de

=0(7),

where & is a class of Borel subsets of RP satisfying

(2.3) sup ®((dB)°),= O(e) asel0,
Be#

o = Ey*(e)) /(EY (¢)))% and the coefficients of a (F, - ) are continuous func-
tions of the finite moments of Y(e;), ¢'(e;) and ¢"(g,). Furthermore,
la, (F, < )p()ll. = OC(y,).

Next, we define the studentized M-estimator. Note that the asymptotic
dispersion matrix of A, is given by oI, where 0% = s2772, 7 = Ey/(¢,) and

s? = Ey*(¢;). Hence, a natural estimator of o2 is 62 = s2r; 2% where s? =

n n‘n
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n 'Y y%E;) and 7, = n‘l):{‘ W'(8,). We need the following condition to
derive an Edgeworth expansion for the studentized statistic (6, D)~ g, - B

(C.8)(i) A maximal linearly independent subset L of {1, ¥(e,), ¥'(e,), ¥*(g)))
satisfies the Cramér condition and the elements in it have finite third mo-
ments.

(i) If ¢'(¢,) lies in the maximal set, conditions (C.6) and (C.7) hold with the
b/’s replaced by b’s, where b, is defined as in (2.1), starting with ¢ =
[c n Y, 1<i<n.

For stating the next result, define ¥, = (7 1IId 163174 4+ (T2 116,112, Let
¥, =73, or y, according as ¢'(e;) € L or & L in (C.8)(i). With this, we have
the following result on the Edgeworth expansion of the studentized M-estima-
tor.

THEOREM 2.2. In addition to the hypotheses of Theorem 2.1(a) and (b),
assume that condition (C.8) holds and that v, = O(n') for some 0 < 8¢ < 1.
Then, for the sequence {B,} of Theorem 2.1(a), there exist polynomials @ ,(F, *)
such that

sup
Be#

P((6,D) (B, - B) € B) —fB(l +a,(F,x))p(x)dx

= o(F, + n~V?)

for every class @B of Borel subsets of RP satisfying (2.3). The coefficients of
a,(F, - ) are continuous functions of the finite moments of (Y(ey), ¢'(e,)), and
@, (F, - )¢()ll. = O, + n~/?).

REMARK 2.1. Instead of &,, one may actually use some other estimators of
o for studentizing B,. In fact, if one uses the “less natural” estimator
G, =5,/%,, where 7, = L?_,d%y'()) for some 1 <j < p, an Edgeworth ex-
pansion for the statistics (6, D)"(B8, — B) can be derived under conditions
(C.1), (C.3), (C.5)-(C.7) and (C.8)(i) only. In this case, condition (C.8)(ii) is not

at all necessary.

ReMARK 2.2. Theorems 2.1 and 2.2 can be extended in a straightforward
way to get higher-order Edgeworth expansions. Under additional smoothness
conditions on ¢, one may follow the steps in the first part of the proof of
Theorem 2.1 to derive a closer stochastic approximation for A, and use it to
obtain more terms in the Edgeworth expansion. In that case, one needs to
impose the Cramér condition on the joint distribution of a maximal linearly
independent subset of the random variables {1, ¥(e,), ¥'(gy), ..., y*(e,)} for
some k > 2, depending on the order of expansion.
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ReEMARK 2.3. The Cramér condition (C.4) in Theorem 2.1 can be replaced
by a strong nonlatticeness condition on the corresponding maximal set of
random variables, provided the design vectors satisfy some additional growth
conditions. Without any such conditions on the x,’s, the strong nonlatticeness
condition ensures an error bound o(max{||5; ||, lId;l: 1 <i < n}) only, which can
be coarser than o(y,) in some situations [cf. Remark 2.4 of Lahiri (1989b)]. A
similar comment applies also for Theorem 2.2.

REMARK 2.4. Though condition (C.7) may look somewhat restrictive at first
glance, it is satisfied under some simple conditions on 1v,. If y? is asymptoti-
cally equivalent to n !, then condition (C.7) is satisfied. More precisely, one
has the following proposition.

ProposiTION. If limsup, _,, ny2 < «, then condition (C.7) holds.

Next, we consider the performance of the bootstrap approximation under
the modifications mentioned in Section 1. For the first modification, suppose
that there is a j, 1 <j < p, such that the jth component x;; of x;, i > 1, are
all of the same sign. Let p, = L7_,lx,;|. Let F;, denote the weighted empirical
distribution putting mass |x;;//p, at the ith residual &, i = 1,..., n. Define
B;; by (1.3) and 6,7 by replacing the role of F' by F;, in the definitions of &,
respectively. Let P, denote the bootstrap probability, given Y;,...,Y,. Then
we have the following theorem.

THEOREM 2.3. Assume that the conditions of Theorem 2.2 hold. If, in
addition, p, *(L7_,x%) = o((log n)~?), then there exist constants C, > 0, Cy, >
0 and a sequence of Borel sets A, € R", such that P((¢,,...,¢,) €A;,) =1
as n —» », and given (gq,...,€,) € A, n = Cy,

(@) there exists a random vector B, depending on (¢, ...,€}), such that

Pn(Bﬁ solves (1.3) and ”D_I(BZ - B) || < Clvn) >1 - Cyy,v, 3,

(b) sup
Be#

P,((2D) (8% - B,) < B) - P((6,D) (B, - ) < B)|

< Cyd,(7, + n~1?),

where the random variables 8, = 8,(gq,...,¢&,) tend to 0 in probability as
n — » and & satisfies (2.3).

