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NON-EXISTENCE OF AN ADAPTIVE ESTIMATOR FOR THE
VALUE OF AN UNKNOWN PROBABILITY DENSITY

By Mark G. Low

University of Pennsylvania and University of California, Berkeley

A strong adaptive criteria is defined for density estimation problems.
In a particular case it is shown that there is no strongly adaptive sequence
of estimators. In contrast Woodroofe has shown that a weakly adaptive
result holds.

1. Adaptive estimation of a probability density function. Let
X,,..., X, beiid. random variables with common density f with respect to
Lebesgue measure. We focus attention on the pointwise estimation problem
that is estimating f(x,) for some point x,. Without loss of generality, we take
xo = 0. The measure of loss will be squared error. In what follows, estimators
indexed by n will always be assumed to be measurable functions of X, ..., X,,.
In this setup asymptotic minimax linear estimators are well known when f is
assumed to belong to SY(a, M), where

SY(a, M) = {f: [-3,3] > R: f> o,jf= 1, f(0) < e,
(1.1)
| F(x) - £(0)] < Mlxl};

see Sacks and Ylvisaker (1981) and Donoho and Liu (1991).
By linear, we mean an estimator of the form

1
(1.2) f. = - Y T, (X;), whereT, is a measurable function.

Sacks and Ylvisaker showed that the asymptotic minimax linear estimator is
a kernel estimator,

L1 X,
(19) - e S|

n

1-1Ixl, Ixl<1,

and h, = 3Y/3M~%/3%1/3p~1/3,
0, lx] > 1, n

where K(x) = {

For this sequence of estimators,

(1.4) limn?®  sup E,(f(0) —F,) = a®/3M?/3371/5,
n—o® feSY(a, M)
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where E, indicates that the expectation is to be evaluated under the assump-
tion that f is the true density.

In this set up a natural adaptive version of (1.4) is given by a sequence of
estimators satisfying the following definition.

DEFINITION. A sequence fn} of estimators is strongly adaptive [over the
class SY(a, M)] if

A2
(1.5) sup limsup3'/®n?%a~2%  sup E/(f(0)-f,) <1
I\:leslc\!ls‘;é n—w feSY(a, M)
1=SM =My

Sacks and Ylvisaker (1981) prove there is such a sequence of estimators if
M, =M, and a; =0, a, = . Moreover for a, — «,; sufficiently small and
M,/M, > 1 sufficiently near 1, there must exist strongly adaptive estimators
in the sense of (1.5). This follows because for given a, M there exists an fn
such that

A N2
lim 33023 ~2/3M~2/3  sup E/(f(0) —f,) <1
n— feSY(a, M)

[see Sacks and Strawderman (1982)].

In Section 2 we show that if a; < a, and M,/M, > 3.1, then strongly
adaptive estimators do not exist. In particular, strongly adaptive estimators do
not exist whenever M, = « or M; = 0.

The uniform adaptively condition given in (1.5) can be contrasted to a
pointwise criteria for densities f € SY(a, M) satisfying

(1.6) f(y) —£(0) . M, asy— 0",
|yl M, asy—0~

for some M, and M;, where M, + M; + 0. Note that M, and M; may

depend on f.
We shall denote the class of densities f < SY(a, M) satisfying (1.6) by

W(a,M).

DEFINITION. A sequence {fn} of estimators is weakly adaptive [over the
class W(a, M)] if

_oss( Mg + M\ 7% A N2
(L7)  lim n*/3( £(0)) 2/3(%) E,(f(0) - f,) <371/
for each f € W(a, M), where My and M, are for each f, defined by (1.6).
The existence of a weakly adaptive sequence is essentially contained in

Theorem 5.1 of Woodroofe (1970) applied to the kernel K given in (1.3). K
however is not as required by that theorem twice continuously differentiable.
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Instead look at a sequence K; of twice continuously differentiable kernels such
that [K?(x)dx — sz(x)dx uniformly and [xK;(x)dx — [xK(x)dx uni-
formly.

Woodroofe’s theorem applies to each of these K; and hence (1.7) holds with
371/3 replaced by 37172 + ¢, where ¢, | 0. A s1mple diagonalization argument
then shows the existence of a weakly adaptive sequence.

2. Main theorem.
THEOREM. Suppose M,/M, > 3.1, then

(2.1) limsupn®?inf sup  sup M-2E,(f(0) - f,) > 3712,
n—ow fo Mi<M<M, feW(1, M) .

