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ITERATING VON NEUMANN’S PROCEDURE
FOR EXTRACTING RANDOM BITS!

BYJYUVAL PERES

Hebrew University, Jerusalem

Given a sequence of independent, identically distributed random biased
bits, von Neumann’s simple procedure extracts independent unbiased bits.
In this note we show that the number of unbiased bits produced by
iterating this procedure is arbitrarily close to the entropy bound.

1. Introduction. A source produces independent biased random bits
{x,}*,, with p = Pr[x; = 0] # 1/2, ¢ = Pr[x; = 1]. We wish to extract from
them as many as possible independent unbiased bits, without assuming prior
knowledge of p. Von Neumann’s procedure [8] consists of dividing the se-
quence {x,} ; into pairs, discarding pairs of equal bits, and replacing each 10
pair by a 0, each 01 pair by 1. From n biased bits, this procedure extracts
approximately npq unbiased bits.

In [2], Elias exhibits extensions of the von Neumann procedure which
produce unbiased bits at a rate arbitrarily close to the entropy bound (see
Section 3). In this note we show that iterating the original von Neumann
procedure on the information which it discards achieves the same end. The
proof is based on a functional equation satisfied by the entropy function. In the
last section we include an extension to exchangeable processes and discuss the
relationship to the Keane-Smorodinsky finitary codes. It may be seen that
the memory requirements of the procedures discussed here are substantially
smaller than those of the Elias procedures.

NorartioN. Let Q = U%_,{0, 1}*. Write I/(x) for length of strings u € Q.
For u,v € Q, we write u < v if u is a prefix of v and u * v for the concatena-
tion of u and v. By convention, the empty string is a prefix of any v € ().

DEFINITION. By an extraction procedure we mean a mapping ¥: ( — ()
such that

u<v=%(u) <¥(v),

with the property that for any 0 <p < 1, if x,,..., x, are (p, q) distributed
independent random bits, then ¥(x,, .. ., x,,) is uniformly distributed in {0, 1}*,
given that (¥ (x,,...,x,)) = k.
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ITERATING VON NEUMANN’S PROCEDURE 591

Note that ¥ is not allowed to depend on p. The rate of an extraction
procedure ¥ is the function

1
r(p) = limsup ;E[l(‘l’(xl, cenx)]

n—o

where x; are independent (p, ¢) distributed bits and E denotes expectation.

2. The iterated procedures. The von Neumann extraction procedure
V. Q - Q is defined by

W%y, Xy e vy Xapr1) = Vo(Xps 05 X3,) = (V15- -5 Vk)>

where y; = x,,,, and m; <m, < --- <m, are all the indices m <n for
which x,,, # x5, _1-

(*) The iterated procedures ¥,, v > 2 are defined inductively. Given
Xy,...,%g,, denote u; =x,;_; ® x,; (& is addition modulo 2) and v; = x5, ,
where i, <i,< -+ <i,_, are all the indices ¢ <n for which x, =x,;
and k is again the number of indices m < n such that x,,,_, # x,,,. Let

\Pv(xl’ et x2n) = q’l(xh R xzn) * q’v—l(ul’ et un) * u—l(vl’ cre vn—k)'
Finally, define V¥, for sequences of odd length by ¥,(x,,...,%5,,1) =
¥ (xq,...,%,,). To verify that the ¥, are extraction procedures, it is conve-
nient to extend the class of processes considered. Recall the notion of ex-
changeable random variables ([3], Section VII.4).

ProrosiTiON 1. If x4,...,%,, are exchangeable random bits and v > 1,
then given that

W(Y,(xq,...,%5,)) =m,
the string V,(x, ..., X,,) is uniformly distributed in {0,1}".

LEMMA. Assume the random bits x,, ..., x,, are exchangeable and k > 0.
Then conditioning on the event C, = [I[(¥ (x4, ..., x,,)) = k], we have:

G) W(x,,...,x,,) is uniformly distributed in {0, 1}*.