For the other modification, again, we have a similar result. Take the
resampling distribution F, to be the ordinary empirical distribution of the
residuals &, =y, — x/8,,,i = 1,..., n. Define B* as a solution of (1.5). Then we
have the following result.
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THEOREM 2.4. Assume that the conditions of Theorem 2.2 hold. Then there
exist constants C;,Cy > 0 and a sequence of Borel sets A;, € R, such that
P((eq,...,¢,) €A;,) = 1asn - «, and given (&,,...,¢,) €A,,, n > C,,

1n»

(a) there exists a random vector B, depending on (e%,..., &%), such that

P,(B solves (1.5) and |D}(B% — B,)|| < Cyv,) > 1 = Co7,v, 2,
(b)  sup |P.((3D)""(8: - B,) € B) - P((6,D) (B, — B) € B)|
4 < Cyd,(3, + n~1?),

where 8, = 8,(gq,...,¢,) goes to 0 in probability as n — © and # satisfies
(2.3).

ReEMARK 2.5. Note that both these modifications coincide when the original
model (1.1) has an intercept (so that x;,; = 1 for all i > 1) and F, is taken to
be the weighted empirical distribution based on the weights x,,, i = 1,...,n.
In this case one obtains the same conclusion from both Theorem 2.3 and
Theorem 2.4.

REMARK 2.6. As pointed out by a referee, Theorems 2.3 and 2.4 lose much
of their significance unless the rate of convergence of P((¢,...,¢,) € A},) to
1 is fast enough. Following the steps in the proofs of Theorems 2.3 and 2.4,
one can show that P((ey,...,e,) €A;,)=1-o0o(n 2+ ()* +7,) for any
0 < a < 4/7, and any sequence {7,} satisfying

(7,0 [max{ Blu ey w ()" l1{ @, u ey w0 [ > 1)

0<j,m<j+2m< 6} + By (£,) I, (e,)" > 1)} =0(1),

where @, = max{n~! + p, !lx, ;I 1 <i <n}. The bounds on a result from
estlmatlng the difference E d/(e )8 — Eyi(g,)®. Here one needs to show that
L wilp(e)Py (e )l |diA | = 0p(1) for some weights w;, 1 <i < n, under the
condition Ely(e,)%y ()% " < (Ey(e,)®)5 (E|p'(¢,)|*)?/7 < . Similarly, the
bound on n, derives from the proofs of assertions like “Ey(e;)’ < o =
Y w,((e)® — Ey(e,)®) = 0p(1).” Under stronger moment conditions, one
can easily modify the relevant steps in the proofs to establish faster conver-
gence rates for P((¢y,...,e,) € A;,). In particular, if ¢, ¢’ and ¢” are
bounded, then P((eq,...,e,) €A;,) =1— Olexp(—Cln + (@&,)"' + (')
for some C > 0.

Almost sure validity of the bootstrap procedures can be established under
stronger conditions on the model (1.1). It is obvious that in this case, one
needs at least the almost sure existence of B,. In fact, the existence of a
solution B, of (1.2) satisfying ||A,ll < Cv, can be proved using the law of
iterated logarithms for weighted sums of iid random variables [cf. Theorem
10.5 of Petrov (1975)] and Brouwer’s fixed point theorem as in the proof of
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Proposition 2.1 of Lahiri (1989a). However, if we are ready to assume this,
then we have the following result.

THEOREM 2.5. Let the conditions of Theorem 2.2 hold and max{||d||*
1<i<n}=0n""Y. Assume that a solution B, of (1.2) exists and A, |l =
O(v,) almost surely.

() Suppose that F, is taken to be the ordinary empirical distribution of &,,
i=1,...,n, and B} is defined as a solution of (1.5).

(@) Then, for almost all sample points w, there exists a positive integer
N(w) such that for all n > N(w) and for some constants C, > 0, C, > 0,

P,(B% solves (1.5) and ID~*(B% - B,)]| < Civ,) > 1= Co,v 2.

(b) For the solution B* of part (a) and class @ of Borel subsets of RP
satisfying (2.3),

sup
Be %

P,((6:D) (B} ~ B.) < B) - P(6,D) (B, - ) < B)|

=o0(¥y, +n %) a.s.

(IT) Suppose that the resampling distribution F, is chosen to be F;, and
max{p, 'lx; |: 1 <i<n}=0(n""). Then assertions (a) and (b) of part (I)
hold for B¥ defined by (1.3).

REMARK 2.7. It can be shown that the above modifications of the bootstrap
remain second order correct for the normalized M-estimator (eD)" (B, - B)
under weaker conditions. More specifically, conclusions similar to Theorems
2.3, 2.4 and 2.5 hold for (¢D)"XB, — B) provided the hypotheses of the
respective theorems are satisfied with ‘“conditions of Theorem 2.2” replaced by
“conditions of Theorem 2.1(b).” See Lahiri (1990) for details.

