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SOME INEQUALITIES ABOUT THE KAPLAN-MEIER ESTIMATOR

By SoNG YANG

Texas Tech University

In this paper we consider the product-limit estimator of the survival
distribution function in the context of independent but nonidentically
distributed censoring times. An upper bound on the mean square incre-
ment of the stopped Kaplan—-Meier process is obtained. Also, a representa-
tion is given for the ratio of the survival distribution function to the
product-limit estimator as the product of a bounded process and a martin-
gale. From this representation bounds on the mean square of the ratio and
on the tail probability of the sup norm of the ratio are derived.

1. Introduction. The product-limit (PL) estimator of the survival distri-
bution function due to Kaplan and Meier (1958) and its variants [e.g., Susarla
and Van Ryzin (1980)] are often used in analyzing randomly censored data.
While there are many results in the study of censored data, the approach by
Gill (1980), via counting process and martingale techniques, has one advantage
in that it allows a more successful treatment of the estimator’s behavior on the
entire support set of the underlying distribution function [e.g., Gill (1983) and
Yang (1991)]. Very often some sort of Taylor expansion of the functional
involved is used in large sample inferences and some bound on the mean
square increment (MSI) of the PL process can be used in proving the negligibil-
ity of the higher order terms. In some other cases, the ratio of the survival
distribution function to the PL estimator needs to be analyzed [Koul, Susarla
and Van Ryzin (1981), Blum and Susarla (1980)]. First of all, in Section 2 of
this paper we generalize a result on the MSI of the Kaplan-Meier process due
to Yang (1991). Then in Section 3 we give a representation of the above-men-
tioned ratio as the product of a bounded process and a martingale, from which
bounds on the mean square of the ratio and on the tail probability of the
sup norm of the ratio are derived. These results are obtained by solving certain
inhomogeneous Volterra integral equations [Volterra (1887)] and Gronwall
inequalities [Gronwall (1919)], which are derived from a representation result
of Gill (1980); see also Gill and Johansen (1989) for a survey of relevant
results.

2. The mean square increment. Let (U,,C)),...,(U,,C,) be n pairs of
independently distributed nonnegative random variables, where Uj,...,U,
have a common cumulative distribution function (c.d.f.) F and for each
i=1,...,n, C; is independent of U; and has (sub) c.d.f. G;. The observable
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data consist of (U; A C,,[U; < C,]), i = 1,...,n, where A denotes the mini-
mum and [A] is the indicator function of a set A, and one is interested in the
survival distribution function 1 — F of the life times U,...,U,. Let X, =
U ACy, 8, =[U; < Clfori=1,...,n and define

H(t)=n""#{i: X;<t}), 0<t<o,
H,}(t)=n'1#{i:Xist,6i=1}, 0<t<o,
The PL estimator 1 — F, of 1 — F is given by

(1) l—Fn(t)=s];[t(l—%"((:))), ‘ 0<t<o,

where A f(x) = f(x,) — f(x_) for any function f and D=1 - D for any
(sub) c.d.f. D.

Denote 1 -n"'T?_\G; by G and EH,=1-FG by H. Define 75 =
sup{z: H(¢) < 1} and so on and A(¢) = [{(1/F_)dF, 0 < t < r,, where as in
the sequel /g = fi, ,; and [/ = [ 4 for s > 0. Define the Kaplan—-Meier (KM)
process Z, by

Z,=n'*(F,-F)/F on|0,rp),

and the stopped KM processes Z,, by Z,,(t) = Z (¢ A X1 k=0,1,...,
n — 1, where X;) < X, < -+ <X, are the order statistics of the X;’s. Also
let oJ,,(8) =[t <X, _,], 0 <t <o Now we are ready to state our result on
the mean square increment bound.