(i) The random bits u,,...,u, defined in (x) by u; ==x,;_, ® x5; are
exchangeable [this implies that given C,, the random string (u,,...,u,) is
equidistributed among all (Z) strings in {0, 1}" of Hamming weight k].

(iii) The random bits vy, ...,v,_, defined in (*) are exchangeable.

(iv) The three random vectors W(x,,...,%5,), (U, ..., u,) and (vy,...,v,_;)

are independent.

(Note that we are not asserting that the u; are independent of each other.)

ProoF oF THE LEMMA. (i) If {x,} are independent, this is the validity of the
original von Neumann procedure. To obtain the general case, use the group of
2" permutations generated by the n transpositions exchanging 2j — 1 and 2,
1 <j < n, and exchangeability of the {x,}.
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(ii) This follows easily from the exchangeability of the {x;}, as any permuta-
tion w € S, of (u,,...,u,) may be obtained from a corresponding permuta-
tion 7 € S,, of (x,...,x,,), where m(2j —8) =2n(j) -8, 1<j<n, d€e
{0, 1}.

(iii) Part (iii) is proved along the same lines as (ii).

(iv) What must be shown here, is that for any fixed string ¢ € {0, 1}* %, the

probability

PlW(%y,...,%5,) =@, (Ug,eoos ) = b, (Ug,eee,Uy_y) = ¢|Cy]

does not depend on the strings a € {0,1}* and b € {0,1}* (where b has
Hamming weight %). Indeed, let a, o’ € {0, 1}* and b, b’ € {0, 1}*, where b, b’
have Hamming weight .. Combining the tricks in parts (i) and (ii) above, one

may construct a permutation o € S,, such that if a string (x,,...,%,,)
satisfies ¥y(x,,...,x,,) =a, (uy,...,u,) =b and (vy,...,v,_,) = c, then ap-
plying (*) to (x,qy, . . -, X,(2,)) generates
Vi(Xpqays -+ » Xogany) = @ (u'y,...,uy) =0
and
(Vy,...,U,_p) =c.

By exchangeability of {x;}, we are done. O

Proor or ProrosiTION 1. We use induction on ».
The case v = 1 is part (i) of the lemma. For the inductive step it suffices to
check that for fixed m, the probability

P[Y,(xq,...,%5,) =s]
is the same for all s € {0, 1}. By the lemma, this probability may be written

as

X P(COP[Hi(x1es ) = (- 50)[C

m—k
X E P[\va—l(ul""aun) = (sk+1""’sk+r)lck]
r=0

XP[W,_1(V1,- -, Vup) = (Sparsrs-- 5 8,)[Ch]

By induction, this expression does not depend on s. O

In the construction (*), note that when x; are (p, q) distributed indepen-
dently, then u, = x,; ® x,;_, are independent (p? + g2, 2pq) distributed bits
and v; (as defined there) are independent (p2?/(p? + ¢2),q%/(p? + ¢?)) dis-
tributed bits. This allows a recursive computation of the rates of the proce-
dures ¥,.
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PROPOSITION 2. The rates r,(p) of the procedures 'V, satisfy the recursion
2
forv > 2,

1 1
n(p) =P+ gr PP+ a%) + S (P* @) e

where r(p) = pq. All these rates exist as a.e. limits: If x,, %, ..., are (p,q)
distributed independent bits, then r,(p) = lim, |, (1/n)l(¥Y(x4,...,x,)) a.e.

Proor. Let 0 <p <1 and let x,x,,x5,... be independent (p,q) dis-
tributed random bits. Noting that

E[l(‘lﬁ(xl,---’xzn))] = ) E(xy ®x5_,) = 2npg,
i=1

it follows that r(p) = pq.
By the strong law of large numbers, almost surely

n

1 1
,}1_120 71(‘1'1(351»---,35271)) = '}im on Z (xg; ® x9;_1) = Ppq =11(P).