3. Proofs. Before proving the theorems, we will state and prove some
lemmas. Throughout this section, C, C,,C,, ... will denote generic constants
that do not depend on the variables like n, x, and so on. For a nonnegative
integral vector a = (ay,...,a,) and a function f=(f,..., f,): R* > R*,
k> 1, write la|l =a; + - +a,, al=a;!l - a,), fo= C(ff) - (fgw), Df, =
D{v -+ Dgrf,, where D; f, denotes the partial derivative of f1 with respect to
the jth argument 1 <j < k. For ¢ = (¢,,...,t,) € R* and « as above, define
t* =1t -+ ti+. Some of the symbols used in this section are local to the
lemmas and may denote different quantities elsewhere in the paper.

LemMa 3.1, Let {Y,, = (Y,y,,...,Y;,, ), 1 <i< n}, ., be a row iid trian-
gular array of random vectors with EY, =0 and E 1Y, <K < for all
n>1 For 1<j<m, 1<i<n and n>1, let a,;=a;, be ap xl1
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ij%ij = 1p
o(1), and let —logy,=o((1<i<n: Wty .., st VIl > CF, for all
Iy, ..., ¢, )= 1D for some constant C > 0. Define

vector of constants satisfying L}_,a,d;, =1,, 7, = L™ (X" lla; IM"? =

l]in = (aillliln’ e 7aim},imn)l7 Vn = DlSp( Z (jzn)7 l]in = anl/2[j'
i=1

for 1 <i<n, and @, = E|IY,,IPIUY,,|I> > Ay,), where A is a real number
satisfying 0 <X <liminf, ,, A,, A, = the smallest eigenvalue of %,, and
2, = Disp(Y,,). Suppose that a, = o(1) and limsup, ., sup{|E exp(it'Y;,)l:
S <t <k,} <1 for all &> 0 and for some {x,} satisfying max{IIain/)'/n:
1<i<n,1<j<m}=o(k,). Then, for any Borel set B of R*,

‘P(i‘ U, EB) - fon(y) dy| < Cla,y, + 72 + ®((9B)"")],

where k = L7 1p;, e, =0(%,), £(y) = (1 + £, _3(x,, ./ vDp,(yNd(y), p,(+) is
a polynomial and x, , = L7_,(vth cumulant of U,,,)

Proor. Lemma 3.1 can be proved along the line of the proof of Theorem
20.8 of Bhattacharya and Ranga Rao (1986) [hereafter, referred to as BR(86)].
Here we briefly mention the modifications required to obtain the above
remainder term under the hypothesis of Lemma 3.1.

Define 7, = max{lle,;I: 1<i<n, 1<j<m}, S,=X/_U,, Z, =
U, I(U,ll <1 - EU,INU, I <D, a, =X} EU, INU,I <D, S, =

" 1Z;,, B, =Disp S))~?, g,.(t) = EeV™'Zn and Xy.n = L7_{(vth cumu-

wn’

lant of Z;,), 1 <i < n. Let
= 8 J 1 iv!"‘/\_/vl v
En(x) =dp2(x)+ X X 5 X - X —r——(-D)¢p(x),
J=1i=1Y Gy 1) ) V1 Vi:
where s > 3, X% _,l,. =j,0 <[, <jand v, s are nonnegative integral k-vec-
tors such that |v,,| =1, + 2and v = v, + -+ +v,. With i = (- 1)1/2 write
n
H,(t) = [1Ee%n — [e**F, (%) dx.
j=1

As in the proof of Theorem 20.8 of BR(86), it can be shown that there exists a
constant @ > 0 such that for any & > 0 and any Borel set B,

P(S, € B) - [6.() ]

(31 = + Cla, 7, + 72

<f_k+4,n(y) dy

P(S.€B-a,) —/B

2+ ®((aB)™)].

n

< C| max | DA, (t)|dt + a,7, + 7
lal<k+4"7|tll<a/b
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Next, we obtain a bound on the first term above. W.l.o.g. assume that
A, 2A>0for all n > 1. Fori=1,...,n, define the 2 X m matrix M;, by
the relation U,, = M,,Y;,. Then 7?_, M, M/, = I,. Hence, for any y € R*

in—in®

i=1 i=1

From (3.2), it follows that
(3.3) - [Vot2| < a=1/2 < o,

Sinpe sup{EHYlnH?’: n > 1} < K, there exists a, > 0 such that
|[Ee’@Yi) — 1] < 1/4 for all n > 1, and for all ||ull < a,, © € R™. From this
and (3.3), it follows that for all ¢ € R* with [|tll < A'%a,/7,,, and n > 1,

(3.4) |Eet*Un — 1] < 1/4.
Also, note that for all n > 1,

E|Z,, ~ Ul < 2B(|U (10| > 1)) < 2E{|U, [ 11U, ] > 1)},

55 Y B|Z, - Ul <265, 7 < kit < ki,

J=1
Disp( Y Zjn) -1
j=1

< ¥ ||Dpisp(Z;,) — Disp(U,,)| < Cd, 7%,
i=1

As aresult, (£7_, Disp(Z;,))”'/? = B, exists whenever Cd,¥, < 1. Hence, for
all such n, (I+B l)1Spd I(I+ B, l) ! < 1, and by (3.5),

(3.6) B, —I| <|B,I|(I+B;")"'||B;2~1| = Cé,5./(1 - Ca,,).