THEOREM 1. Suppose AF(7;) = 0 and F(0) = G(0)=0,i=1,...,n. Letr
be a positive real. Then when either k <r or F is continuous, we have for
0 <s<t<ry that

(2) E(Z,4(t) = Z,4(s))* < D(t) - D(s),

where

D(x) = {2(1 + 1/r)} /FO+n/G+0 () [*Fa+n/sn /(B _F) dF.
0

REMARK.  Although the above result is for general %, the cases & = 0,1 will
usually suffice in application.

Consider the case when the G,’s are identical and F is continuous. In this
particular case, the above result for £ = 0 and r = 1 is obtained in Lemma 2.5
of Yang (1991). The result for £ = 0, 0 < r < 1, improves the bound given in
that lemma and the result for & = 1,0 <r <1, gives a sharp bound. In order
to see this, consider the (uncensored) case when G,=0,i=1,...,n. Now F,
reduces to the empirical distribution function and a direct calculation gives
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EZ? = F/F, while (2) gives, for 0 < r < 1,
EZ%, < (21 +r)/r®}(1 — F")/F'*" < (2(1 + r)/r2}F /F'*T,
with an extra explosive factor 1 /Ff and

EZ? < {4(1 +r)/(r(1 = r))}(FO-D/2 = 1) /FC+D/2
<{4(1+r)/(r(1 - r))}F/F.

Notice that the sharp bound is obtained at the expense of discarding only one
observation. For applications of Theorem 1, see the discussion after the proof
of Theorem 1.

Proor oF THEOREM 1. By the assumption we have X ,, < max U; < 75 a.s.
Hence from Lemma 3.2.1(v) of Gill (1980) we obtain that, for 2 = 0,1,...,
n -1, Z,, is a locally square integrable mean 0 martingale on [0, ), with
predictable variation process

t, — —\2 —
(Z,,)(t) = fO(Fn_/F) J,./H, (1 - AA)dA
(3)
= [(1 =72, )'d,u/(H, F)dF.

Note that [X; > ¢], i = 1,..., n, are independent Bernoulli random variables.
Hence, by Hoeffding (1956), we have that

Bf(nfl )g" () i g

for any function f such that
fG+2)-2f(+1)+f@G) >0, i1=0,1,...,n — 2.

Taking f(i) =1/i[i > 0] + 2[i = 0] and using n/i < 2(n + 1)/(G + 1), we
get, on [0, 7),

E(J,./H, ) < nEf(nH,_)

< ¥ n/il 7 )HLH2 + 208"
i=1
4 n o
(4) <2y (n+1)H‘_H'_’"+2an
Zli+1
n+1

<2/H_ Z (”jl)H H 1 < 9/F .

Now denote EZ2,(¢) = E(Z,,)(t) by L,(¢). Notice that EZ2,_<L,_ by
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Fatou’s lemma and J,,/(nH,_) < ,,/(k + 1), thus on [0, 7j,),

Z, J., — 2L, _
& ErE. S \/Ez’%’*‘fg(J"k(nH'?') ) < \/%

Using (4), (5) and expanding the square in (3), we get, for 0 <t < 7;; and
positive real r,

¢ t [aL,_ 1 ¢
Lk(t)sfoadB+2fO‘/k+1 d/3+mf0Lk_dB

1 t 1+r t
S(l+:)j;adﬁ+mj;l/k_dﬁ,

where a = 2/H_, dB = F~'dF. To obtain the last inequality we have used

(6)

A 1
7 2AB =2—VrB < —A? + rB?.
(7 ‘/;\/’—' <r r

Similarly we have, for s < ¢ < 7,

E(Z3,(t) = Z2(s)) = E(Z,)(t) - <an>(8))
8
(&) s( )fadB 1fL”‘dB

From (6) it is easily seen, using Theorem 10 of Gill and Johansen (1989),
that L, can be bounded above by the solution of the corresponding integral
equation. This solution can be expressed in terms of the product integral of
(1 + r)/(k + 1) dB. Here we will use an integration by parts formula to give
the bound an explicit integral form. Without loss of generality, we will assume
r to be a rational. The result for a general positive real r can be obtained by
passing to the limit for a sequence of rationals r; decreasing to r.