Proor. Consider the one parameter families

. 12x2 - 1 |lx|nt/3
fO(x)=1+——n—l/—6——+01_ d

) —c,(0), 16l <M,dn173,
+
where d is a positive real number, c,() = 6 dn™/® and (x), = max{0, x}. Let

1 . 2/3
r(8) = gz (min{M: M, < M < M,, fj' € W(1, M)}) o

If the theorem is false, then for any £ > 0 there is an estimator (sequence)
8, such that

E(f,(0) = 8,)" < (1 +£)r,(6)

for all n sufficiently large, say n > n, for some positive integer n,. This
together with the information inequality implies

1 , 2
(1 +&)r,(0) = %&"g;ﬂ +B2(8), n=n,,

where I,(6) = (2/3)dn~/3(1 + 0(1)) is the information function and B,(6) =
E(5,) — f,(0) denotes the bias of the estimator §,. Hence

(1+B,(6))° .
+ 0
(2.2) A+ o)) > s ameaq v oy PO
n > n, for some positive integer 7.
Now let
nl/3¢
¢$=——z, D=Md,
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and define the function ¢ by

M3 (i3
2175 ¢\ 3g375 | = Pal0).

The theorem will be proved if we can show that for M,/M, > 3.1, there is
no solution to

1 ] (1+c(4)" M,
(2.3) 31/3( (1 3)) = W +¢%(9), ] < ED.

Set rp(¢) = (1/3'3)max(1, ¢ /D))?/? Brown and Farrell (1990) have shown
that (2.3) has a solution if and only if the differential equation

2 1/2 . M,
(24) c(¢) = (gp(rp(@ - 02(¢))) -1, 0<¢=< ED, ¢(0) = 0.

has a solution.

Now suppose that we can find a function c¢,(¢) such that (i) if c(¢) is a
solution to (2.4) on any interval [0, T'], then c(¢) < ¢,(#) on [0, T'] (ii) for some
T < (My/M)D, c(T") < —(rp(T")V/2,

It would then follow that T < T’ otherwise ¢*(T") > r,(T"') which contra-
dicts the inequality in (2.3) and the equality in (2.4). Hence we would have
proved that there is no solution to (2.4) on the whole interval [0,(M,/M,)D]
and the theorem would be proved. We shall now construct such a function c,
for the special case of D = 1. For that special case we write r(¢) instead of
r 1(¢)

The construction is based on a modification of the Euler method for
approximating solutions to first order differential equations. First fix a step
size h. Then define ¢, recursively by ¢,(0) = 0

(25 OUR ) =e(h) + (A + DA) - cd(jh))* - 1)e
forO<x<h,j=0,1,....
Note that since r(¢) is a nondecreasing function of ¢,
(2.6) r((J+1h)=r(jh+x) VO<x<h.

Also note that any solution ¢ to (2.4), (with D = 1) satisfies ¢’(¢) < 0 (at

least) if
3 2

2
(g"l(t)) <1, thatis,if ¢< 557 = = 3.18.

Hence c(¢) is a decreasing function of ¢ for 0 < ¢ < 8.18 and so if 4 < 3.18,
(2.7) e(t) <e(0), O=ts<h.

Now (2.5), (2.6) and (2.7) taken together show that ¢'(¢) < ¢/(¢) on [0, 2) and
hence

(2.8) c(t) <cyt) on[0,h].
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Now suppose for some positive integer j that c(jk) < ¢,(jh) and assuming
(j + 1A < 3.18, then once again noting that c(¢) is decreasing and that (2.6)
holds, we have

c(t) <c(t) on[jh,(j+ 1)R].

Hence this construction insures that ¢, satisfies condition (i).

For h =0.001, ¢(3.086) = —1.212 and c*(3.086) = 1.471 > r(3.086) =
1.470. Hence if M,/M, > 3.086, there is no solution to (2.3) when D = 1 and
the theorem is proved. O

ReEMARK. The construction of the function ¢, makes it clear that if A, < h,,
then c¢!1(#) < c?2(¢), where c}(¢) is the ¢, function corresponding to the step
size h. Hence the value of T" given in condition (ii), corresponding to &, will
be smaller than that corresponding to %,. In particular if we take 4 = 0.01 in
our above example, ¢{%1(3.12) = —1.22 and (1.22)% = 1.4884 > r(3.12) =
1.4805.
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