Next, note that for s = & + 4,
(3.7) (Z E|B,Z,| ) < Cé,3,/(1 - Ca,3,)"".
=1

Using (3.4), (3.6) and (3.7), one can conclude from Theorem 9.9 of BR(86) that
there exist constants C > 0 and C, >,0 such that for all » with 2C&,7, < 1
and || < s,

(3.8) | DB (8)] < Ca, 7 (el 710 + (12221l g1t /4

whenever {/lnlltllkz <C,teRk
Let p, = (C,/7,,)"¢~?. From (3.8), it follows that there exists a positive
integer N (depending only on ¥,) such that for all n > N,

(3.9) max | DA, (t)|dt < Ca,7,

lal<s M{tI<p,}
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Next, use (3.5) above and Lemma 14.3 of BR(86) to conclude that

max
lal<s M{p, <lltl<Cy/7,}

where C, = A>/2/16kK. To complete the proof [as in the case of Theorem 20.8
of BR(86)], it is now enough to show that given any C, > 0, there exists
C; = 1, such that for all n > Cj,

o

But this follows from (3.3), the assumptlon on the a,;’s and the condition that

dt < C¥2,

D* l—[g_;n(t)
Jj=1

D* I—[g,n(t)

lal <5, Cy < 7, lItll < Cz} < Cy727%k,

lim sup sup{| E exp(it'Yy,)|: CCy < lltll < x,} < 1. O

n—o

Lemma 3.2. Let {My,}, .1, {M,,},.1,i=1,...,p, be (p + 1) sequences of
matrices such that for each n > 1, M,, is of order p X (p +r), and M,,
1<L<p,areoforder(p+r)><(p+r) p=21,r>1Letk=p+r, My, =
[0: I].., and M,, =[M,,: M,,|. Define the functions g,: R* - RP by
g(x) =My, x + (x'M,x,...,x’'M,,x), x € R*, n > 1. Assume that:

(i) the hypotheses of Lemma 3.1 hold with m = 2, pL=p,py=T,
(i) max{|IM, | 1 <i < p} = O(%,), where ¥, is as in Lemma 3.1,
(iii) [|M,, Il = O(1), and lim 1nfn_,°°Inf{IIM0nuII lull=1, u € Rk} >p for
some constant p > 0.

Then, for any class & of Borel sets in RP satisfying (2.3),
sup | P(g,(S,) < B) - [ fux) da

where S, =X U, &()=Q+ayF,: Nop (+), D, = (M,,M,,) and
a,(F,, - ) is apolynomzal Moreover, ||la,(F,, - )d)D( N = O(y,,) and the coef-
ﬁcients of a,(F,, + ) are continuous functions of E(Y) la| < 3.

=0(¥),

PrOOF. Define the sets L, = {x € R*: x|l < —log ¥,}, n > 1. Then, from
Lemma 3.1, it follows that for any Borel set B C R?,

(3.10) P(g.(S,) € B) - f;_le £.(y)dy + r(B),

where |r(B)| < Cld,7, + 72 + ®(0B)°»)] and e, = o(§,). Now define a func-
tion G,: R* > R*, by G (x) = (g"(x)) where % denotes the last r components
of x € R*. Note that by condition (iii), grad G,(0) = M, is nonsingular. By
the usual inverse function theorem, this is enough to guarantee that G, is one
to one (with a differentiable inverse) on some neighborhood N, of 0. However,
this is not strong enough for our purpose. For any n > 1, to transform the
integral on the r.h.s. of (3.10), we at least need G, to be one to one over all of
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L,. Since N, also changes with n, it is clear that a more precise definition of
N, is necessary. Using some refinements of Theorems 13.2, 13.4 and 13.6
of Apostol (1974), one can show [cf. Lemmas 3.5 and 3.6 of Lahiri (1990)] that
there exist constants C; > 0, C, > 0 such that for all n > C;!, G, has an

infinitely differentiable inverse on N, = {x € R*: ||x[|§, < p?C;} 2 L, and
(3.11) G\ (x) =Mzlx + Y, (v)) " H(D*fi(0))x” + R (%),
lvl=2
wh%e G;'=(fy,..., f,) and uniformly in x € N,, |R,(x)| < Cy72(1 +
[l 7).
Now substituting x = G,(y) in the integral on the r.h.s. of (3.10) and using

(3.11), one can complete the proof of Lemma 3.2 as in Lahiri (1989a) or
Bhattacharya (1985). O

LeEmMma 3.3. Assume that the conditions of Theorem 2.1 hold. Let nt =

Lrld % A, =L dd'e), n=1, A=7l, and K=1+ Elp(e)® +
Ely'(¢)I® + Ely"(e)I>. Then there exists a constant C > 0 such that

|

X_‘zldiw(gi)

P(|A, = Al > v,m,) < C[Kv,®n, + exp(-Cvi/K)]

d

Proor. The first two inequalities follow from Fuk and Nagaev (1971), and
the last one is a direct consequence of Chebyshev’s inequality. O

> Vn) < C[Kv,;®n, + exp(-Cv2/K)],

and

>mmWﬂ

Z dijdildim(‘p”(ei) - E‘V(Si))
i=1

<CKv;3n, forall<j,l,m<p.