Since r is a positive rational, there exist positive integers p, ¢ such that
p/q =@ +r)/(k + 1). Let ¥ satisfy

(9) ¥(6) = #(t) ~p/a[V_/BIdBY,  0st <,

where ¢() =(1 +r)/rfadB and B is a cd.f given by BY=F. Then
L, < V. This and (8), (9) give, for 0 < s <t < 73,
(10) £,(2) — Ly(s) < ¥(¢) = ¥(s).

Integrating by parts [Shorack and Wellner (1986), page 868] and using (9) we
have

W(t)Br(t) = [Otd(qrﬁp) = fot(qr_ dB? + Br dV)
(11) t = p = = t—
= [o(qf_ dBP — ;\II_BP“’ qu) + fOBP do.
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Now using [Shorack and Wellner (1986), page 868]
(12) dB? = ( Y Eiﬁp-i-l) dB,
iiO

we can rewrite the first integral on the RHS of (11) as

1 1’ 1_ ; 1971 ¢
fp‘l’( B”“‘——ZBBP‘I)dB [AdB,
i=0
say. Since B_> B, B B”“‘1 is nondecreasing in i and so their average is
nondecreasing as the function of the number of summands. Hence we get
A<0if p>qgand A >0if p < g; also apparently A 0 if B is continuous.
Thus from (11), we have for 0 < s <t < 7p,

Y(t) — ¥(s)
(13) = E‘P(t)ftAdB +(B77(¢t) - E"’(s))]:AdB + D(t) — D(s)

< D(¢) - D(s),

when either p > g or B is continuous. Now our stated result follows from (10)
and (13). O

REMARK 1. Applications. In nonparametric inference, some sort of Taylor
expansion, that is, the 6-method, is often used. In such a situation, Theorem 1
can be used in dealing with the second order term. It can also be used in a L2
space setup, for example, in the Cramér-von Mises type minimum distance
estimation, and in dealing with the variation process in a martingale frame-
work. Specifically, we mention two applications of Theorem 1 below. Refer-
ences are given for the details. These are illustrative examples and we do not
strive for the most general results here.

(i) The integrated square error of a kernel density estimator. Suppose F has
a density f with respect to the Lebesgue measure A. Define a kernel density
estimator of f by

(14 o) = K[

where a, > 0 is called the smoothing parameter and K is a kernel function.
To measure the global performance of f,, one often uses its integrated square
error

| ar, ).

n

ISE(f) = [ (fu = Fwaa,

where w is a weight function. The asymptotic property of ISE(f,) is closely
related to the limiting behavior of the smoothing parameter a ,,. Let A be a left
continuous nonrandom function. The proof of Theorem 1 shows that, for any
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r > 0, there exists a constant %2, > 0 such that for any ¢ < 7,
2
E([’ AdZnO) —E[" 2d(Z,)) <k [ A(F*G) ' dF,

provided that the last integral is finite. These types of inequalities will be
exploited in studying the ISE(f,) in a separate paper.

(ii) Hellinger-differentiable functionals. Let ¥ be a functional of the den-
sity. Suppose that ¥ is Hellinger-differentiable, with derivative . That is,

¥(d,) - ¥(d) = f_l*ﬁ(di/? —dV?)dA + o(||dy? - d'/?|),

as [ldY/2 — dV?|| - 0, where || - || denotes the L?(A) norm. One natural estima-
tor of W(f)is ¥(f,), where f, is defined in (14). From the result in Theorem
1 for £ = 0 and r = 1, the asymptotic normality of Vn (¥(f,) — ¥(f)) can be
established under the conditions vn a% — 0, Vnal** — « for some &£ > 0 and
some smoothness and boundedness conditions on ¢ and f. This follows from
the proofs of Lemma 4.1 and Theorem 4.1 in Yang (1991) (note that in that
paper the functional involved is a little more complex, due to the estimation of
the common unknown censoring distribution and some restriction on the
integration range). Now if we truncate F, at X ,_,, in the definition of £, in
(14), then, by the result in Theorem 1 for 2 = 1, r < 1, the conditions on the
smoothing parameter can be weakened to those used in the i.i.d. complete data
case: Yna2 — 0, Vna, — ®. For details see the proof of Lemma 4.1 in Yang
(1991).