— 00 .
i=1

(It is convenient, and clearly suffices, to compute the limit along even
indices.) For the inductive step, assume the proposition holds for » — 1 in
place of v.

Again, let {x;} be independent (p, q) distributed random bits and consider
the random variables

K(n) = l(\l’l(xl, ceey xzn)).
We have

L(¥,(%,...,%5,)) =K(n) +1(¥,_y(uy,...,u,))+ l(‘If,,_l(vl, e vn_K(n)))
and therefore
1 _
El—l(‘lf,,(xl,...,xz,,))

= o +El'l(q’u—1(u11""un))

n—K(n) 1
2n : n —K(n)l(q”"l(vl""’vn-K(n)))'

From the discussion above (K(n)/2n) — pq, and in particular n — K(n) -
© as n — «, with probability 1. Thus the last formula and the induction
hypothesis imply that

1
lim El‘l(lp,,(xla RS} x2n))

n—o

o4 & (p* + 2)+1(2+ %)y, _r
bq 2 v—1\P q 9 p q v—1 p2+q2 .
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Taking expectations and using the bounded convergence theorem, we get

1
rv(p) = ,}i_l,l:o E;E[l(\yy(xl, (RN x2n))]

= +l (2‘+‘2)+1(2+ r, P
pq 2.,-117 q 2P q U pZy g2 |

Comparing the last two formulas completes the proof of the proposition. O

3. The entropy bound. Denote A(p) = —plog, p — q log, q, where q =
1—pfor0<p <1andlet h(0) = ~(1) = 0. Also denote by H(Z) the entropy
of any discrete random variable Z. For an extraction procedure ¥ with rate
function r, the inequality r(p) < h(p) holds for all 0'< p < 1. The reason for
this well-known fact is that if x,,...,x, are (p,q) distributed independent
bits, then

nh(p) = H(xy,...,x,) = H¥(xy,...,%,))
= H(U(V(xy,...,%,))) + H(¥(xy,..., ) I(¥(x1,...,%,)))
> E(I(¥(xy,-..,%,))).

For details see, for instance, [2] or [5].

ProprosITION 3.

lim r,(p) = h(p) uniformlyinp € (0,1).

Proor. Let
= { £:10,1] > R|lim f(¢) = 0 = lim £(£)}.

Consider the operator T: & — F defined by

1 1 p?
= — 2 2 — 2 2
(TF)(p) =pg + 5f(p* +4°) + 5(P* +4q )f(p2+q2),
where ¢ = 1 — p. Define ro(p) =0for 0 <p < 1.

By Proposition 2, the functions {r,}, , , satisfy r, = Tr,_, for all v > 1, and
this, together with r, = 0, is all we shall use to prove the proposition. (In
particular, the general entropy bound is not utilized.)

One directly verifies that the entropy function A is a fixed point of T. Since
T is a monotone operator and ry(p) < h(p), it follows by induction that
r,(p) < h(p) for all v > 0.

Similarly, from ry(p) =0 <pqg=r(p) for 0 <p <1, it follows that
r,_«{p) <r(p)forall v > 1and p €0, 1]. Thus for each p, the limit f(p) =
lim, , r(p) exists.
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The function f satisfies 0 < f(p) < h(p), and therefore also f€ &% and
Tf = f. Thus the difference g =h — f satisfies g€ &, g > 0, and
g(p) = g(p® + ¢*)/2 + (p* + ¢*g(p?/(p* + ¢*)/2.

Let

M= "sup g(p).
pe(0,1)

Assume that M > 0. Since g € &, there exists ¢ > 0 such that

M= sup g(p).
pele, 1—¢]

However for all p € [¢,1 — €], we have
g(p) <M/2+ e+ (1-¢)’|M/2<M.