PrOOF OF THEOREM 2.1(a). With A = (Z7_,x,x))"/%(¢ — B), Taylor’s expan-
sion of (1.2) gives
0= Y dig(e;) = L di(did)i'(e) + L di(did)*y"(u;)/2,
i-1 -1 ‘ i-1

im
where u; is a point between ¢; and ¢; — d;A, 1 <i < n. Next, note that if

lA, — All < |7l /2, then A, is invertible and ||A; ']l < 2/|7|. In that case one
can rewrite the above equation as

(3.12) A=A T d(e;) + ¥ di(diA) v (u;)/2|.
i=1 i=1
By Lemma 3.3 and the Lipschitz property of ", it follows that there

exist constants C; > 0, C, > 0 and a positive integer N > 1 (depending only
on ¢” and v,) such that for all n > N, outside a set of probability
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Cor 37 IId, 154, the r.h.s. of (8.12) is less than C,v,, whenever [|A] <
C,v,.. Therefore, by Brouwer’s fixed point theorem, it follows that on this set
there exists A = A, satisfying (3.12) and ||A |l < C,v,. This proves part (a) of
Theorem 2.1. O

Proor oF THEOREM 2.1(b). Let [, = —logy, and 0, = X7_.d,¢(¢;), n > 1.
As indicated in Section 1, the proof of part (b) is divided into two steps. First,
the stochastic approximation is obtained and then the Edgeworth expansion.

Since A, satisfies (3.12), we can write
(3.13) A, =7, +R

1n>

where, by condition (C.1),

|Ri,| <[lA;t = A7]6,] + 3

x di(dliAn)le”(ui)H
i=1
<|A-A, (A TA= e,
AP 1 P19 () | + C(lId, 14, 1)%)-
i=1

Hence, by part (a) of the theorem and Lemma 3.3, there exists a constant
C; > 0 such that for all n > N,
(314) P(“Rln“ > C377an) < CBnnVrZB'
Now, note that A ,'=A"1—-A"W A, —AA '+A (A, -AA XA, -
A)A; . Therefore, using (3.13), one can write

(3.15) X di(diA) W (wy) = ¥ di(dio,/m) " (e;) + Ry,
i=1 i=1

where for all n > N (w.l.o.g.) and for some constant C, > 0, as in (3.14),

(316) P(”RZrL“ > C4"71+a’/3+a) < C4nnVn_3‘

n

Next, observe that for 1 <j < p,

ildij(d§9n)2(¢"(5i) - El/f”(gi))l

Sp"@n“2 max{ Z dijdikdim(‘/’//(‘si) - EW(%)))’ 1<k,m SP}-
i=1

Hence, from Lemma 3.3 it follows that for all n > N (w.l.o.g.),

. d,(di6,)"(#'(e0) ~ BV (+,)

VQ v 3/2

-3
< Cym,v, °.
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Using (3.12) and (3.14)-(3.17), one can write
-3
-

(318) 4, =770, — 7 (A, ~ A)6, + —

+R,,

(f d,(d6,) B’ (e,)
i=1

where for all n > N, the remainder term R, satisfies
(3.19) P(”Rn” > Ce”"l;llMV;%M) < Cen,vy, .

This gives the stochastic expansion for A .
Next, we derive the Edgeworth expansion for A, . Define

T,=7"'6, -7 %A, -A), +

)3 di(d;on)z)Ew"ul)/(%:*)
i=1

and let 7', denote the jth component of T, j = 1,2,..., p. Write Y;; = ¢(¢;),
Yy =v¢'(e;) —71,i> 1.

It is clear that each T}, is a polynomial in the variables ©7_,d,;Y;;, L7 ,c;Y,,.
So one may try to obtain the Edgeworth expansion for 7, from an expansion
for X7_,d,Y;, L% ,c;Y,;. The main difficulty in implementing this arises from
the fact that the dispersion matrix of ©7_,c;Y,, may be singular, and hence
may require a new singular linear transformation for each n > 1.

Let B = B(n) be the ¢ X ¢ nonsingular matrix defined by (2.1). Note that
L2 I Bye,ll> = trL?_, Be;c; B’ = 0. Hence, by (2.2), Be, = (Byc,): (Bye,)) =
(b): 0) for all 1 <i <n. Therefore, ¢, =B,b;,, 1 <i <n, where the g X r
matrix B, consists of the first r columns of B!,

Next, we express T, in terms of L7 ,d,Y;, and Y"_,b,Y,,. Denoting
Y7 1¢;Y,; by Z, one can show [as in Lemma 3.4 of Lahiri (1990)] that for
1 <j <p, the jth component of the second term of T, can be written as
7 2Z'E.0 , where E'j is a ¢ X p matrix, and IIEJ-II < q. Let

jVns

n A , d; Y,
V= Z Disp( ' 1‘), Xi=V1/2(bY21.), l1<i<n.