3. The ratio of the survival distribution function to the PL estima-
tor. With the same notation as in Section 2, let

15 R, (¢ Q) 0<t<X

= — <t<
( ) n( ) 1 _ Fn(t) ’ - (n)?
(16) A () = /O’H_,;_l dH!, 0<t<X,.

Again we will consider the stopped versions R, ,(-) = R, (- A X, _;), A,,(*) =
A(ANX,_p)fork=0,1,...,n — 1. Define

(17) Sue() = L (AA(8))%,  0s<t<o,
(18) A1) =1-TI(A-AS,(s)), 0=<t<m,

that is, A, is the product integral of —S,,, [Gill and Johansen (1989)]. Note
that A,, is a (sub) cdf. in ¢ and A,,(¢) is measurable with respect to
o[ X, <t)],6[X, <t], X[X,<t],i=1,...,n}). Also dS,, =A,;_dA,,. The
following result represents R,, as the product of a bounded process and a
martingale.
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THEOREM 2. Suppose F is continuous and F(0) = G,(0)=0,i=1,...,n.
Then for k =0,1,...,n —land 0 <t <X,

(19) R,.(t) = ALi () M,.(2),
where .
(20) Mnk(t) =1+ _/:A—nk—Rnk—Jnk d(An - A)

Proor. Noting that AA,, =dJ,, H;'AH! < (k + 1)7!, with equality only
possible at X, we can use Proposition A.4.1 of Gill (1980) in order to show
that, for 0 <t < X,,,

Roy(t) =1~ [T Rou (1 AA,)d(A - A,)
0 N
t
=1- [J,R,,_d(A-A,
@) JICA ] )
+ [ Vs RosoAAL(1 = AA,) T (A, — A)
0
= N,(2) + V,(¢),
say. Since F is continuous and AA, = F, 'AF, (from the definition of F,), we

have ,,R,,_(1 — AA,)" ' =dJ,,R,, and therefore V,(¢) is simplified to be
Y Rou(8NAA,,(8)? = [¢R,, dS,,. Thus from (18) and (21), we have

(22) Rou(£) = N,(8) + [Roy KoL dA,,.
Integrating by parts yields
_ ¢ - ¢ — e
R, A,.(2) = fod(RnkAnk) +1=1+ foRnk dA,, + joA,,,,_ dR,.;.
Now using (22) in the last integral we obtain
RouAo(6) = 1+ [(A, dN, = M, (6),
hence (19) follows. O

Let

© 1
(23) &= Y =, pp=exp(2c,), k=0,1,....
i=k+11t
Two consequences of the representation (19) are given in the following corol-
lary. Let VvV denote the maximum.

COROLLARY 1. Suppose the same conditions as in Theorem 2 hold. Then
fork=0,1,...,n—1,and A > 0,
Prvi
(24) PlIR, Il > 4] = =7

A ’
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where | - |l denotes the supnorm on [0, X, ;)] and fork =1,...,n -1,

(25) ER2,_(t) <p2/FPE/&+D(4)  0<t <7,

Proor. Note that AA,, =, H,'AH)<J,G+ D' at X, ,, i=
0,1,...,n — 1. Hence from the inequality In(1 —x) > —2x for 0 <x < 1/2,
we have, for 0 <¢ < X, and £ =0,1,...,n — 1,

Ak =TI - AS,,(5)) 7"

(26)
< eXP{2Z Asnk(s)} <e¥ri=p,.,.

s<t

By applying Doob’s inequality to the positive martingale M,, on [0,¢], we
obtain, for £ =0,...,n —landany 0 < ¢ < o,