This contradiction forces M = 0 and therefore f = h. Since the convergence
r, = h is monotone, Dini’s theorem guarantees that it is uniform on [0, 1]. O

4. Remarks.

REMARK 1. As in [2], the output of a finite state Markov chain can be
converted to several sequences of biased coin flips without losing entropy, and
then one may apply the extraction procedures discussed above. Compare

also [1].

REMARK 2. Also following [2], one can use the diagonal method to construct
from the procedures {¥,},., an extraction procedure with rate function pre-
cisely h(p).

REMARK 3. Often when an extraction procedure V¥ is utilized, the number
m of unbiased bits to be generated is predetermined, while the number of
biased (p, q) distributed bits used is not. One’s natural inclination in this
situation is to generate ¥(x,,..., x,), where 7 is the stopping time:

= minll (¥ 50)) = )

We stress that if ¥ is any of the iterated von Neumann procedures, or the
Elias procedure, the resulting string (a,,...,a,,) = ¥(x,,...,x,) is not uni-
formly distributed in {0, 1}™.

A way to bypass this difficulty is to fix a block length b > 2 and to generate

(x*%)  W(xgyeer Xp) * W (Xpp1s-eesXap)* " * W (Xgppitr--r X))

where ¢ is the minimal integer for which the number of unbiased bits so

produced is at least m.
It is easy to see that the string in (* %) is composed of independent unbiased

bits.
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5. Exchangeable processes. Let Y ={Y}7_; be an infinite sequence of
exchangeable, 0-1 valued random variables. The entropy of Y as a stationary
process is

1
R(Y) =lim ~H(Y,,...,¥,).

The extraction procedures V¥, may be applied to Y, and by Proposition 1 they
generate independent unbiased bits. With a slight abuse of notation, let

r,(Y) = limsup %E[l(‘l’u(Yv Nk

n—oow

(We shall see in the proof below that actually the limit exists.)

CoROLLARY 4. For any exchangeable 0-1 valued process Y, the sequence
r(Y) is increasing and

lim r,(¥) = h(¥).

Proor. By de Finetti’s theorem (see [3], Section VII.4) Y is a mixture of
i.i.d. processes, that is, there exists a Borel probability measure u on [0, 1] such
that if (sq,...,s,) is a string of bits of Hamming weight %, then

P[Y,=s;,1<j<n]= /olp""‘(l -p)*du(p).

Since the entropy of a mixture is the corresponding average of entropies ([6],
Theorem 9.8), we have

R(Y) = ['h(p) du(p).

Here h(p) is the entropy of (p, q) distributed independent random bits and is
given by the formula in Section 3. Also, by conditioning on p we get

(WY, Y))] = [E[1(¥(x1,...%))] du(p)

[here E, means that the x; are taken as independent (p, ¢) distributed bits].
Dividing by r and taking the limit, the bounded convergence theorem gives

R(¥) = lim E[I(%(¥,,...,Y,))] = [7.(p) du(p).
Since r,(p) increases as v — » to h(p) and the convergence is uniform,
lim r,(Y) = [ lim r,(p) du(p) = h(Y)
as claimed. D

It would be interesting to obtain a direct proof of the corollary, without
invoking de Finetti’s theorem.
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As a final remark, note that the finitary homomorphism theorem of Keane
and Smorodinsky [4] may be used to extract unbiased independent random bits
from an i.i.d. process X = {X,})* ..

Indeed if (¢/d) is a positive rational number smaller than the entropy
h(X), then an extraction rate (c/d) may be achieved by partitioning {X,)* .,
into blocks of length d (i.e., considering the dth power of the shift) and
mapping the resulting system [which has entropy dh(X)] by a finitary factor
map onto the full shift on 2° symbols. The codes of [4], unlike the procedures
V,, commute with the shift. However, they must be tailor-made to fit a
particular process X, while the procedures ¥, work for all exchangeable
processes simultaneously.

It would be interesting to devise a coding which combines, to some extent,
both features.
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