With V, of dimension p X (p + r), partition V'/% as V¥/2 = [V]: V;]'. Then,
for 1 <j < p, one can write

Z'E6, = (Z binl) BlEj( dini) = S, V;BiEV,S,,
i=1 i=1

where S, = L7, X,. Hence, writing P, = V/d,d'V,, one has
(320) T,=V,S, +r 2| S,VsBiEV,S, | + (2r%) 'Ey"(e,) ¥ d,S,B,S,.
i=1

Note that V\V] = oI, II£7_,d, Bl = O(y,), IV;B{E, V||l = O(,), 1 <j < p,
and (X7, lld;1D"2 < p(X7?_,lId,|I°)*/4. Hence, part (b) of the theorem now
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follows from inequality (3.19), Lemma 3.1 (with m =2, a;, =d;, a;, = b,
U =X;,,1<i<n)and Lemma 3.2. O

Proor or THEOREM 2.2. The stochastic approximation for the studentized
statistics is derived by using the approximation T, above. W.l.o.g. assume that
1, ¢(e)), ¥'(g,), (Y(¢,))? are linearly independent. For n > 1, let [, = —log¥,,
T, = (1/n)L T ' (e;), and s, = (1/n)L7_,4%(e;). For real numbers u; with
lu,l <1, 1 <i < n, using inequality (3.5), the smoothness of ¢ and Hdélder’s
inequality, one gets

1 n
~ % (' (e, + uidi,) «w(el))“
i=1

(321) )(1+a)/(2+a)

= C( ld. nTtVEROIA
i=1
Next, using (3.21), Theorem 2.1(a), and Chebyshev’s inequality, one can show

that

+ Rg,,

n
Tn = Tin = 2E¢"(81)n_1( X dif,
i=1
where the remainder term R, satisfies

P(|Rg,| > Cn=Y2((v,) * + (v, log n) "))
(3.22) ) D
<¢[n=210gn) "+ 7,(1,) ]

for some C > 0. Next, write
Wi =¢(e)y'(g;), Wy = (W’(Ei))z +|'v[//(8i)¢/(8i)| +|‘/’(5i)|a
W, = |0 (e ()| + [0/ (e) | + (0'(e))’ + 1, i=1.

Using (3.13) and Taylor’s expansion, one can conclude that

(3.23) s2— g2 = 2n-1( d;en)(T—IEWH) +R,,,
=1

l

where on the set J, = {||A,lllld;ll < 1 for all 1 <i < n}, the remainder R,
satisfies ‘

18,0+

l

Z di(Wli - EWli)

i=1

|R7n| = Cn_l(

d;R,, EW,
-1

+ X P14, "Wy, + 2 IIdiII3IIAnll3W3i)-
i=1 i=1

Note that by Hélder’s inequality, E{|W,,> + |[W,,>/* + |[W,,]} < ». Let S,, =

):?=1”di”(Wli - EWu)a S2n = E?=1”di”2(W2iI(W2i < n¥?) - EW2iI(W2i =

n3/2) and S, = L7, Ild,I?Wy;, n > 1. By (3.14), Theorem 2.1(a), Corollary

A
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4.4 of Fuk and Nagaev (1971), and Chebyshev’s inequality, it follows that
P(|Rq,| > Cn~V?(v,) " + (v, log n)_l])

3 .
<Y P(ISjnI > Cn'/?(v, log n)'l(vn)_’) + nP(W,, > n®?)
j=1

+ P(|Rpull > C(v,) %) + CF,(w)

=Cn'(v, log n)z[mf(EWﬁ) + n3/4(vn>“( Zl ld; ||“)E| Wy |‘"’/2]

(3.24) n
+ Cn~'?(log n)(vn)4( )» ”di”3) EW,; + n=%/*E|W,, >
i=1

+ Cy ()
< Cn~Y(log n)[(v,)" + n¥4() (F)" + 04 (n) ' (3) "]
+ CFu(v)
= o(n‘l/z(log n)_3) + 0(7,1(1_,1)_3)‘
The last inequality follows from the fact that

n n 3/4
n Y |d;)? < (n ) ||di||“) < Cn34(3,)*%.
i=1 i=1

Now using (3.18), (3.21) and (3.23), expand the studentized statistic stochasti-

cally as
|7 |

Tn
| |An=0'_1An+ ( —O'_I)An

Sn Sn

=o', + (2l7ls%) " '0,[(r2 — 72)s® + 2(s% — 52)] + Rs,
=0 'T, + (2|7|s3)‘10n[27(71n -7)s% + 72(32 - an)

+2n—1( f d;on‘)(szE(/f"(el) — 7Ey (&)W (€1))

i=1

=T,, + Ry, (say),
where, by (3.19), (3.22) and (3.24), the remainder terms Rg, and R, satisfy

P(| Rg, |l + | Rop [l > Cn=V2{(w,) " + (log n) '}
< C[«yn(in)“"’ + n"%(log n)_S]

for some C > 0. Now the Edgeworth expansion for T,, can be derived by
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using Lemma 3.1 [with m =3, a;; =d;, a;5=0b;, a;3=n""2 Y, = y(¢,),
Y, = 9'(e) — EY(ey), Yy =¢e) — Ep™(ey), ¥, = (Y, Yy, Yy), 1 <i<n,
and so on], Lemma 3.2 and the arguments similar to those used in the proof of
Theorem 2.1(b). O