Plsup M,, > /\] < ;EMnk(t) = —
[0,¢]
Hence letting ¢ 1, we have P[sup M,, > A] < (1/A). Further, using (19) and
(26), we obtain that [|[R,_llx < p,sup M,,. Hence (24) follows. As for (25),
first note that X, ;, < X,, a.s. and therefore ER2, (¢) is well defined for
k=1,...,n — 1. The martingale M,,(¢) has a nondecreasing predictable
Varlatlon process (M, Y#) = 1+ [tA2,_R2, J ,(nH, )1 — AA) dA,
hence by Fatou’s lemma, EM?, (¢) <lim_,, EM?,(s) < E <M,, > (¢). Now
denote ER2, (¢) by L(t). Then from (19), we have

(27) L(t) <p2EM?Z, (t) <piE(M,,)(t) <pk{1 + fL/(k +1) dA}

To obtain the last inequality we have used the fact that A, < 1, nd,_H,_>
J.(k + 1) and AA = 0. Starting from (27), we can proceed as in the proof of
Theorem 1 and finally obtain that

(28) ER}, (t) = L(¢) < pi/FP/**0(2). o

ReEMaARk 2. (i) Gill’s inequality [Shorack and Wellner (1986), page 317],
dealing with R, ,_ for general F but identical G;’s, has a bound 3/ VA for the
ta.ll probability of ||R,_llo, while (24) for 2 = 0 gives the bound p,/A =

e™ /372 /) < 3.64/A. Dlscardlng some large observations only helps reducing
the constant multiple, not the rate, of our bound. For the mean square of the
ratio R,,, note that we could have obtained ERZ((t A X,,))_) < p} 2 /FPi(t) in
Corollary 1, with the power p? < 13.3. If we discard X ») then the power in
(25) becomes p?/2 < 6.7. In general, pk/(k +1)—>0as kb — o,

(ii) By the symmetry of the censoring problem in U;’s and C;’s, results
parallel to (24) and (25) for different lifetime c.d.f. F;’s and common censoring
c.d.f. G also hold. Those results can be used in studying the censored linear
regression problem considered by Koul, Susarla and Van Ryzin (1981). In that
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problem, one observes

T, \Y;, [T.<Y], i=1,...,n,
where the censoring times Y;s are iid. and independent of T;s and for
l<i<mn, .
Ti=a+Bxi+£i,

with known x;’s and i.i.d. zero mean ¢;’s. Koul, Susarla and Van Ryzin (1981)
suggested estimating «a, B, respectively, by

a=Ya,8,2G(Z)Z <M,], B=Y0b,682G(2)Z; <M,],

where b, = (x; - X)/X(x;, - %), a,;=1/n —%b,;, ¥ =1/nLx; G, is the
Kaplan—-Meier estimator for the censormg distribution (defined 31m11arly to F,,
with 8, = 1 replaced by §; = 0) and the nonrandom quantity M, — » at a
proper rate so that various negllglblhty conditions are satisfied. Thus the ratio

G_/G,_ is naturally involved. Results parallel to our (24), (25) can be used to
relax and 31mp11fy some conditions in that paper; see Zhou (1989) for a related
argument in detail.

(iii) After the submission of this paper, I learned of an alternative bound for
the tail probability of |R, _llo, given by Zhou (1990). He considered [|A — A, llo
first and used a delicate truncation on the integrating interval. Then from the
exponential identity he obtained a bound C(In(A /5)) 2/3 where C can be
taken to be 858 and A is restricted to be > 5e% Our result here seems
simpler, with a more straightforward proof.

(iv) When all censoring distributions are the same: G; =G, i=1,...,n,a
kernel density estimator alternative to that in (14) is sometimes used. It is
defined as [cf. Blum and Susarla (1980)]

1 - X,

where G, is the Kaplan—Meler estimator for G. Thus the ratio G_/G, _
also involved. We expect that again (24), (25) can be useful, but will not dwell
on it here.
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