PROOF OF THE PROPOSITION. Let y,, = max{||b,, ld;|l: i = 1,2,..., n}. Since
i-1d;d; =1, and X7_,b,b; = I, it follows that

Inf{ f; (d;t)%: t € RP, ||t]| = 1} =1

i=1

and
Inf{ Y byt e R Il = 1} = 1.
i=1
Consequently,

Inf{ X (Bit)" + (dit) " |4 ]* +[8a]” = 1,8, € R 1y € RP} > 1.
i=1

Hence, for any 0 <8 <1 and ¢, € R", t, € R? with [I¢,]|> + |I,I> = 1, the
definition of the set A,(8) gives

1< ¥ [(bit)® + (dity)”]
i=1
= ¥+ L[(bit)? + (dit,)?], where ¥’ extends overall i € A,(5),

<K, (8)vi, + (n — K, (8))3y; < dny; + (vi, — 877)K,(5).

By the hypothesis of the proposition, C = limsup,, ., ny2 < «. Also, as in
(3.5), vi, < v,. Hence, it follows that for all large n and for 6 = (2 + 2C)~ 1,
K,(8) > (1 - &C + 1))/y, = (2y,)"'. Therefore, —log v,/K,(8) =
O(y,llog v,1) = 0(1) as n — o, implying condition (C.7). O

Proor oF THEOREM 2.3. W.lo.g. assume that 1,¢(e,), ¥'(¢)), ¥%(e,), are
linearly independent, and that &,,¢s,... are defined on the product space
(R™, #) such that ¢; is the jth coordinate variable on (R*, #*). For nota-
tional convenience, we will identify any set A € #" = the Borel o-field on R",
with the corresponding cylinder set in . Let A,, be the set for which the
conclusions of Lemma 3.3 hold. Then, for (¢,...,¢,) € A,,, B, exists and
A, Il < v,. Next, we show that the bootstrap moments converge in probability
to the corresponding moments of {(e,), ¥'(e,), ¥(e,)} and "(e,). To that end,
write w; = |x;,|/p,, 1 <i <n.Fora > 0,let Y(a),Y,(a),... denote a generic
sequence of iid random variables satisfying E|Y (a)|* < ». For (¢,,...,¢,) €
A,,,, using Taylor’s expansion and Hélder’s inequality, one can show that for



1566 S. N. LAHIRI

all jym el ={(j,,m:0<j,m, <j, +2m, <6},

B[ W ()] = L (e (")

(B2 <0 w,max(|dia, PY(a)]: (a. b)

=(51):(:2),(3.6).(5.7),(5.3), (8, %))

for some {Y;(a)}’s. Next, for any p>0,b>0,0<u<band0<a <1, with
Za) = |Y(a)I(w,lld;[*|Y(a)l < 1), one has

P( Zn: wini”bIYi(a)I > [2Vnp + 2": wi”di”bEZi(a)D

i=1 i=1
Y wld,|*(Z(a) - EZ(a))

i=1

<r|

> ) + ¥ P(¥(0)| # Z(a))

<vr ¥ wld|*EZ,(a)® + ¥ wlld,|"“E|Y(a)["
i=1

i=1
n

n (1-a)
= C( X wf‘lldilla“) < C( Y ||di||au/<1a>) .
i=1

i=1

Note that for each pair (a, b) appearing on the r.h.s. of (3.25),

Y wild,[*EZ(a) = o(v-*),

i=1

n (1-a)
(Z ”di“ab/(l—a)) _ O((yn)ab+2a72)

i=1

and (ab + 2a — 2) > 4/7. Hence, choosing 0 < u < b suitably for each of
these pairs, one can show that

d

for every 0 < a < 4/7 and (j, m) € T.

Next, note that by Holder’s inequality, { E[¢/(¢,)/y/(¢,)™]: (j,:m) € T} = the
cross-product moments of {/(e,), ¢/'(¢,), ¥(¢,)% of order less than or equal to 3
are finite. Using an argument similar to the above, one can show that for every
(j,m)eT,

d

> CV,;l) <C(%,)"

B, [u(e1) (w(e1)"] - L wi(e)v/(e)"

1=

n

X wi(e:)w'(e))™ = E[(er) v/ (1) "]

i=1

> SSn) <Cs,,
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= max{w;: 1 <i < n} = o(1) and

where w,
(3.)" = (@) + B (e)*1(, 07 (2,)° > 1)
j m —_ i m 2 .
+ max{ Bl (e) /(o))" 1@, w0 v (e)"[ > 1): (,m) < T,
Hence, E,[¥(e})/y'(¢¥)™], and by similar arguments, E,(¢"(¢}))' converge in
probability to the corresponding population moments. Let A, = {(ey,...,&,):
IE, g5 ' (D)™ — Eg(e ) y'(e)™| < Clv, ' +8,), |E,"(e) — EY'(e,)'] <
Clv;) +6,:(j,m)eTl,1<ix< 2} for some large C > 0. Then
(€,) €Ag,) =1-0(5, + (%,)"7).
1 <i<n)

P((&yq,...
Next, we check the convergence of E, exp(it'Z}), t € R3, where Zj =
< <

((e¥), ¢'(e¥), ¢(e¥)?Y. Note that (y,) '/2 max{|d;l:
7)) VAZr_Id, 1198 < (,)/8. Hence,
P(sup{| E, exp(it'Z5) — £.(8) [+ It < (7)1} > (L))

wld, A7) *LIY(D)| > (1,) )

sP(Z
i=1
-3

IA

(3.26) )
P( Y w|Y(1)] > Zn) + CVn(Z )
i-1

=3 _ ,: -3

<c((3.)" + 7)),
where f,(¢) = L%_w; exp(it'Z) and Z, = ((g;), ¥'(¢;), ¥(e))?), j = 1. Now
using Theorem 2 of Hoeffding (1963) and a discretizing argument as in the

proof of Lemma 4.2 of Babu and Singh (1984), one can show that

P(sup{| f,(t) — E exp(it'Zy)|: ltlI* < n} > C(loglog n) ")

<P|Y w|Zz]| > Cn(loglogn)_l)
i=1
(3:27) + P(max{| £,(¢) — E exp(it'Z,)|: nt € Z%, |It|* < n} > C(loglog n) ")

< CE|Z,|*n"2% + Cn® exp(—C(loglog n)_Q/Z wf)
i-1

< Cn~2.

Let
A, = {(81, L E,): sup{IEn exp(it'Z}) — E exp(it'’Z,)|:
¢l < min{n'/2,(7,)"*1,}} < C(loglog n) " + (I,) '}
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Take A,, =A,, NA;, NA,,. Then P((e,...,e,) €A;,)>1-0@, +
(¥,)"? + n=2). For (¢y,...,¢,) €A,,, one can retrace the proof of Theorem
2.1(a) to prove part (a). As' for part (b), note that 3, = (X7 1IId 1914 +
P 16IMY2 + n=2 < 5+ n= 12 implies —Y1,(#,) " tlog ¥, <
—(,)7"%log ¥, < min{n'/2 (¥,)"'/?] }. Hence, the arguments in the proofs
of Theorems 2.1(b) and 2.2 and Lemmas 3.1 and 3.2 entail
AxP) px _ @ *

P((6:D) (81~ B.) € B) - [ &1(x) da

= o(7, + n~V?),

sup
Be X

where

() =1 +a,(F,;))e().
Hence, part (b) follows by comparing this with the expansion for the unboot-
strapped statistic in Theorem 2.2. O

Proor oF THEOREM 2.4. Similar to the proof of Theorem 2.3. O

Proor oF THEOREM 2.5. Here we outline the proof of part (II) only.
Specializing the arguments of part (II) with x;; =1 for all i > 1, one can
construct a proof of part (I).

First, we show that

(3.28) E,[w(e5)'w(e1)"] = E[w(e))’w'(e)™], as.foralli,jeT,

E, [y (eD)’] - E[w(e1)’], a.s.for j < 2.

Note that for any a > 0, E|Y,(a)|” < « implies |Y,(a)| = o(n'/?) a.s. Define
Z(a) = Y ()I(Y,(a)l <n'/%), n>1,a>0.Then Y (a) = Z,(a), eventually,
a.s. by Holder’s inequality, for any @ > 0 and b > 0,

E(Z:L: wi“di”b(zi(a) - EZl-(a)))

n 2

< Cn /e ¥ wi|d,|* + C
i=1
< Cn—4—2b+(4/a)

Hence, using the Borel-Cantelli lemma and the fact that la,ll = O(v,) as.,
one can show that L7_,w,ld/A,|° 1Y)l = £2_ w,ld;A,I°1Z, (a)! = 0(1) a.s.
for every (a, b) appearing in the r.h.s. of (3.25). To prove the almost sure
convergence of the bootstrap moments, it is now enough to show that
X wi(Y, (1) — EY,(1)) = o(1) a.s. W.lo.g. assume that EY,(1) = 0. Since
max{w;: 1 <i <n}=0(n""),

Z var(| 2, 1Z,(1))

n
n®=/e 3wl d,||*

i=1

o5}

< ¥ n 2B, (WI(|Y(D)| <) < 2 + B[Y,(1)] < .
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Hence, by standard arguments, X% _,p, 'lx, ;/(Z,(1) — EZ, (1)) = O(1) as., so
that ©7_,w,(Z,(1) — EZ,(1)) = o(1) a.s. Consequently ¥ 7_,w;Y,(1) = o(1) a.s.
Next, using (3.26), (3.27) and the Borel-Cantelli lemma, one gets

sup(| E, exp(it'Z) — E exp(it'Z,) : It < min{n'/?, (¥,) LY

(3.29) s( Y wldia,|(7,) " L1%(1)]| + O((oglog n) ) as.
i=1
=o0(1l) a.s.

Now fix a sample point for which (3.28) and (3.29) hold. Then, repeating the
arguments in the proofs of Theorems 2.2 and 2.3, one can complete the proof
of Theorem 2.5. O
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